
Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

KNN and Re-ranking Models for English Patent Mining at NTCIR-7

Tong Xiao, Feifei Cao, Tianning Li,
Guolong Song, Ke Zhou, Jingbo Zhu, Huizhen Wang

Natural Language Processing Laboratory
Northeastern University

Shenyang, Liaoning, P.R. China 110004
{xiaotong,zhujingbo,wanghuizhen}@mail.neu.edu.cn

{caoff,litn,songgl,zhouke}@ics.neu.edu.cn

Abstract
This paper describes our English patent mining system
for NTCIR-7 patent mining task which maps a research
paper abstract into IPC taxonomy. Our system is
basically under the k-Nearest Neighboring framework,
in which various similarity calculation and ranking
methods are used. We employ two re-ranking techniques
to improve the performance by the use of richer features.
Our systems performed well on the NTCIR-7 patent
mining task (English sub-task) and obtained the best
MAP-measure among all the participations.
Keywords: patent mining, IPC, KNN, re-ranking

1. Introduction

Classifying research papers and patents is important
for real-world patent processing applications such as
invalidity search and technical trend analysis/mining [7].
Along this research line, we developed a patent mining
system for NTCIR-7 English patent mining sub-task, in
which research papers (or abstracts) can be automatically
mapped into patent classification taxonomy, namely
International Patent Classification (IPC).

Our system is developed under the k-Nearest
Neighboring (KNN) framework, in which various
similarity calculation and ranking methods are used. To
achieve further improvement, two different re-ranking
methods are proposed to learn a better ranking from
multiple rankers, in which rank combination and
RankSVM are used respectively. Our experimental
results on NTCIR-7 English patent mining data sets show
that our system performed well on this task. Both of the
re-ranking-based systems outperform the basic system
significantly. In the following parts of this paper, we
would present a detailed description of our system.

2. Problem description

2.1. Problem of patent classification

To make the patent documents accessible to anyone
who needs them, patent classification is required to allow

patent documents related to any technology field can be
retrieved and identified. International Patent
Classification is such a classification system. The IPC
taxonomy consists of over 60,000 fields or groups. Each
group is described by a “classification symbol” called
IPC code. A patent is generally assigned to one or
multiple IPC codes that indicate the related technical
field or fields.

In NTCIR-7 English patent mining sub-task, our
system aims to assign one or multiple appropriate IPC
codes to a non-patent document. To achieve such goal,
NTCIR-7 provides us with such a task that categorizes
research papers into IPC based on titles and abstracts.
That is, the input to our system is the title and abstract of
a published research paper. The output of our system is a
list in which IPC codes are ranked in similarity scores. If
an IPC code is more strongly related to the input
document, it should be assigned a larger score and
ranked in an earlier position. The following Figure 1
illustrates an example of the classification procedure.

2.2. Available resources

In NTCIR-7 English patent mining task, two training
data sets are provided

1. USPTO patent data. This data set contains 889,113
US patents published by United States Patent and
Trademark Office in 1993-2000. Each patent is made up
of several sections. But only the information of 7
sections (<PRIMARY IPC>, <TITEL>, <ABSTRACT>,
<SPECIFICATION>, <CLAIM>, <DOCUMENT> and
< DOC IDENTIFIER>) is allowed to be used for this
task. It should be noted that only the primary IPC is
assigned to each patent in this data set, which is selected
from the original patent IPC codes that the patent is
associated with. In other words, it is a training data set
for single label classification task.

2. Patent Abstracts of Japan (PAJ). The PAJ data set
contains translations of titles and abstracts of 2,382,595
Japanese patents in 1993-2002. It is a multi-label training
set, and each document in PAJ is labeled with one or
more IPC codes.

― 333 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

Figure 1. Procedure of the categorization of research papers into IPC codes

There are two test collections for this task, which are

provided within the dry-run and formal-run tasks
respectively. Each test instance (topic) only consists of
the title and abstract of an English research paper and is
labeled with one or more appropriate IPC codes. The test
collection of dry-run contains 97 topics, and the formal-
run data contains 879 topics. The official result is
evaluated on the formal-run test set.

