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Abstract 
This paper describes our English patent mining system 
for NTCIR-7 patent mining task which maps a research 
paper abstract into IPC taxonomy. Our system is 
basically under the k-Nearest Neighboring framework, 
in which various similarity calculation and ranking 
methods are used. We employ two re-ranking techniques 
to improve the performance by the use of richer features. 
Our systems performed well on the NTCIR-7 patent 
mining task (English sub-task) and obtained the best 
MAP-measure among all the participations. 
Keywords: patent mining, IPC, KNN, re-ranking 
 
1. Introduction 
 

Classifying research papers and patents is important 
for real-world patent processing applications such as 
invalidity search and technical trend analysis/mining [7]. 
Along this research line, we developed a patent mining 
system for NTCIR-7 English patent mining sub-task, in 
which research papers (or abstracts) can be automatically 
mapped into patent classification taxonomy, namely 
International Patent Classification (IPC). 

Our system is developed under the k-Nearest 
Neighboring (KNN) framework, in which various 
similarity calculation and ranking methods are used. To 
achieve further improvement, two different re-ranking 
methods are proposed to learn a better ranking from 
multiple rankers, in which rank combination and 
RankSVM are used respectively. Our experimental 
results on NTCIR-7 English patent mining data sets show 
that our system performed well on this task. Both of the 
re-ranking-based systems outperform the basic system 
significantly. In the following parts of this paper, we 
would present a detailed description of our system. 
 
2. Problem description 
 
2.1. Problem of patent classification 
 

To make the patent documents accessible to anyone 
who needs them, patent classification is required to allow 

patent documents related to any technology field can be 
retrieved and identified. International Patent 
Classification is such a classification system. The IPC 
taxonomy consists of over 60,000 fields or groups. Each 
group is described by a “classification symbol” called 
IPC code. A patent is generally assigned to one or 
multiple IPC codes that indicate the related technical 
field or fields. 

In NTCIR-7 English patent mining sub-task, our 
system aims to assign one or multiple appropriate IPC 
codes to a non-patent document. To achieve such goal, 
NTCIR-7 provides us with such a task that categorizes 
research papers into IPC based on titles and abstracts. 
That is, the input to our system is the title and abstract of 
a published research paper. The output of our system is a 
list in which IPC codes are ranked in similarity scores. If 
an IPC code is more strongly related to the input 
document, it should be assigned a larger score and 
ranked in an earlier position. The following Figure 1 
illustrates an example of the classification procedure. 
 
2.2. Available resources 
 

In NTCIR-7 English patent mining task, two training 
data sets are provided 

1. USPTO patent data. This data set contains 889,113 
US patents published by United States Patent and 
Trademark Office in 1993-2000. Each patent is made up 
of several sections. But only the information of 7 
sections (<PRIMARY IPC>, <TITEL>, <ABSTRACT>, 
<SPECIFICATION>, <CLAIM>, <DOCUMENT> and 
< DOC IDENTIFIER>) is allowed to be used for this 
task. It should be noted that only the primary IPC is 
assigned to each patent in this data set, which is selected 
from the original patent IPC codes that the patent is 
associated with. In other words, it is a training data set 
for single label classification task. 

2. Patent Abstracts of Japan (PAJ). The PAJ data set 
contains translations of titles and abstracts of 2,382,595 
Japanese patents in 1993-2002. It is a multi-label training 
set, and each document in PAJ is labeled with one or 
more IPC codes. 

― 333 ―



Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

 
Figure 1. Procedure of the categorization of research papers into IPC codes 

 
There are two test collections for this task, which are 

provided within the dry-run and formal-run tasks 
respectively. Each test instance (topic) only consists of 
the title and abstract of an English research paper and is 
labeled with one or more appropriate IPC codes. The test 
collection of dry-run contains 97 topics, and the formal-
run data contains 879 topics. The official result is 
evaluated on the formal-run test set. 
 
