
Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

ICL at NTCIR-7: An Improved KNN Algorithm for Text Categorization

Wei Wang
Inst. of Computational

Linguistics, Peking
University

wwei@pku.edu.cn

Sujian Li
Inst. of Computational

Linguistics, Peking
University

lisujian@pku.edu.cn

Chen Wang
Inst. of Computational

Linguistics, Peking
University

goldeneagle@pku.edu.cn

Abstract

This paper describes our system for the NTCIR-7 Patent
Mining Task which sought to make automatic text
classification pragmatic. Our system employs an
improved KNN algorithm which makes trade-off
between effectiveness and time complexity. We have
tried two distance metrics in our algorithm: cosine
similarity and Euclid distance. Evaluation results on
NTCIR-7 test data shows that the former one is slightly
better.

1. Introduction

The NICIR Patent Mining Task (MT) aims to
develop techniques for technique trend analysis and
mining. In those techniques, text categorization is a
primary step for further processing. In NTCIR-7 MT
English subtask, the participant is required to
categorize research papers (abstracts) written in
English into the International Patent Classification
(IPC). IPC has a hierarchical structure, each IPC code
is composed of five parts: section, class, subclass,
group and subgroup. For example, the IPC code
H04H 1/06 can be divided as follows:

Table 1: An example of IPC code

 Code Meaning
H Section Electricity
04 Class Electric communication

technique
H Subclass Broadcasting
1 Group Broadcast distribution system

06 Subgroup Having frequencies in two or
more frequency bands

MT is basically a text categorization task. A variety
of methods have been developed for text categorization.
The most common way is to use VSM (vector space
model) to represent text and statistic learning models
to do the classification job. SVM is reported to achieve
best performance over a wide range of tasks [1].
However, the training of SVM is time-consuming,
especially when there are too many categories and
features [2]. For example, if we use one-against-rest
SVM, we will need about 30000(the number of IPC

codes used in our task) classifiers. Tie-Yan liu [2]
reports that it takes 102 hours to train flat SVMs for
just 94 categories over OOSUMED [3]. The
computational load will be unacceptable if we use such
models. To tackle this problem, we turn to KNN model.
For simplicity, we use an improved nearest neighbor
searching algorithm which calculates the distance
between the unlabeled node and centroid node
instead of all nodes. The centroid node represents all
nodes belonging to the same category. Experiments
show that our method achieves promising results on
the NTCIR-7 test data.

The rest of this paper is organized as follows. Section
2 briefly introduces our system. Section 3 describes the
basics of our KNN algorithm including complexity
analysis and detailed steps. Section 4 illustrates the
experimental results and section 5 concludes the paper.

2. System Overview

Our system uses PAJ (Patent Abstracts of Japan) in
1993-2002 as training data. The following is a patent
file instance:

<PATDOC>
<B110>05000001</B110>
<B511> A01B 63/10 </B511>
<B512> A01C 11/02 </B512>
<B542>ROLLING CONTROLLER OF WORKING
MACHINE</B542>
<SEC>
<P>PURPOSE: To improve following performance

of working machine to ground by restraining rolling
control to local unevenness on the ground. </P>

<P>COPYRIGHT: (C)1993,JPO&Japio</P>
</SEC>
</PATDOC>

Figure 1: An example of patent file

05000001 in <B110> tag is the patent number,

which is unique for each patent. and
 are the IPC codes for this patent (patent

― 385 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

can have more than one IPC code). The < B542> tag
contains the patent title, and <SEC> tag contains the
main content.

First we extract texts from<B542> and <SEC> tags.
The copyright declaration in <SEC> is discarded. Then
we calculate IDF for each word contained in patents.
After that, we merge patent files sharing the same IPC
code. Merged files and the topic file are represented
with term vectors respectively. Then we find 1000
nearest neighbors (most possible IPC codes) for each
topic vector using two different distance metrics. The
detailed algorithm will be illustrated in section 3.