2.3. Evaluation method

In this task Mean Average Precision (MAP) is
adopted to measure how well the ranked list matches the
gold standard [1]. The MAP is calculated in the
following way,

1
()n

i
i

AverP t
MAPvalue

n

1
() ()

()
r N

i i
r

i
P r rel r

AverP t
m

Where ti is the i-th topic in test collection, n is the total
number of the topics. For a given topic ti, r is its rank in
the list, Pi(r) is the precision at r which is obtained by
dividing the number of correct IPC codes in top-r of the
ranked list by r. reli(r) is a 0-1 function that indicates the
relevance of rank r. If the IPC code at rank r is correct,
reli(r)=1; otherwise reli(r)=0. m is the number of correct
IPC codes for ti, and N is the maximal rank that is
evaluated. In this task, N is set to 1000.

patent
data

classification
system

output
 ranked
 list of
 IPC codes

input
title and
abstract of the
paper to be
searched

<TITLE>
Study on a Natural Ventilation System Using a
Pitched Roof with Breathing Walls Part 1
Proposal of the System and Its Design for
Ventilation
</TITLE>
<ABSTRACT>
We proposed a natural ventilation system using a
pitched roof with Breathing Walls, which
provides proper amount of ventilation due to
outdoor wind and a differential temperature
between indoor and outdoor air, …
</ABSTRACT>

IPC code Rank Score
E04B_1_70 1 14.239175
F24F_7_10 2 13.066700
F24F_7_007 3 12.761450
F24F_1_00 4 11.703880
F24F_7_08 5 11.514425
F24F_7_013 6 11.381480
F24F_7_06 7 9.923751
F24F_1_02 8 7.686300
F24F_11_02 9 2.480145
E06B_7_02 10 2.171513
…

<TITLE>End-ventilating adjustable pitch arcuate roof ventilator</TITLE>
<ABSTRACT>A roof ridge ventilator is provided, comprising preferably a molded ventilator,
with openings along the sides thereof for passage of air therethrough and with openings at ends
thereof for passage of air therethrough via gaps provided in pluralities of rows of
tabs …</ABSTRACT>
< IPC> F24F_7_02, F24F_7_007 </IPC>
<CLAIM>What is claimed is: 1. A roofing ridge ventilator for venting a roof for air passage
between the interior of a roof and the outside ambient through sides of the ventilator and through
ends of the ventilator…</CLAIM>
……

― 334 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

3. Basic idea

3.1. Challenges

To use machine learning algorithm for this patent
mining task, there are some challenging issues we should
consider as follows:

(1) Huge amount of training samples. As mentioned in
section 2.2, the number of patent samples for training is
over 3 million. In real-world applications, how to train a
supervised classifier on such a large scale of data set is a
critical issue. For example, training SVM-based
classifier on such large corpus is also intractable due to
the high computation cost.

(2) Huge IPC code set and multi-label classification
task. IPC taxonomy is a large and hierarchical
classification system which consists of more than 60,000
IPC codes. Training a supervised classifier on such large
taxonomy is a challenging task. Besides, how to learn
good supervised classifier from a large multi-label
corpus is another key issue.

(3) Class imbalance issue of IPC taxonomy. The
distribution of IPC codes is much skewed. Seen from
training corpus, most patents are concentrated on a small
set of IPC codes, and the number of patents of most IPC
codes is smaller than the average value. For example, in
PAJ data set, the total number of IPC codes is 30,885,
and the average patent number for an IPC code is over
80. The IPC codes containing less than 10 and 50 patents
take about 25% and 57% of all the IPC codes
respectively. This situation generally causes a bottleneck
in performance of the system trained on such imbalanced
class distribution data [9].