2.3. Evaluation method 
 

In this task Mean Average Precision (MAP) is 
adopted to measure how well the ranked list matches the 
gold standard [1]. The MAP is calculated in the 
following way, 
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Where ti is the i-th topic in test collection, n is the total 
number of the topics. For a given topic ti, r is its rank in 
the list, Pi(r) is the precision at r which is obtained by 
dividing the number of correct IPC codes in top-r of the 
ranked list by r. reli(r) is a 0-1 function that indicates the 
relevance of rank r. If the IPC code at rank r is correct, 
reli(r)=1; otherwise reli(r)=0. m is the number of correct 
IPC codes for ti, and N is the maximal rank that is 
evaluated. In this task, N is set to 1000. 
 

patent 
data 

  
classification 
system 

output 
   ranked 
   list of 
   IPC codes 

input 
title and  
abstract of the 
paper to be 
searched 

<TITLE> 
Study on a Natural Ventilation System Using a 
Pitched Roof with Breathing Walls Part 1 
Proposal of the System and Its Design for 
Ventilation 
</TITLE> 
<ABSTRACT> 
We proposed a natural ventilation system using a 
pitched roof with Breathing Walls, which 
provides proper amount of ventilation due to 
outdoor wind and a differential temperature 
between indoor and outdoor air, … 
</ABSTRACT> 

IPC code Rank Score 
E04B_1_70 1 14.239175 
F24F_7_10 2 13.066700 
F24F_7_007 3 12.761450 
F24F_1_00 4 11.703880 
F24F_7_08 5 11.514425 
F24F_7_013 6 11.381480 
F24F_7_06 7 9.923751 
F24F_1_02 8 7.686300 
F24F_11_02 9 2.480145 
E06B_7_02 10 2.171513 
… 

<TITLE>End-ventilating adjustable pitch arcuate roof ventilator</TITLE> 
<ABSTRACT>A roof ridge ventilator is provided, comprising preferably a molded ventilator, 
with openings along the sides thereof for passage of air therethrough and with openings at ends 
thereof for passage of air therethrough via gaps provided in pluralities of rows of 
tabs …</ABSTRACT> 
< IPC> F24F_7_02, F24F_7_007 </IPC> 
<CLAIM>What is claimed is: 1. A roofing ridge ventilator for venting a roof for air passage 
between the interior of a roof and the outside ambient through sides of the ventilator and through 
ends of the ventilator…</CLAIM> 
…… 
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3. Basic idea 
 
3.1. Challenges 
 

To use machine learning algorithm for this patent 
mining task, there are some challenging issues we should 
consider as follows:  

(1) Huge amount of training samples. As mentioned in 
section 2.2, the number of patent samples for training is 
over 3 million. In real-world applications, how to train a 
supervised classifier on such a large scale of data set is a 
critical issue. For example, training SVM-based 
classifier on such large corpus is also intractable due to 
the high computation cost. 

(2) Huge IPC code set and multi-label classification 
task. IPC taxonomy is a large and hierarchical 
classification system which consists of more than 60,000 
IPC codes. Training a supervised classifier on such large 
taxonomy is a challenging task. Besides, how to learn 
good supervised classifier from a large multi-label 
corpus is another key issue. 

(3) Class imbalance issue of IPC taxonomy. The 
distribution of IPC codes is much skewed. Seen from 
training corpus, most patents are concentrated on a small 
set of IPC codes, and the number of patents of most IPC 
codes is smaller than the average value. For example, in 
PAJ data set, the total number of IPC codes is 30,885, 
and the average patent number for an IPC code is over 
80. The IPC codes containing less than 10 and 50 patents 
take about 25% and 57% of all the IPC codes 
respectively. This situation generally causes a bottleneck 
in performance of the system trained on such imbalanced 
class distribution data [9]. 

(4) Different writing styles between research papers 
and patents. Research papers and patents are different in 
many aspects, such as words, mode of expression and 
formats. Even discussing the same topic, patents and 
research papers are expressed quite differently. This 
phenomenon gives rise to a problem that the research 
paper data and patent data do not follow the same or 
similar distribution, which conflicts with the foundational 
hypothesis of supervised document classification theory. 
Thus a supervised classifier based on this hypothesis is 
somewhat questionable when applied to patent mining 
task. 
 