Figure 2: The processing steps of our system

3. The Improved KNN Algorithm

In this section we will describe the algorithm employed

in our system, including complexity analysis and
detailed steps. Our algorithm is improved mainly on the
time cost. Whether the categorization result benefits
from it remains to be resolved.

3.1. Complexity analysis of our algorithm

Tradition KNN calculates distance between each
labeled node and node to be classified. Suppose there
are N labeled nodes, and M different labels. The
complexity of finding the most possible label for an
unlabeled node from K nearest neighbors is N*logK.
When N is large, the computation work will be time
consuming. In NTCIR-7, there are about 5 million
training patent files, and 879 topics. We have to assign
each topic 1000 most possible IPC codes. Using the
original KNN model, the computational expense is too
large to afford. So we come up with an improved
algorithm which makes trade-off between effectiveness
and time cost. Our algorithm uses the centroid node
to represent all nodes that have the same IPC code, and
we search 1000 nearest neighbors for each topic from
centroid nodes instead of the 5 million nodes. The

computational cost of this method for a single topic is
M*log(1000). If we use the original KNN algorithm,
since we have to find 1000 most possible labels from K
nearest neighbors, K must be very large to contain
enough nodes of different labels. Normally K will be N.
So the time cost is almost (65*10N , 43*10M):

2*log() 7.5*10

*log(1000)
N N

M
times of our improved algorithm. In the following we
will show more details of our algorithm.

3.2. Detailed steps of our algorithm

Assume the words are 1w , 2w tw with IDF

1idf , 2idf tidf respectively, the topic vector is

topicV =< 1idf * 1topictf , 2idf * 2topictf tidf *

ttopictf > . First we will have to denote the centroid
node for the ith merged text. Suppose the ith merged
text is composed of ic independent patent files, which

means there are totally ic different patents labeled with
the ith IPC code. We define the centroid vector for it
as iV =< 1idf * ,1 /i itf c , 2idf * , /i itf c ,

tidf * , /i t itf c >, while ,i jtf is the term frequency of the

jth word in the ith merged text. After that, we can
calculate the distance or similarity between the centroid
vector iV and the topic vector topicV . The first metric is

Euclid distance:

(,) | |i topic i topicEuclid V V V V

The Euclid distance metric prefers long topics because
they have more words than short ones. The cosine
similarity metric can avoid such problems since it s
normalized.

(,)
| | * | |

i topic
i topic

i topic

V V
Cosine V V

V V

Notice that smaller Euclid distance means higher
possibility of correlation between topic and IPC code
while cosine similarity is on the contrary.

Here are the detailed steps of our algorithm:
1. Extract patent file contents from raw data,

compute the IDF for each word using the
formula (/)term i iIDF log N D . N is total

number of patent files, and iD is the number of
documents containing term i. In order to remove
noise features we discard words appearing in
less than 3 patents.

2. Merge patents with the same IPC code into one
file. Count the merged files term frequency and
get the centroid vector iV for the ith merged
file (1,2,...i M).

3. Get the term vector topicV for each topic. Then

calculate the distance or similarity between iV

IDF Computing

Merge patents with
the same IPC code

Get topic vector

Topic

Get centroid vectors

Training file

Find 1000 nearest neighbors
for topic vector

― 386 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

and topicV . Construct a heap of size 1000 in the

memory which records the 1000 vectors with
minimum distances/maximum similarity and
their corresponding IPC codes while computing
the distance/similarity between topicV and each

centroid vector. After the computing is done,
get the IPC codes in the heap. Their rank is
determined by the corresponding distance or
similarity score.

4. Evaluations

The following evaluation is two-fold. First we will
compare the performance of our system with other
participants. Each participant can submit at most 3
results. Of the 20 results submitted by nine participants,
our best result ranks 12th. Second we will compare the
performance of the two distance metrics: Euclid
distance and cosine similarity. Evaluation results show
that the cosine similarity metric is better on average.