(4) Different writing styles between research papers
and patents. Research papers and patents are different in
many aspects, such as words, mode of expression and
formats. Even discussing the same topic, patents and
research papers are expressed quite differently. This
phenomenon gives rise to a problem that the research
paper data and patent data do not follow the same or
similar distribution, which conflicts with the foundational
hypothesis of supervised document classification theory.
Thus a supervised classifier based on this hypothesis is
somewhat questionable when applied to patent mining
task.

3.2. Motivation

The issues mentioned above make it difficult to apply
sophisticated machine learning methods such as
maximum entropy methods [2] and support vector
machines [5] on patent mining task. Roughly speaking, a
great deal of memory space and time cost is required by
using these methods in large scale classification
environment; for another, all of these methods are
generally designed to solve the single label classification
problem. Though there is some work on transforming

multi-label classification into single label classification
or designing much more complicated models to support
the multi-label classification problem, there are still no
good solutions to multi-label classification on large class
set.

In contrast, using k-nearest neighboring method is a
comparatively easy solution to deal with large amount of
data, because the classification is only based on
extracting similar examples and no training process is
required. Besides, KNN is itself a ranking, which can be
applied on IPC codes ranking directly. Therefore, the
KNN-based classification is used as our basic work
frame.

4. KNN-based method

4.1. Architecture

The system consists of two major parts – KNN-based
classification module and re-ranking module. In the first
stage, the list of candidate IPC codes is generated by a
KNN classifier. Then the re-ranking technique aims to
refine the ranked list. In this section, we describe the
KNN-based classification module in detail.

4.2. Similarity calculation

In the design of our KNN classifier, five methods are
used to calculate the similarity between an input
document and each document in the training data set.

(1) Cosine + tfidf
Cosine is the most commonly used technique for

similarity calculation in vector space model, which is
regarded as a measurement of the angle between vectors.
Given two document vectors v1 and v2, the Cosine-based
similarity is computed as,

1 2
cos 1 2

1 2
(,)ineSim v vv v

v v

In our system, each feature term tj of a document
vector vi=(w1,i,w2,i,…,wm,i) is weighted by term
frequency-inverse document frequency (tfidf) weighting
scheme, as follows,

, (log() 1) logj i j
i

Nw tf
df

Where tfj is the term frequency of tj in document i, dfi is
the number of documents containing term tj, N is the total
number of documents in the training data set. If tfj =0, we
set wj,i=0.

(2) BM25
BM25 is a widely adopted weighting method in

information retrieval [10]. In the BM25 weighting
scheme, the input document is viewed as a query q
containing a serious of terms {t1, t2, .., tm}. The System
collects all the documents in which at least one term

― 335 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

occurs. Then the system calculates the BM25-based
similarity between the query q and each document d in
training data set by the following equation,

1
25

1

(1)
(,)

(1)

d
tt

BM
dt q

t

tf k w
Sim q d

dltf k b b
avgdl

Where d
ttf is the frequency of term t in d. dl is the length

of document d. avgdl is the average document length in
the training data set. k1 and b are two parameters, namely
term-frequency influence parameter and document
normalization influence parameter respectively. In our
system, k1 and b are set to 1.5 and 1.0 by default. wt is
the inverse document frequency (idf) of term t, which is
calculated as follows,

0.5log()
0.5

t
t

t

N dfw
df

Where dft is the number of documents containing t. It
should be noted that wt can be negative in some cases,
which may lead to negative score of SimBM25. In our
system, SimBM25 is set to 0 if SimBM25 < 0.

(3) SMART
This method is adopted in the well known information

retrieval system SMART [3]. As in BM25, the input
document is viewed as a query that contains a bag of
terms. In the first step, the system extracts the documents
in which at least one term occurs. Then the similarity
between a document d and the input query q can be
calculated as follows,

(1 log()) (1)

(1 log())
(,)

d
t

SMART
dt q t

t

utf
avgtf r r

pivot

tf w
Sim q d

1(1 log()) log()q
t t

t

Nw tf
df

Where d
ttf , tdf and N are the same as in BM25. argtft is

the average number of occurrences of term t in the
document set extracted. utfd is the number of unique
terms in document d. pivot is the average number of
unique terms per document in the training data set. q

tf is
the frequency of the term t in the query q. There is only
one parameter r in this method, which is set to 0.2 by
default.