3.2. Motivation 
 

The issues mentioned above make it difficult to apply 
sophisticated machine learning methods such as 
maximum entropy methods [2] and support vector 
machines [5] on patent mining task. Roughly speaking, a 
great deal of memory space and time cost is required by 
using these methods in large scale classification 
environment; for another, all of these methods are 
generally designed to solve the single label classification 
problem. Though there is some work on transforming 

multi-label classification into single label classification 
or designing much more complicated models to support 
the multi-label classification problem, there are still no 
good solutions to multi-label classification on large class 
set. 

In contrast, using k-nearest neighboring method is a 
comparatively easy solution to deal with large amount of 
data, because the classification is only based on 
extracting similar examples and no training process is 
required. Besides, KNN is itself a ranking, which can be 
applied on IPC codes ranking directly. Therefore, the 
KNN-based classification is used as our basic work 
frame. 

 
4. KNN-based method 
 
4.1. Architecture 
 

The system consists of two major parts – KNN-based 
classification module and re-ranking module. In the first 
stage, the list of candidate IPC codes is generated by a 
KNN classifier. Then the re-ranking technique aims to 
refine the ranked list. In this section, we describe the 
KNN-based classification module in detail. 

 
4.2. Similarity calculation 
 

In the design of our KNN classifier, five methods are 
used to calculate the similarity between an input 
document and each document in the training data set. 

 
(1) Cosine + tfidf 
Cosine is the most commonly used technique for 

similarity calculation in vector space model, which is 
regarded as a measurement of the angle between vectors. 
Given two document vectors v1 and v2, the Cosine-based 
similarity is computed as, 
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In our system, each feature term tj  of a document 
vector vi=(w1,i,w2,i,…,wm,i) is weighted by term 
frequency-inverse document frequency (tfidf) weighting 
scheme, as follows, 

, (log( ) 1) logj i j
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Where tfj is the term frequency of tj in document i, dfi is 
the number of documents containing term tj, N is the total 
number of documents in the training data set. If tfj =0, we 
set wj,i=0. 

 
(2) BM25 
BM25 is a widely adopted weighting method in 

information retrieval [10]. In the BM25 weighting 
scheme, the input document is viewed as a query q 
containing a serious of terms {t1, t2, .., tm}. The System 
collects all the documents in which at least one term 
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occurs. Then the system calculates the BM25-based 
similarity between the query q and each document d in 
training data set by the following equation, 
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Where d
ttf  is the frequency of term t in d. dl is the length 

of document d. avgdl is the average document length in 
the training data set. k1 and b are two parameters, namely 
term-frequency influence parameter and document 
normalization influence parameter respectively. In our 
system, k1 and b are set to 1.5 and 1.0 by default. wt is 
the inverse document frequency (idf) of term t, which is 
calculated as follows, 
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Where dft is the number of documents containing t. It 
should be noted that wt can be negative in some cases, 
which may lead to negative score of SimBM25. In our 
system, SimBM25 is set to 0 if SimBM25 < 0. 

 
(3) SMART 
This method is adopted in the well known information 

retrieval system SMART [3]. As in BM25, the input 
document is viewed as a query that contains a bag of 
terms. In the first step, the system extracts the documents 
in which at least one term occurs. Then the similarity 
between a document d and the input query q can be 
calculated as follows, 
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Where d
ttf , tdf  and N are the same as in BM25. argtft is 

the average number of occurrences of term t in the 
document set extracted. utfd is the number of unique 
terms in document d. pivot is the average number of 
unique terms per document in the training data set. q

tf  is 
the frequency of the term t in the query q. There is only 
one parameter r in this method, which is set to 0.2 by 
default. 

 
(4) Pivoted document length normalization 
Pivoted document length normalization is another 

weighting scheme in information retrieval [11]. In this 
paper we call it PIV for short. The scoring function of 
PIV is similar to BM25 and SMART,  
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Where d
ttf , q

ttf , dl, avgdl, tdf  and N have the same 
meaning as in BM25. s is the normalization parameter 
referred to as the slope and has a default value of 0.2. 