4.1. Comparison of our system and other systems

The NTCIR-7 task contains 879 topics. Each user can
submit at most 1000 IPC codes for a single topic.
Usually there are 1-3 IPC codes given by the organizer
for each topic as the answer. There are totally 2051
answers for 879 topics. Our system retrieves 1888 of
them. Here is a comparison of our system s retrieved
answer number with other participants:

Table 2: Comparison of retrieved answer number

Participant Retrieved IPC (Relevant
2051)

NEUN1_S1 1975
xrce_e2j2e 1932

KECIR 1892
ICL07_1 1888

nttcs2 1848
BRKLY-PM-EN-02 1488

AINLP04 1455
rali1 953
PI-5b 895

The IPC numbers showed in Table 2 are the

maximum numbers retrieved by each participant. From
this table we can see that the top 5 results (including
ours) show no significant difference with each other. In
fact, our system s gap with other top systems lies in the
precision indicators. There are mainly three kinds of
precision measurements for this task. The first is the
average interpolated recall precision (I-precision).
Suppose there are N topics, for topic i, the maximum
precision when the recall is bigger than an interpolated
value, say 0.50, is iP . Then the I-precision at 0.50 is

defined as
1

/
topicN

i topic
i

P N (topicN is the number of topics).

Here is the detailed average interpolated recall precision
of our system and three other top systems.

Table 3: Comparison of I-precision

Interp
olated
Value

ICL07_1 NEUN1
_S1

xrce_e2j
2e

KECIR

0.00 0.2118 0.5965 0.5318 0.3973
0.10 0.2118 0.5965 0.5318 0.3973
0.20 0.2068 0.5936 0.5302 0.3949
0.30 0.1922 0.5718 0.5075 0.3721
0.40 0.1613 0.5308 0.4658 0.3300
0.50 0.1587 0.5254 0.4555 0.3201
0.60 0.1142 0.4522 0.3821 0.2507
0.70 0.1021 0.4183 0.3536 0.2212
0.80 0.0980 0.4085 0.3469 0.2113
0.90 0.0962 0.4029 0.3424 0.2062
1.00 0.0961 0.4027 0.3424 0.2062

The micro average interpolated recall precision

(micro I-precision) is similar with average interpolated
recall precision. The only difference is that the recall
and precision is calculated using all topics. For example,
the micro I-precision at 0.50 is defined

as ,
1

1
1 1000}{ ,

topic

topic

N

i k
iN

max c k k when the

overall recall ,
1

/
topicN

i k answer
i

c N is bigger than 0.50(,i kc

is the number of correct answers in top k results for
topic i, answerN is the number of correct answers for all
topics). Here is the detailed micro I-precision of our
system and three other top systems.

Table 4: Comparison of micro I-precision

Interp
olated
Value

ICL07_1 NEUN1
_S1

xrce_e2j
2e

KECIR

0.00 0.1024 0.4664 0.4107 0.2708
0.10 0.0846 0.4664 0.4107 0.2708
0.20 0.0556 0.3874 0.3305 0.1862
0.30 0.0417 0.3874 0.2704 0.1486
0.40 0.0312 0.3201 0.2392 0.1090
0.50 0.0230 0.2353 0.1669 0.0744
0.60 0.0163 0.1770 0.1007 0.0468
0.70 0.0112 0.1097 0.0609 0.0252
0.80 0.0062 0.0519 0.0293 0.0124
0.90 0.0027 0.0149 0.0075 0.0038
1.00 0.0000 0.0000 0.0000 0.0000

From Table 4 we can see that all the four systems

micro I-precision at 1.00 are zero, since no system has
retrieved all answers.

The third precision (doc-precision) is defined as the
precision at a certain number of retrieved answers. For
example, the doc-precision at 10 means the average
precision of the top 10 answers for all topics. Due to
limited pages we don t present detailed evaluation

― 387 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

results. The situation is similar: our system is
significantly lower than the top systems.

Our system s low precision indicates that our rank
function is not good enough. It s partly because of the
model we use. Our KNN model is flat , that is, it treats
all categories equally. However, the IPC has a
hierarchical structure. By using flat KNN, the structure
information is lost. Besides, currently we haven t done
much work on feature selection and term weight
adjusting. We just simply use words as features, and
IDF as term weights. This may not be appropriate
sometimes, for example, words in patent titles are
usually more informative than words in claims, so
maybe we should assign such words higher weights.