(4) Pivoted document length normalization
Pivoted document length normalization is another

weighting scheme in information retrieval [11]. In this
paper we call it PIV for short. The scoring function of
PIV is similar to BM25 and SMART,

(1 log((1 log()))
(,)

(1)

d q
tt t

PIV
t q

tf tf w
Sim q d

dls s
avgdl

1log()t
t

Nw
df

Where d
ttf , q

ttf , dl, avgdl, tdf and N have the same
meaning as in BM25. s is the normalization parameter
referred to as the slope and has a default value of 0.2.

(5) Log-linear method
Generally speaking, there are many basic similarity

calculation methods which treat the problem in different
views. It is natural to explore methods that can make
benefits from the various existing scoring methods
together. In our system, a log-linear way [4] is used to
combine multiple scores (features) generated by basic
similarity calculators together. The scoring function of
this method is given as follows,

1
log-linear

1

exp(())
()

exp(())

M
m m

m
M

m m
c m

Score c
Score c

Score c

Where M is the number of basic similarity calculators
that are combined. Scorem(c) is the normalized score of
the class c in the m-th similarity calculator. The default
features of our system are shown in Table 1. m is the
weight of each basic similarity calculator. In our system,
the optimization of is performed on a development
data set using the grid search method (hill-climbing). The
development data set is made up of 3000 randomly
selected documents from PAJ data.

Table 1. Default features of log-linear method
Feature Description Weight
feature 1 SimCosine 0.41
feature 2 SimBM25 0.30

feature 3 3
clog(1)
()

f
NSim

size c
 0.20

feature 4 4
1log(1)d

f t
t

NSim tf
df dl

 0.09

4.3. Ranking

In the first step of ranking, the system extracts the
top-k documents {d1, d2, …, dk} with the highest
similarities (k-nearest neighbors). Next, the system
calculates a score Score(c) for each IPC code c in the
extracted documents. Here Score(c) can be regarded as a
measure of the likelihood that the input document has the
label c. At last these IPC codes are sorted by their scores
and outputted as the final ranked list. In our system, the
following state-of-the-art scoring methods are used,

(1) Original KNN ranking method
The system scores each c by the number of its

occurrence in the extracted top-k documents, as follows,

1
() (,)k

Original i
i

Score c occur c d
Where occur(c, di) is a 0-1 function that indicates
whether c occurs in di (occur(c, di)=1) or not (occur(c,
di)=0).

― 336 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

(2) Naïve method
In this method, the order of IPC codes follows the

order of their first occurrences in the documents
extracted. The scoring function is given as follows,

1 2

1()
(,{ , ,..., })

Naive
k

Score c
firstrank c d d d

Where firstrank(c, {d1, d2, …, dk}) indicates the rank of
the first occurrence of c in {d1, d2, …, dk}. If the first
occurrence is in di, then firstrank(c, {d1, d2, …, dk})=i.

(3) Sum/SumAver
In this method, score is calculated by summing up the

similarities of all the extracted documents containing c,
as follows,

1
() (,) (,)k

sum i i
i

Score c occur c d Sim q d
Where q is the input document, Sim(q, di) is the
similarity between q and di which has been obtained in
the step of similarity calculation.

Generally a patent document has more than one IPC
codes. In the Sum scoring method, the patents labeled
with multiple IPC codes make more contribution to
ranking, since their similarities are added more than one
time. To limit the influence of the patents containing
multiple IPC codes, a modified version of Sum is used,
namely SumAver. Supposing the IPC codes in one patent
have equal contribution to the similarity, we have,

1
() (,) (,)k

SumAver i i
i

Score c occur c d SimAver q d

(,)(,)

i
i

i

Sim q dSimAver q d
nubmer of IPC codes in d

(4) Listweak/ListweakAver
To emphasize the patents ranked in the frontier part of

the list, another scoring method based-on Sum is used,
namely Listweak.