 
(5) Log-linear method 
Generally speaking, there are many basic similarity 

calculation methods which treat the problem in different 
views. It is natural to explore methods that can make 
benefits from the various existing scoring methods 
together. In our system, a log-linear way [4] is used to 
combine multiple scores (features) generated by basic 
similarity calculators together. The scoring function of 
this method is given as follows, 
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Where M is the number of basic similarity calculators 
that are combined. Scorem(c) is the normalized score of 
the class c in the m-th similarity calculator. The default 
features of our system are shown in Table 1. m  is the 
weight of each basic similarity calculator. In our system, 
the optimization of  is performed on a development 
data set using the grid search method (hill-climbing). The 
development data set is made up of 3000 randomly 
selected documents from PAJ data. 
 

Table 1. Default features of log-linear method 
Feature Description Weight 
feature 1 SimCosine 0.41 
feature 2 SimBM25 0.30 

feature 3 3
clog( 1)
( )

f
NSim

size c
 0.20 

feature 4 4
1log( 1)d

f t
t

NSim tf
df dl

 0.09 

 
4.3. Ranking 
 

In the first step of ranking, the system extracts the 
top-k documents {d1, d2, …, dk} with the highest 
similarities (k-nearest neighbors). Next, the system 
calculates a score Score(c) for each IPC code c in the 
extracted documents. Here Score(c) can be regarded as a 
measure of the likelihood that the input document has the 
label c. At last these IPC codes are sorted by their scores 
and outputted as the final ranked list. In our system, the 
following state-of-the-art scoring methods are used, 

 
(1) Original KNN ranking method 
The system scores each c by the number of its 

occurrence in the extracted top-k documents, as follows, 

1
( ) ( , )k

Original i
i

Score c occur c d  
Where occur(c, di) is a 0-1 function that indicates 
whether c occurs in di (occur(c, di)=1) or not (occur(c, 
di)=0). 
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(2) Naïve method 
In this method, the order of IPC codes follows the 

order of their first occurrences in the documents 
extracted. The scoring function is given as follows, 

1 2

1( )
( ,{ , ,..., })

Naive
k

Score c
firstrank c d d d

 

Where firstrank(c, {d1, d2, …, dk}) indicates the rank of 
the first occurrence of c in {d1, d2, …, dk}. If the first 
occurrence is in di, then firstrank(c, {d1, d2, …, dk})=i. 

 
(3) Sum/SumAver 
In this method, score is calculated by summing up the 

similarities of all the extracted documents containing c, 
as follows, 

1
( ) ( , ) ( , )k

sum i i
i

Score c occur c d Sim q d  
Where q is the input document, Sim(q, di) is the 
similarity between q and di which has been obtained in 
the step of similarity calculation. 

Generally a patent document has more than one IPC 
codes. In the Sum scoring method, the patents labeled 
with multiple IPC codes make more contribution to 
ranking, since their similarities are added more than one 
time. To limit the influence of the patents containing 
multiple IPC codes, a modified version of Sum is used, 
namely SumAver. Supposing the IPC codes in one patent 
have equal contribution to the similarity, we have, 
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(4) Listweak/ListweakAver 
To emphasize the patents ranked in the frontier part of 

the list, another scoring method based-on Sum is used, 
namely Listweak. 
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Where r1 is a parameter ranging in (0,1). 1
ir  can be 

regarded as a penalty that punishes the patents that have 
lower ranks. In our system, r1 is set to 0.95 by default. 
Like the Sum scoring method, Listweak has a modified 
version named ListweakAver, which is obtained just by 
replacing Sim(q, di) in the above equation with 
SimAver(q, di). 

 
Besides the basic methods above, a variant is also 

used in our system. 
 
(5) Weak/WeakAver 
A drawback of KNN is the prediction of the input 

document tends to be dominated by the classes with the 
more frequent examples, as they are more likely in the k-
nearest neighbors when the neighbors are computed due 
to their large number. It is a serious problem in this task 
because of the class imbalance of IPC. To alleviate the 
problem, a new scoring method is used, namely Weak. 
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Where size(c) is the number of training documents in 
c, crank(c, i) is the number of occurrence of c in top i-1 
documents. r2 is a parameter ranging in (0,1) and is set to 

0.9 by default. The factor 2

( )( , ) size ccrank c i
kr  is a penalty 

that punishes the class having large size. If c contains 
more documents in the training data set and occurs more 
frequently in {d1, d2,…, di-1}, the penalty factor will 
punish more on Sim(q, di). Actually this factor reflects 
both the density of class c on the whole training data set 

(factor 2

( )size c
kr ) and the density of class c in the set of 

top-i extracted documents (factor 2
( , )crank c ir ). Like the 

Sum scoring method, the method of Weak has a modified 
version named WeakAver, which is obtained just by 
replacing Sim(q, di) in the above equation with 
SimAver(q, di). 
 
