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Abstract

We have many kinds of time series such as stock
prices. We understand them via their verbal ex-
pressions in a natural language rather than con-
ventional stochastic models. We propose a method
to have a verbal expression for a global trend and
local features of time-series data. A global trend is
extracted via representative values, e.g. weighted
averages, on the fuzzy intervals in the temporal axis
and local features are specified as the positions of
large differences between the original data and the
data representing the global trend. We apply the
method to the data of Multimodal Summarization
for Trend Information (MuST).
Keywords: Verbal Expression, Time Series,
Global Trend, Local Feature, Fuzzy Sets.

1. Introduction

We have various kinds of time-series data
such as everyday’s temperatures and stock prices.
Such time-series data are usually analyzed using
stochastic models [1]. In the human information
processing, however, we never use such an analysis
but express them in verbal expressions, for exam-
ple, “It is a little increasing globally and there is a
moderately larger point in the final term,” where
the phrase “a little increasing” is a global trend
and “a moderately larger point” a local feature.

Using a global trend and local features, we ver-
bally express time-series data for average prices of
regular gasoline of all over Japan in the years 1998
and 1999 in a corpus of Multimodal Summariza-
tion of Trends (MuST) [2] [3].

2. Verbal Expression of Time Series

We propose a method to express time-series
data in a natural language.

Table 1: Time Series Data from the MuST Corpus

months year/month price in yen
3 1998/03 95
4 1998/04 94
6 1998/06 92
7 1998/07 92
8 1998/08 92
9 1998/09 92
10 1998/10 92
11 1998/11 92
15 1999/03 91
16 1999/04 91
17 1999/05 90
18 1999/06 92
19 1999/07 93
20 1999/08 94
21 1999/09 95
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Fig. 1: Plotting of Time-Series Data from the
MuST Corpus

2.1 Time-Series from the MuST Corpus

MuST (Multimodal Summarization of Trends
[2] [3]) Corpus collects newspaper items on sev-
eral topics, which are marked up with several
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tags. We choose the topic on the average prices
of regular gasoline of all over Japan, which in-
cludes newspaper items in the years 1998 and
1999. In this research, we edit manually time-
series data from them. The time-series data
{(t1, x1), (t2, x2), . . . , (xn, xn)} are enumerated in
Table 1 and plotted in Fig. 1, where the first
month is corresponding to January, 1998 and so
t1 = 3 and tn = 21.

2.2 Global Trend for Time-Series Data

We first explain how to express a global trend
for the time-series data.

(1) Fuzzy Sets of Terms
We divide a whole period into three terms, the

first term, the second term and the third term,
which are represented by fuzzy sets shown in Fig. 2
since the boundaries of terms can not be strictly
determined. These three fuzzy sets are defined by
the following membership functions:

µ1(t) = Z

(
t;
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,
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)
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t1 + 5tn
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)

where µ1(t), µ2(t) and µ3(t) are for fuzzy sets of
the first term, the second term and the third term,
respectively, and the functions Z, π and S are stan-
dard functions on the real numbers with a piece-
wise quadratic expression by Zadeh [4].

For the time-series data from the MuST Corpus,
we have t1 = 3 and tn = 21 and

µ1(t) = Z(t; 6, 12) (1)

µ2(t) = π(t; 6, 12, 18) (2)

µ3(t) = S(t; 12, 18) (3)

These fuzzy sets depends on time-series data. It
is, however, very difficult to have appropriate term
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Fig. 2: Fuzzy Sets for terms

definitions (we have some discussion in Section 4).
It may be better to define them in another way for
another time-series data.

(2) Representative Values in Terms
To calculate the differences between adjacent

terms, we have the representative value for each
term. In this paper, we adopt the weighted aver-
age by the fuzzy sets, defined for the k-th term as
follows:

mk =
∑

x(t)µk(t)∑
µk(t)

(4)

For the time-series data from the MuST Corpus,
we have m1 = 92.91 for the first term, m2 = 91.75
for the second term and m3 = 92.46 for the third
term.

(3) Fuzzy Sets for Difference between Terms
We calculate the differences from the first term

to the second term and from the second term to the
third term as follows:

d1→2 = m2 − m1

d2→3 = m3 − m2

For the time-series data from the MuST Corpus,
we have d1→2 = −1.16 and d2→3 = 0.71.

Next, we express the differences between adja-
cent terms in fuzzy sets.