1
1

()

(,) (,)

listweak

k i
i i

i

Score c

occur c d Sim q d r

Where r1 is a parameter ranging in (0,1). 1
ir can be

regarded as a penalty that punishes the patents that have
lower ranks. In our system, r1 is set to 0.95 by default.
Like the Sum scoring method, Listweak has a modified
version named ListweakAver, which is obtained just by
replacing Sim(q, di) in the above equation with
SimAver(q, di).

Besides the basic methods above, a variant is also

used in our system.

(5) Weak/WeakAver
A drawback of KNN is the prediction of the input

document tends to be dominated by the classes with the
more frequent examples, as they are more likely in the k-
nearest neighbors when the neighbors are computed due
to their large number. It is a serious problem in this task
because of the class imbalance of IPC. To alleviate the
problem, a new scoring method is used, namely Weak.

2
1

()(,)

()

(,) (,)

weak

k
i i

i

size ccrank c i
k

Score c

occur c d Sim q d r

Where size(c) is the number of training documents in
c, crank(c, i) is the number of occurrence of c in top i-1
documents. r2 is a parameter ranging in (0,1) and is set to

0.9 by default. The factor 2

()(,) size ccrank c i
kr is a penalty

that punishes the class having large size. If c contains
more documents in the training data set and occurs more
frequently in {d1, d2,…, di-1}, the penalty factor will
punish more on Sim(q, di). Actually this factor reflects
both the density of class c on the whole training data set

(factor 2

()size c
kr) and the density of class c in the set of

top-i extracted documents (factor 2
(,)crank c ir). Like the

Sum scoring method, the method of Weak has a modified
version named WeakAver, which is obtained just by
replacing Sim(q, di) in the above equation with
SimAver(q, di).

4.4. Other settings

In our system, each document is represented as a bag-
of-words. The terms are extracted from the sections of
title and abstract, as some parts of training documents
(PAJ data) have the information of these two sections
only. And stemming is performed on all of the words.

For parameter setting, k is set to 100 in all the ranking
methods.

5. Re-ranking

In our KNN-based system different combinations of
similarity calculation method and ranking method
generate different results, since the problem is treated in
different views. If the system could learn a better ranking
from individual ranked lists, the performance will
probably be improved. Thus in the second stage, we aim
at learning better ranking from multiple ranked lists. Two
approaches are used in our system.

5.1. Rank combination

The motivation behind this method is the ranks of
class c in different lists can give us more evidence to
rank it at an appropriate place. Given h ranked lists {l1,
l2, …, lh} outputted by different individual classifiers
{C1, C2, …, Ch}, the system re-score each c in the lists
with the following equations.

-

1

1()
(,)

rank combination h
i i

i

Score c
rankinlist c l

Where rankinlist(c, li) is the rank of c in list li. If li does
not contain c, rankinlist(c, li) is set to the length of li. i
is the weight of li. In our system, the optimization of

― 337 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

is performed on a development data set with the gird
search method.

Actually this method models the re-ranking problem
as a linear combination of individual classifiers. The
features of a class c are its ranks in different lists. Here
we cannot use the conventional regression techniques
(e.g. least squares linear regression) for the optimization
of parameter , because there is never a gold-standard to
tell the system what the correct value of Scorerank-

combination(c) is. In this task, the target function is actually
the loss of MAP value, but not the sum of the squared
residuals.

5.2. Re-ranking using learning to rank
techniques

The re-ranking problem here can be regarded as
learning a ranking over instances in terms of a series of
features. Actually it is an issue in machine learning
techniques, namely learning to rank. And there have been
many approaches proposed to solve this problem, such as
RankSVM [8] and RankBoost [6]. Here we also treat the
re-ranking as a learning problem. For model training, we
can employ any existing learning method. In our system,
we choose RankSVM.