4.4. Other settings 
 

In our system, each document is represented as a bag-
of-words. The terms are extracted from the sections of 
title and abstract, as some parts of training documents 
(PAJ data) have the information of these two sections 
only. And stemming is performed on all of the words. 

For parameter setting, k is set to 100 in all the ranking 
methods. 
 
5. Re-ranking 
 

In our KNN-based system different combinations of 
similarity calculation method and ranking method 
generate different results, since the problem is treated in 
different views. If the system could learn a better ranking 
from individual ranked lists, the performance will 
probably be improved. Thus in the second stage, we aim 
at learning better ranking from multiple ranked lists. Two 
approaches are used in our system. 
 
5.1. Rank combination 
 

The motivation behind this method is the ranks of 
class c in different lists can give us more evidence to 
rank it at an appropriate place. Given h ranked lists {l1, 
l2, …, lh} outputted by different individual classifiers 
{C1, C2, …, Ch}, the system re-score each c in the lists 
with the following equations. 

-

1

1( )
( , )

rank combination h
i i

i

Score c
rankinlist c l

 

Where rankinlist(c, li) is the rank of c in list li. If li does 
not contain c, rankinlist(c, li) is set to the length of li. i  
is the weight of li. In our system, the optimization of  
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is performed on a development data set with the gird 
search method. 

Actually this method models the re-ranking problem 
as a linear combination of individual classifiers. The 
features of a class c are its ranks in different lists. Here 
we cannot use the conventional regression techniques 
(e.g. least squares linear regression) for the optimization 
of parameter , because there is never a gold-standard to 
tell the system what the correct value of Scorerank-

combination(c) is. In this task, the target function is actually 
the loss of MAP value, but not the sum of the squared 
residuals. 
 
5.2. Re-ranking using learning to rank 
techniques 
 

The re-ranking problem here can be regarded as 
learning a ranking over instances in terms of a series of 
features. Actually it is an issue in machine learning 
techniques, namely learning to rank. And there have been 
many approaches proposed to solve this problem, such as 
RankSVM [8] and RankBoost [6]. Here we also treat the 
re-ranking as a learning problem. For model training, we 
can employ any existing learning method. In our system, 
we choose RankSVM. 

Given a set of ranked list {l1, l2, …, lh} , each class c 
can be viewed as an instance denoted by xc={f1(c), f2(c), 
…, fh(c)}, where fi(c) is the feature function that returns 
the feature value of the i-th dimension. In our system, we 
define 

i( ) if c is included in list
( )

0               otherwise
i

i
Score c

f c  

Where Scorei(c) is the score of c in li. For ranking 
problem, the important thing is to induce the pairwise 
instance preference 1 2c cx x , which means the instant 
xc1 should be ranked higher than xc2. Models can be 
trained on a series of pairwise instance preferences that 
are extracted from the training data, and then predict the 
relation between the unseen instances. The final ranking 
list is generated by the set of pairwise preference 
relations on the input instances (test data). In our system, 
since the parts such as model training and ranking is 
done by well-developed toolkits SVM-light 1 , the key 
point is the extraction of pairwise instance preferences 
for training. Actually there is no data for training. We 
just randomly selected a data set containing 3000 
documents from PAJ data. For each document d in this 
data set, we obtained h ranked lists {l1, l2, …, lh} of IPC 
code based on h basic classification systems. Suppose Cd 
is the set of IPC codes in these lists, and the correct IPC 
code of d is Ccorrect={ipc1,ipc2,…,ipc3}, we define, 

1 2 1 2{ : }prefer c c correct d correctS x x c C c C C  
The final training data is the union set of Sprefer of each d. 