We have fuzzy sets, much decreasing (much-dec,
for short), moderately decreasing (mod-dec), a little
decreasing (a-little-dec), approximately zero (appr-
zero), a little increasing (a-little-inc), moderately
increasing (mod-inc) and much increasing (much-
inc), which are shown in Fig. 3 and defined as fol-
lows:
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Fig. 3: Fuzzy Sets for Differences between Adja-
cent Terms
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Fig. 4: Another Plotting of the Time-Series Data
from the MuST Corpus
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where xa and xb are the floor and ceiling values of
x for the plotting area, respectively. It should be
noted that these fuzzy sets depend on the plot-
ting area rather than the data themselves. We
can compare the plotting in Fig. 1 (xa = 85 and
xb = 100) to another plotting in Fig. 4 (xa = 80
and xb = 105) for the same time-series data in the
MuST Corpus.

The expressions for the differences from the first
term to the second term and from the second term
to the third term are fuzzy sets D whose member-
ship degrees µD(d1→2) and µD(d2→3) are positive
(or greater than some threshold value).

For the time-series data from the MuST Cor-
pus, we have fuzzy sets of differences for Fig. 1 as
follows:

µmuch-dec(d) = Z(d;−5,−2.5)

µmod-dec(d) = π(d;−5,−2.5,−1.5)

µa-little-dec(d) = π(d;−2.5,−1.5, 0)

µappr-zero(d) = π(d;−1.5, 0, 1.5)

µa-little-inc(d) = π(d; 0, 1.5, 2.5)

µmod-inc(d) = π(d; 1.5, 2.5, 5)

µmuch-inc(d) = S(d; 2.5, 5)

The expression for the difference d1→2 = −1.16
is a-little-dec with the degree 0.944 and appr-zero

with 0.056, that is, {0.944/a-little-dec, 0.056/appr-
zero} and d2→3 = 0.71 is {0.520/appr-zero,
0.480/a-little-inc}.

For Fig. 4, we have fuzzy sets of differences as
follows:

µmuch-dec(d) = Z(d;−8.3,−4.1)

µmod-dec(d) = π(d;−8.3,−4.1,−2.5)

µa-little-dec(d) = π(d;−4.1,−2.5, 0)

µappr-zero(d) = π(d;−2.5, 0, 2.5)

µa-little-inc(d) = π(d; 0, 2.5, 4.1)

µmod-inc(d) = π(d; 2.5, 4.1, 8.3)

µmuch-inc(d) = S(d; 4.1, 8.3)

and the expressions for the differences are
{0.499/a-little-dec, 0.501/appr-zero} from the first
term to the second term and {0.827/appr-zero,
0.173/a-little-inc} from the second term to the
third term. The degrees of appr-zero get greater
than the ones for Fig. 1.

These fuzzy sets are somewhat common but can
be defined in another way for another time-series
data if necessary.

(4) Verbal Expression for Global Trend
Now we have the expressions for the differences

from the first term to the second term and from
the second term to the third term, we can have an
expression for global trend. We use the following
phrases to express a global trend: much decreas-
ing (much-dec, for short), moderately decreasing
(mod-dec), a little decreasing (a-little-dec), approx-
imately constant (appr-const), a little increasing
(a-little-inc), moderately increasing (mod-inc) and
much increasing (much-inc), convex (concave up),
a little convex , a little concave, concave (concave
down). We have Table 2 to get a global trend
for the differences from the first term to the second
term and from the second term to the third term.

We get global trends for all combinations of dif-
ferences in the fuzzy sets, with the degrees of global
trends calculated by the multiplication of two de-
grees of the differences involved. When we have the
same global trend from the different combinations,
we unify them with the sum of degrees.