Given a set of ranked list {l1, l2, …, lh} , each class c
can be viewed as an instance denoted by xc={f1(c), f2(c),
…, fh(c)}, where fi(c) is the feature function that returns
the feature value of the i-th dimension. In our system, we
define

i() if c is included in list
()

0 otherwise
i

i
Score c

f c

Where Scorei(c) is the score of c in li. For ranking
problem, the important thing is to induce the pairwise
instance preference 1 2c cx x , which means the instant
xc1 should be ranked higher than xc2. Models can be
trained on a series of pairwise instance preferences that
are extracted from the training data, and then predict the
relation between the unseen instances. The final ranking
list is generated by the set of pairwise preference
relations on the input instances (test data). In our system,
since the parts such as model training and ranking is
done by well-developed toolkits SVM-light 1 , the key
point is the extraction of pairwise instance preferences
for training. Actually there is no data for training. We
just randomly selected a data set containing 3000
documents from PAJ data. For each document d in this
data set, we obtained h ranked lists {l1, l2, …, lh} of IPC
code based on h basic classification systems. Suppose Cd
is the set of IPC codes in these lists, and the correct IPC
code of d is Ccorrect={ipc1,ipc2,…,ipc3}, we define,

1 2 1 2{ : }prefer c c correct d correctS x x c C c C C
The final training data is the union set of Sprefer of each d.

1 http://svmlight.joachims.org/

6. Experiment

6.1. Settings

We used the default settings of our system for all the
experiments.

The training data is the PAJ data only. The USPTO
data is not used, since it seems not useful in our
experiments.

6.2. Evaluation of our system

The first set of experiments is carried out to evaluate
the performance of KNN-based classifiers on dry-run
data set. We evaluate the performance of the system with
various combinations of similarity calculation and
ranking. The experimental results are shown is table 2
(the columns represent the methods of similarity
calculation while the rows represent the methods of
ranking.).

We also evaluated the performance of re-ranking
methods on the same data set. The basic classifiers are
selected empirically. They are “BM25+ListweakAver”,
“BM25+Listweak”, “BM25+Naïve”,
“SMART+Listweak”, “SMART+ListweakAver”, and
“PIV+Naïve”. For the re-ranking using RankSVM, the
same basic classifiers are used expecting “PIV+Naïve”.
The experimental results are shown in table 3.

The second set of experiments is carried out on the
formal-run data set which is the final test data set of
NTCIR-7 patent mining task. Here we present the
performance of systems that we entered in NTCIR-7.
The three systems got the top-3 places among all the
systems in NTCIR-7 English patent mining task.

From Table 2, 3 and 4, we can draw the following
main conclusions:

1. BM25 and log-linear method outperform other
similarity calculation methods.

2. Among all the ranking methods, Listweak and
ListweakAver perform the best. Thus we choose
the system with the combination of
“BM25+listweak” for NTCIR-7 formal run
evaluation2. Surprisingly, the simplest ranking
method “Naïve” works well in some cases,
which indicates that the simple ranking methods
are also helpful to our system.

3. Ranking is a key factor that affects the
performance of the basic KNN-based
classification system. The system performs quite
differently among various ranking methods.

4. Re-ranking can improve the performance of the
basic KNN-based system significantly.

2 Actually log-linear similarity calculation + ListweakAver
ranking is the most effective combination on the dry-run data
set. But we did not submit its result for the formal- run
evaluation due to the time cost of the log-linear similarity
calculation method.