 
 

                                                 
1 http://svmlight.joachims.org/ 

6.  Experiment 
 
6.1. Settings 
 

We used the default settings of our system for all the 
experiments.  

The training data is the PAJ data only. The USPTO 
data is not used, since it seems not useful in our 
experiments. 
 
6.2. Evaluation of our system 
 

The first set of experiments is carried out to evaluate 
the performance of KNN-based classifiers on dry-run 
data set. We evaluate the performance of the system with 
various combinations of similarity calculation and 
ranking. The experimental results are shown is table 2 
(the columns represent the methods of similarity 
calculation while the rows represent the methods of 
ranking.).  

We also evaluated the performance of re-ranking 
methods on the same data set. The basic classifiers are 
selected empirically. They are “BM25+ListweakAver”, 
“BM25+Listweak”, “BM25+Naïve”, 
“SMART+Listweak”, “SMART+ListweakAver”, and 
“PIV+Naïve”. For the re-ranking using RankSVM, the 
same basic classifiers are used expecting “PIV+Naïve”. 
The experimental results are shown in table 3. 

The second set of experiments is carried out on the 
formal-run data set which is the final test data set of 
NTCIR-7 patent mining task. Here we present the 
performance of systems that we entered in NTCIR-7. 
The three systems got the top-3 places among all the 
systems in NTCIR-7 English patent mining task. 

From Table 2, 3 and 4, we can draw the following 
main conclusions: 

1. BM25 and log-linear method outperform other 
similarity calculation methods.  

2. Among all the ranking methods, Listweak and 
ListweakAver perform the best. Thus we choose 
the system with the combination of 
“BM25+listweak” for NTCIR-7 formal run 
evaluation2. Surprisingly, the simplest ranking 
method “Naïve” works well in some cases, 
which indicates that the simple ranking methods 
are also helpful to our system. 

3. Ranking is a key factor that affects the 
performance of the basic KNN-based 
classification system. The system performs quite 
differently among various ranking methods.  

4. Re-ranking can improve the performance of the 
basic KNN-based system significantly.  

                                                 
2 Actually log-linear similarity calculation + ListweakAver 
ranking is the most effective combination on the dry-run data 
set. But we did not submit its result for the formal- run 
evaluation due to the time cost of  the log-linear similarity 
calculation method. 
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Table 2. Performance (MAP) of the KNN-based classifiers on dry-run data set. 
Ranking \ Sim Cosine + tfidf BM25 SMART PIV Log-linear 
Original KNN 35.16 34.79 35.78 34.51 35.05 
Naïve 32.41 38.57 33.55 37.23 40.02 
Sum 35.97 35.78 36.83 35.58 38.33 
SumAver 35.05 35.92 36.46 34.13 38.05 
Listweak 36.63 40.52 37.42 36.85 40.37 
ListweakAver 34.85 40.88 37.65 36.79 41.11 
Weak 36.25 36.53 37.11 35.91 38.24 
WeakAver 33.42 36.15 34.90 33.01 38.38 
 

 
Table 3. Performance (MAP) of re-ranking 

systems on dry-run data set 
System Performance (MAP) 
Rank combination 45.31 
Re-Ranking using RankSVM 43.02 
 
Table 4. Performance (MAP) of our systems 

on formal-run data set. 
System Performance (MAP) 
BM25+listweak 44.53 
Rank combination 48.86 
Re-ranking using RankSVM 47.21 
 

7.  Discussion 
 
7.1. Classification vs. retrieval 
 

The categorization of research papers into IPC codes 
is not a standard multi-label classification problem, since 
the system just generates the score or possibility for each 
class instead of a set of classes associated with the input 
document. The problem here is more likely a task of 
relevant IPC codes retrieval. Of course, there are many 
ways to transform a ranked list of labels into a set of 
labels for an input document. For example, the target 
labels can be extracted by using a threshold. However, 
we cannot expect the system will perform well if we 
evaluate it from the viewpoint of multi-label 
classification due to a large number of IPC codes used. 
In practical applications such as invalidity search a 
ranked list can provide more information rather than an 
imprecise set of labels. Therefore viewing the systems as 
information retrieval systems may be more appropriate 
than regarding it as multi-label classification systems. 
 