4.2. Comparison of two distance metrics

We have submitted two results, using cosine
similarity and Euclid distance as the distance metric
respectively. The former one retrieves 1888 answers,
while the other retrieves 1277. The precision of cosine
similarity is also higher than that of Euclid distance.

Table 5: Comparison of I-precision and micro I-

precision for two distance metrics
Recall I-precision micro I-precision

 Cosine Euclid Cosine Euclid
0.00 0.2118 0.2094 0.1024 0.1149
0.10 0.2118 0.2094 0.0846 0.0914
0.20 0.2068 0.2058 0.0556 0.0535
0.30 0.1922 0.1899 0.0417 0.0319
0.40 0.1613 0.1543 0.0312 0.0173
0.50 0.1587 0.1509 0.0230 0.0060
0.60 0.1142 0.0967 0.0163 0.0019
0.70 0.1021 0.0845 0.0112 0.0000
0.80 0.0980 0.0807 0.0062 0.0000
0.90 0.0962 0.0796 0.0027 0.0000
1.00 0.0961 0.0796 0.0000 0.0000

However, for the micro I-precision, the Euclid

distance metric is higher than Cosine similarity metric
at recall 0.00 and 0.10. This means that for the few top
answers, the Euclid distance metric s answer is more
accurate. It s more obvious when compared with doc-
precisions.

Table 6: Comparison of doc-precision for two

distance metrics
Top K answers Cosine Euclid
5 0.0710 0.0719
10 0.0536 0.0501
15 0.0447 0.0397
20 0.0388 0.0337
30 0.0312 0.0261
100 0.0147 0.0107
200 0.0087 0.0058
500 0.0040 0.0027
1000 0.0021 0.0015

We can see that for the top 5 answers, the Euclid
distance metric is higher. This is possibly because it can
take into account negative features, that is, if two words
don t appear in two texts, their term vectors Euclid
distance will be smaller, on the contrary, only common
words in two texts make contribution to cosine
similarity.

5. Conclusion and future work

Much work remains to be done. Our current model is
simple, effective, at the cost of information loss.
Negative features, and the hierarchical structure of IPC,
are ignored by our system (especially for the cosine
similarity metric). In the future, we will try to take into
account these factors. Also our feature selection method
needs to be improved. Currently, we just simply discard
words with DF (document frequency) less than 3. We
will try more sophisticated methods, like IG, MI and
LSI to remove noise features and redundant features.
Besides, we will use mixed models to improve the
precision of our system. That is, we will first use the
KNN model to extract top 1000 IPC codes. Then, we
will use other models like ME or SVM to rescore each
IPC code.

Acknowledgement

This work is supported by NSFC programs (No:
60603093 and 60875042), and 973 National Basic
Research Program of China (2004CB318102).

References

[1] SU Jin-Shu, ZHANG Bo-Feng, XU Xin. Advances in

Machine Learning Based Text Categorization. Journal of
Software, Vol. 17, No.9, September 2006, pp.1848-1859

[2] Tie-Yan liu, Yiming Yang, Hao Wan, Hua-Jun Zeng,
Zheng Chen, and Wei-Ying Ma. Support Vector Machines
Classification with A very Large-scale Taxonomy.
SIGKDD 05 Explorations, Volume 7, Issue 1-Page 36-43,

[3] Hersh, W., Buckley, C., Leone, T., and Hickam, D.
OHSUMED: An interactive retrieval evaluation and new
large test collection for research. SIGIR, 192-201, 1994.

[4] Lam W, Lai KY. Automatic textual document
categorization based on generalized instance sets and a
metamodel. IEEE Trans. on Pattern Analysis and
Machine Intelligence

[5] Tsay JJ, Wang JD. Improving linear classifier for Chinese
text categorization. Information Processing and
Management,

― 388 ―