― 338 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

Table 2. Performance (MAP) of the KNN-based classifiers on dry-run data set.
Ranking \ Sim Cosine + tfidf BM25 SMART PIV Log-linear
Original KNN 35.16 34.79 35.78 34.51 35.05
Naïve 32.41 38.57 33.55 37.23 40.02
Sum 35.97 35.78 36.83 35.58 38.33
SumAver 35.05 35.92 36.46 34.13 38.05
Listweak 36.63 40.52 37.42 36.85 40.37
ListweakAver 34.85 40.88 37.65 36.79 41.11
Weak 36.25 36.53 37.11 35.91 38.24
WeakAver 33.42 36.15 34.90 33.01 38.38

Table 3. Performance (MAP) of re-ranking

systems on dry-run data set
System Performance (MAP)
Rank combination 45.31
Re-Ranking using RankSVM 43.02

Table 4. Performance (MAP) of our systems

on formal-run data set.
System Performance (MAP)
BM25+listweak 44.53
Rank combination 48.86
Re-ranking using RankSVM 47.21

7. Discussion

7.1. Classification vs. retrieval

The categorization of research papers into IPC codes
is not a standard multi-label classification problem, since
the system just generates the score or possibility for each
class instead of a set of classes associated with the input
document. The problem here is more likely a task of
relevant IPC codes retrieval. Of course, there are many
ways to transform a ranked list of labels into a set of
labels for an input document. For example, the target
labels can be extracted by using a threshold. However,
we cannot expect the system will perform well if we
evaluate it from the viewpoint of multi-label
classification due to a large number of IPC codes used.
In practical applications such as invalidity search a
ranked list can provide more information rather than an
imprecise set of labels. Therefore viewing the systems as
information retrieval systems may be more appropriate
than regarding it as multi-label classification systems.

7.2. Single label vs. multi-label

As mentioned above, the training data of single label
(i.e. USPTO data set) and multi-label (i.e. PAJ data set)
are provided within this competition task. However we
found that the data of USPTO shows harmful to our
system. The performance degrades when we trained the
system on USPTO data solely or a mixed data set of
“USPTO+PAJ”, comparing to training on PAJ data. It is

the major reason that why we only use PAJ as training
data set.

Actually we still believe that the system can benefit
from the USPTO data. But it needs our further study.
Beside the problem of training on both single labeled
data and multi-labeled data, another key issue is how to
train our system on heterogeneous data. Both of the
problems are worth studying in our future work.

7.3. Rank-based ranking vs. similarity-based
ranking

The KNN ranking and re-ranking in our system can
be divided into two types of methods, namely rank-based
ranking and similarity-based ranking respectively. In
rank-based ranking, the system calculates the score of
each IPC code (i.e. class) using the document ranks, such
as the Naïve ranking method and rank combination
method while similarity-based ranking scores each class
with the document similarities, such as the Sum ranking
method and re-ranking using RankSVM. Theoretically,
similarity-based ranking is more sophisticated than rank-
based ranking, since the document similarities can
provide us with more evidence for classification.
However, in our experiments the similarity-based
ranking did not show obvious advantages as we
expected. The rank-based ranking outperforms
similarity-based ranking in some cases, for instance, the
Naïve ranker achieved the best performance among all
the rankers based on the similarity calculation method of
PIV on the dry-run data set, and the system based on
rank combination is the most effective system on both
the dry-run and formal-run data sets. It indicates that the
rank-based ranking methods are still effective for this
task, though they are very simple. For similarity-based
ranking, the problem is that the scores are calculated in
terms of the sum of document similarities. However the
similarities do not have the property of additivity. It
means that the similarity 1.0 of a single document and
the similarity 1.0 generated by 0.5 + 0.5 are
incomparable. It is a possible reason that similarity-based
ranking methods do not work well sometimes. If a more
reasonable way is used to generate scores for ranking,

― 339 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

the performance of similarity-based ranking may be
improved.