7.2. Single label vs. multi-label 
 

As mentioned above, the training data of single label 
(i.e. USPTO data set) and multi-label (i.e. PAJ data set) 
are provided within this competition task. However we 
found that the data of USPTO shows harmful to our 
system. The performance degrades when we trained the 
system on USPTO data solely or a mixed data set of 
“USPTO+PAJ”, comparing to training on PAJ data. It is 

the major reason that why we only use PAJ as training 
data set.  

Actually we still believe that the system can benefit 
from the USPTO data. But it needs our further study. 
Beside the problem of training on both single labeled 
data and multi-labeled data, another key issue is how to 
train our system on heterogeneous data. Both of the 
problems are worth studying in our future work. 
 
7.3. Rank-based ranking vs. similarity-based 
ranking 
 

The KNN ranking and re-ranking in our system can 
be divided into two types of methods, namely rank-based 
ranking and similarity-based ranking respectively. In 
rank-based ranking, the system calculates the score of 
each IPC code (i.e. class) using the document ranks, such 
as the Naïve ranking method and rank combination 
method while similarity-based ranking scores each class 
with the document similarities, such as the Sum ranking 
method and re-ranking using RankSVM. Theoretically, 
similarity-based ranking is more sophisticated than rank-
based ranking, since the document similarities can 
provide us with more evidence for classification. 
However, in our experiments the similarity-based 
ranking did not show obvious advantages as we 
expected. The rank-based ranking outperforms 
similarity-based ranking in some cases, for instance, the 
Naïve ranker achieved the best performance among all 
the rankers based on the similarity calculation method of 
PIV on the dry-run data set, and the system based on 
rank combination is the most effective system on both 
the dry-run and formal-run data sets. It indicates that the 
rank-based ranking methods are still effective for this 
task, though they are very simple. For similarity-based 
ranking, the problem is that the scores are calculated in 
terms of the sum of document similarities. However the 
similarities do not have the property of additivity. It 
means that the similarity 1.0 of a single document and 
the similarity 1.0 generated by 0.5 + 0.5 are 
incomparable. It is a possible reason that similarity-based 
ranking methods do not work well sometimes. If a more 
reasonable way is used to generate scores for ranking, 
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the performance of similarity-based ranking may be 
improved. 
 
7.4. Does patent structure really help 
 

Generally speaking, patent structure is very useful for 
people to understand the content of patents. And we hope 
it can also play an important role in tasks of patent 
mining. To evaluate the effectiveness of the use of patent 
structure, we did a set of experiments in which the words 
appearing in different sections are considered as different 
features. The experimental results on dry-run data set 
show that patent structure specified features are not 
helpful for the system performance. To use the features 
in some sections such as claims, we also perform the 
same experiment on a test set consisting of the full 
document of patents. Experimental results show that the 
patent structure still seems not helpful. It suggests that 
patent structure does not benefit to our system in which 
the documents are represented as bag-of-words vectors. 
The study of more effective ways of document 
representation is valuable in the future work. 

 
7.5. Why re-ranking works 
 

The re-ranking worked very well on this task. One 
major reason is that it makes much benefit from richer 
features. Another possible reason is that the re-ranking is 
performed on the frontier part of the list and has great 
potential to make performance improvement, since the 
evaluation method (MAP) emphasizes the return of more 
correct IPC codes earlier. 

 
8.  Conclusions 
 

We focus on the categorization of documents into IPC 
by participating in NTCIR-7 patent mining task. Our 
system is basically under the k-nearest neighboring 
framework, in which various similarity calculation and 
ranking methods are used. Two re-ranking methods are 
further used to improve the performance of the basic 
system. The experimental results on dry-run and formal-
run data sets show that the “BM25+listweak” is one of 
the most effective methods for this task. And the re-
ranking techniques can improve the basic system 
significantly. In future, we will use more patent specified 
features such as the patent structure to improve the 
performance. And we will apply our techniques on the 
practical patent processing applications such as invalidity 
search and technical trend analysis. 
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