For the time-series data from the MuST Cor-
pus in Fig. 1, the differences are {0.944/a-little-dec,
0.056/appr-zero} from the first term to the sec-
ond term and {0.520/appr-zero, 0.480/a-little-inc}
from the second term to the third term. We con-
sider all combinations, that is, for the combination
a-little-dec and appr-zero we have a global trend
appr-const with the degree 0.944 × 0.520 = 0.491,
for a-little-dec and a-little-inc we have a-little-
convex with 0.944 × 0.480 = 0.453, for appr-zero
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Table 2: Table for Global Trend
````````1 → 2

2 → 3
much-dec mod-dec a-little-dec appr-zero a-little-inc mod-inc much-inc

much-dec much-dec much-dec mod-dec mod-dec a-little- convex convex
convex

mod-dec much-dec mod-dec mod-dec a-little-dec a-little- convex convex
convex

a-little-dec mod-dec mod-dec a-little-dec appr-const a-little- a-little- a-little-
convex convex convex

appr-zero mod-dec a-little-dec appr-const appr-const appr-const a-little-inc mod-inc

a-little-inc a-little- a-little- a-little- appr-const a-little-inc mod-inc mod-inc
concave concave concave

mod-inc concave concave a-little- a-little-inc mod-inc mod-inc much-inc
concave

much-inc concave concave a-little- mod-inc mod-inc much-inc much-inc
concave

and appr-zero we have appr-const with 0.056 ×
0.520 = 0.029 and for appr-zero and a-little-inc
we have appr-const with 0.056 × 0.480 = 0.027.

We have three appr-const with the degrees
0.491, 0.029 and 0.027. We unify them with the de-
gree 0.491 + 0.029 + 0.027 = 0.547. Thus, we have
a global trend {0.547/appr-const , 0.453/a-little-
convex} for the time-series data from the MuST
Corpus plotted in Fig. 1.

As for those in Fig. 4, the differences are
{0.499/a-little-dec, 0.501/appr-zero} from the first
term to the second term and {0.827/appr-zero,
0.173/a-little-inc} from the second term to the
third term. We consider all combinations and unify
the same. We have a global trend {0.914/appr-
const , 0.086/a-little-convex}.

Note that this method performs the ×-+ fuzzy
reasoning from the differences from the first term
to the second term and from the second term to
the third term using the fuzzy rules in the form of
Table 2 without no defuzzification (as the conse-
quent part is not number or fuzzy set on number).

2.3 Local Features of Time-Series Data

The local features are specified as the positions
of large differences between the original data and
the data representing the global trend.

(1) Time-Series Representing Global Trend
To find the difference between the time-series

data and the global trend, we generate time-series
data representing the global trend.

The time-series data are a set of pairs of the
time ti and the value xi. We propose that the
time-series data representing the global trend is a

set of the term and its representative value, that is,
{(the-first-term, m1), (the-second-term, m2), (the-
third-term, m3)}. Note that a label of fuzz set is
concatenated with the hyphen(-) in an equation for
easy understanding.

This means the global trend is formulated by
the following fuzzy rules with 1 input variable:

rule1: if t = the-first-term then x = m1

rule2: if t = the-second-term then x = m2

rule3: if t = the-third-term then x = m3

where the-first-term, the-second-term and the-
third-term are fuzzy sets defined in Equations (1)–
(3).

The value of x are easily calculated with the
membership functions µ1(t), µ2(t) and µ3(t) of
fuzzy sets the first term, the second term and the
third term, respectively, as follows:

x(t) = µ1(t) · m1 + µ2(t) · m2 + µ3(t) · m3

where we assume that these fuzzy sets are defined
as the sum of the membership values is 1 for all t.
If this does not hold, we must divide the result by
the sum of membership values.

When we vary t from t1 to tn, x(t) is m1 for t1 to
(5t1 + tn)/6 where µ1(t) = 1, the weighted average
of m1 and m2 by µ1(t) and µ2(t) until (t1 + tn)/2,
the weighted average of m2 and m3 by µ2(t) and
µ3(t) until (t1 + 5tn)/6, and m3 for (t1 + 5tn)/6 to
tn where µ3(t) = 1.

For the time-series data from the MuST Corpus
in Fig. 1, we have fuzzy rules as follows:

rule1: if t = the-first-term then x = 92.91
rule2: if t = the-second-term then x = 91.75
rule3: if t = the-third-term then x = 92.46
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Fig. 5: Plotting of the Data Representing the
Global Trend

and the time-series data representing the global
trend are generated from these fuzzy rules and
shown in Fig. 5, where the real line stands
for the time-series data representing the global
trend and the dotted line the original time-series
data. You can find the real line well representing
the global trend {0.547/appr-const , 0.453/a-little-
convex}. Note that for Fig. 4 we have the same the
time-series data representing the global trend but
a different plotting area.

(2) Local Features

The local features are specified as the positions
of large differences between the original data and
the data representing the global trend. We find
positions of large differences and express the posi-
tions and the scale of differences with fuzzy sets.
We can have n local features by the n maximum
positions.

More specifically, let the original time-series
data to be {(ti, xi)} and the time-series data rep-
resenting the global trend {(ti, x′

i)}. Then the po-
sition of local feature is the time t` such that the
absolute value of the difference |x′

i − xi| gets the
maximum value with ranging from t1 to tn and
expressed by the term that contains t` with the
greatest degree.

The scale of the local feature is the value x′
`−x`

and expressed with fuzzy sets L for the local fea-
ture with the degrees µL(x′(t`) − x(t`)). The la-
bels and definitions of fuzzy sets L are similar to