7.4. Does patent structure really help

Generally speaking, patent structure is very useful for
people to understand the content of patents. And we hope
it can also play an important role in tasks of patent
mining. To evaluate the effectiveness of the use of patent
structure, we did a set of experiments in which the words
appearing in different sections are considered as different
features. The experimental results on dry-run data set
show that patent structure specified features are not
helpful for the system performance. To use the features
in some sections such as claims, we also perform the
same experiment on a test set consisting of the full
document of patents. Experimental results show that the
patent structure still seems not helpful. It suggests that
patent structure does not benefit to our system in which
the documents are represented as bag-of-words vectors.
The study of more effective ways of document
representation is valuable in the future work.

7.5. Why re-ranking works

The re-ranking worked very well on this task. One
major reason is that it makes much benefit from richer
features. Another possible reason is that the re-ranking is
performed on the frontier part of the list and has great
potential to make performance improvement, since the
evaluation method (MAP) emphasizes the return of more
correct IPC codes earlier.

8. Conclusions

We focus on the categorization of documents into IPC
by participating in NTCIR-7 patent mining task. Our
system is basically under the k-nearest neighboring
framework, in which various similarity calculation and
ranking methods are used. Two re-ranking methods are
further used to improve the performance of the basic
system. The experimental results on dry-run and formal-
run data sets show that the “BM25+listweak” is one of
the most effective methods for this task. And the re-
ranking techniques can improve the basic system
significantly. In future, we will use more patent specified
features such as the patent structure to improve the
performance. And we will apply our techniques on the
practical patent processing applications such as invalidity
search and technical trend analysis.

9. Acknowledgments

The authors wish to acknowledge Chunliang Zhang

for his comments on an early draft of this document, and
Dr. Matthew Y. Ma for his kind help to our work of
patent mining. This work was supported in part by the

National 863 High-tech Project (2006AA01Z154), the
Program for New Century Excellent Talents in
University (NCET-05-0287), MSRA research grant
(FY08-RES-THEME-227), and National Science
Foundation of China (60873091).

References

[1] Baeza-Yates, R. A. and B. A. Ribeiro-Neto. Modern

Information Retrieval. ACM Press/Addison-Wesley, 1999.
[2] Berger, Adam L., Stephen A. Della Pietra and Vincent J.

Della Pietra. A Maximum Entropy Approach to Natural
Language Processing. Computational Linguistics,
22(1):39-71. 1996.

[3] Buckley, Chris, Amit Singhal, Mandar Mitra, and Gerard
Salton. New Retrieval Approaches Using SMART: TREC
4. In the Fourth Test REtrieval Conference. Pages 25-48.
USA. 1996.

[4] Christensen, R. Log-Linear Models and Logistic
Regression. Springer-Verlag Inc. New York, USA. 1997.

[5] Cristianini, Nello and John Shawe Taylor. An Introduction
to Support Vector Machines and other kernel-based
learning methods. Cambridge University Press. 2000.

[6] Freund, Y. , R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
Journal Machine Learning Research. 4:933–969. 2003.

[7] Fujii, A., M. Iwayama, and N. Kando. The patent retrieval
task in the fourth NTCIR workshop. In Proceedings of the
27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. Pages
560–561. Sheffield, UK. 2004.

[8] Herbrich, R. , T. Graepel, and K. Obermayer. Support
vector learning for ordinal regression. In the ninth
International Conference on Artificial Neural Networks.
Pages 97–102. London, UK. 1999.

[9] Japkowicz, Nathalie, and Shaju Stephen. The class
imbalance problem: A systematic study. In Intelligent Data
Analysis, 6(5): 429-449. 2002.

[10] Robertson, Stephen E., Steve Walker, and Micheline
Hancock-Beaulieu. Okapi at TREC-7: automatic ad hoc,
filtering, VLC and interactive track. In Proceedings of the
Seventh Text REtrieval Conference. Pages 253-264.
Gaithersburg, USA. 1998.

[11] Singhal, Amit, Chris Buckley and Mandar Mitra. Pivoted
document length normalization, In Proceedings of the 19th
annual international ACM SIGIR conference on Research
and development in information retrieval. Pages 21-29.
Zurich, Switzerland. 1996.

― 340 ―