those for the difference of adjacent terms. We
have fuzzy sets, much smaller , moderately smaller
(mod-smaller , for short), a little smaller , approxi-
mately zero (appr-zero), a little larger , moderately
larger (mod-larger) and much larger , which are
shown in Fig. 6 and defined as follows:

µmuch-smaller(d) = Z

(
d;

xa − xb

2
,
xa − xb

4

)

d
O

1

µ

xa−xb
10 1042 24

appr-zero

xa−xb xa−xb xb−xa xb−xa xb−xa

much-smaller a-little-smaller
mod-smaller

a-little-larger
mod-larger

much-larger

Fig. 6: Fuzzy Sets for Local Feature
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Note that these fuzzy sets also depend on the plot-
ting area rather than the data themselves.

For the time-series data from the MuST Cor-
pus in Fig. 1, |x′

i − xi| gets the maximum at the
time 21 and 17, where x′

i − xi are 2.591 and
−2.368, respectively, when we assume two local
features. For the largest local feature (21, 2.591),
the time 21 belongs to the third term with the de-
gree 1 and the value 2.591 belongs to a-little-larger
with the degree 0.529 and mod-larger with 0.471,
that is, {0.529a-little-larger , 0.471/mod-larger}.
For the second largest local feature (17, −2.368),
the time 17 is in {0.944/the-third-term, 0.056the-
second-term} and the value −2.368 is {0.703/a-
little-smaller , 0.297/mod-larger}.

For Fig. 4, the maximum of x′
i − xi is the same

as that for Fig. 1 since |x′
i−xi| is not depend on the

plotting area but just the data themselves. For the
largest local feature (21, 2.591), the time 21 is in
{1/the-third-term} and the value 2.591 is {0.999/a-
little-larger , 0.001/mod-larger}. For the second
largest local feature (17, −2.368), the time 17 is
in {0.944/the-third-term, 0.056/the-second-term}
and the value −2.368 is {0.994/a-little-smaller ,
0.006/mod-larger}.
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(3) Verbal Expression for Time Series

Now we have a fuzzy set of global trend and two
fuzzy sets of local features. For a verbal expression,
we select the word with the greatest degree.

For the time-series data from the MuST
Corpus in Fig. 1, we have a global trend
{0.547/appr-const , 0.453/a-little-convex} and two
local features {0.529/a-little-larger , 0.471/mod-
larger} for {1/the third term} and {0.703/a-little-
smaller , 0.297/mod-larger} for {0.944/the-third-
term, 0.056the-second-term}. We select the words
with the greatest degree and have an expression “It
is approximately constant globally and there are a
little larger and a little smaller points in the third
term.” In this case, we can have another expres-
sion “It is a little convex globally and there are a
little larger and a little smaller points in the third
term” because the second greatest degree of the
global trend is so close to the the greatest one.

For Fig. 4, we have a global trend {0.914/appr-
const , 0.086/a-little-convex} and two local
features {0.999/a-little-larger , 0.001/mod-larger}
for {1/the-third-term} and {0.994/a-little-smaller ,
0.006/mod-larger} for {0.944/the-third-term,
0.056/the-second-term}. We have an expression
“It is approximately constant globally and there
are a little larger and a little smaller points in the
third term.”

We feel strange to the expression “a little larger
and a little smaller points in the third term,” i.e.,
two opposite words in the term, because this time-
series data has two local features in the same term
as you can find them in the plotting in Fig. 1 and
Fig. 4. We can distinguish two different times 21
and 17 by the expression, for example, “the begin-
ning of the term” and “the end of the term”.

3. Future Works

We have several very interesting future works.

(1) Definition of Terms

The definition of appropriate terms is very diffi-
cult problem. It depends on time-series data, espe-
cially the change of local patterns or trends. Hu-
man identifies several points where local patterns
change and divides a whole period into terms. To
implement this, we must find local patterns and
then identify the points to change the pattern. The
local pattern is, however, considered to be a global
trend in the local period of time. It may be possi-
ble to apply the method recursively.

(2) Introduction of Oscillation

Time-series data usually go up and down. We
must introduce oscillation to express time-series

data well. We have already started consideration
on oscillation of time-series data. We use the stan-
dard deviation and the extended number of oscil-
lations.

(3) Uncertainty in Time-Series Data
The natural time-series data have various kinds

of uncertainty. Some comes from the granularity
(e.g., months, weeks, days and hours) and exact-
ness (directly or indirectly written in newspaper
items). We have a plan to represent and manipu-
late the uncertainty of the data itself by the possi-
bility distributions [5].

(4) Retrieval of Time-Series
We store many time-series data into the

database with the tag of global trend and local fea-
tures by this method. Then we can retrieve time-
series data from the database by a query with some
verbal expression of global trend and local features
or some time-series data themselves.

4. Conclusions

In this paper, we proposed a verbal expression
for a global trend and local features of time-series
data. A global trend is extracted via representative
values on the fuzzy intervals in the temporal axis
and local features are specified as the positions of
large differences between the original data and the
data representing the global trend. We apply the
method to the data of Multimodal Summarization
for Trend Information (MuST).

Future works include the definition of appropri-
ate terms, introduction of oscillation, uncertainty
in time-series data, retrieval of time-series.
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