

## The POSTECH Statistical Machine Translation Systems for NTCIR-7 Patent Translation Task

Jin-Ji Li<sup>0</sup>, Hwi-Dong Na<sup>0</sup>, Hankyong Kim<sup>\*</sup>, Chang-Hu Jin<sup>\*</sup>, and Jong-Hyeok Lee<sup>0</sup>

<sup>0</sup>Department of Computer Science and Engineering, Electrical and Computer Engineering Division, \*Graduate School for Information Technology, Pohang University of Science and Technology (POSTECH), San 31 Hyoja Dong, Pohang, 790-784, R. of Korea E-mail: {ljj, leona, arch, hchchh, jhlee}@postech.ac.kr



[2]

## Contents

### **4** Introduction

## **4** Japanese-to-English phrase-based SMT

- Reordering model as preprocessing
- Cluster-based model as post-processing

## **4** Experiments

Conclusion & Future work



## Introduction

#### [3]

### **4** State-of-the-art system: Phrase-based SMT

### However, [Kevin Knight, 2007] said

Translation output is 'n-grammatical', not grammatical
Re-ordering is poorly explained as 'distortion'

# Linguistically-distant language pairs require more sophisticated linguistic knowledge

- Japanese and English
  - Big differences in morphological & word-order typologies

### How to effectively encode linguistic knowledge into SMT?



[4]

## Where & How to Encode Linguistic Knowledge?

### **4** In what steps of SMT system to apply?





[5]

## Word Reordering Model as Preprocessing

## **4** Motivation

- Japanese and English is linguistically distant language pair
   SOV vs. SVO language
- Reorder the word sequence of source language similar to target language before decoding
  - A complement to a phrase-based SMT system which uses a relatively simple distortion model in the decoding phase

### **4** System overview

- Parse Japanese sentences into dependency trees
- Apply a series of manually constructed reordering rules to each node recursively
- Recover the surface strings from the reconstructed dependency trees



## Word Reordering Model as Preprocessing

[6]

### **4** Ex) Reordering rules

| LHS                                                     | RHS     |
|---------------------------------------------------------|---------|
| を <sub>0</sub> . (動詞-自立 <sub>1</sub> )                  | (1) 0   |
| の <sub>0</sub> .(を1)                                    | (1) 0   |
| に <sub>0</sub> . (動詞-自立 <sub>1</sub> )                  | (1) 0   |
| の0.(により1)                                               | (1) 0   |
| $\mathcal{O}_{0}$ . $(\mathcal{O}_{1})$                 | (1) 0   |
| $\mathcal{O}_{0}$ . $(l_1)$                             | (1) 0   |
| の <sub>0</sub> .(名詞-数1)                                 | (1) 0   |
| の <sub>0</sub> . (名詞-一般 <sub>1</sub> )                  | (1) 0   |
| は0.を1.(動詞-自立2)                                          | 0 (2) 1 |
| は <sub>0</sub> . に <sub>1</sub> . (動詞-自立 <sub>2</sub> ) | 0 (2) 1 |
| を <sub>0</sub> . に <sub>1</sub> . (動詞-自立 <sub>2</sub> ) | (2) 0 1 |
| に <sub>0</sub> .を <sub>1</sub> .(動詞-自立 <sub>2</sub> )   | (2) 1 0 |
| $\mathcal{O}_{0}$ . $(\overline{\mathcal{C}}_{1})$      | (1) 0   |
| が <sub>0</sub> .に <sub>1</sub> .(動詞-自立 <sub>2</sub> )   | 0 (2) 1 |
| で <sub>0</sub> . (動詞-自立 <sub>1</sub> )                  | (1) 0   |

.....

....



[7]

## Word Reordering Model as Preprocessing

#### **↓** Ex)



Figure 1. A dependency tree of a Japanese sentence with head-relative position information.

#### **Before reordering:**

| スキャナ/一部/は  | 原稿/載置台    | 2  | 8/および |
|------------|-----------|----|-------|
| スキャナ/ーユニット | ・ 29/を 備え | 17 | いる    |



Figure 2. A dependency tree of a Japanese sentence after reordering.

#### After reordering:

| ス | キャナ/一部/ | は 備え/ている  | 原稿/載置台/ |
|---|---------|-----------|---------|
| 2 | 8/および   | スキャナ/ーユニッ | ト 29/を  |

## **Cluster-based Model**

## **4** Motivation

- Usually, sentences with similar syntactic structures yield similar distributions of n-grams reflecting their word order
- Cluster-specific LM benefits SMT system

### **4** System overview

- 1. Predict clusters according to cluster types
- 2. Translate using baseline SMT system
- ◆ 3. Optimize LM integration parameters
- 4. Re-translate using general + cluster-specific LM
- 5. Select best translation result

[8]

TY OF SCIENCE AND TECHNOLOGY

KLE Lah = 🗔



[9]

POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

## **Cluster-based Model**

### **4** 27 cluster types of syntactic patterns

 Subtree structures in the source dependency trees which ignore the adjuncts as cluster types

### **4** Ex) Cluster type list

| Cluster type   | Freq.   |
|----------------|---------|
| を. (動詞-自立)     | 407,629 |
| に. (動詞-自立)     | 246,188 |
| が. (動詞-自立)     | 143,579 |
| 動詞-自立. (動詞-自立) | 134,566 |
| は.に.(動詞-自立)    | 81,434  |
| は. を. (動詞-自立)  | 79,717  |
| は. (ある)        | 63,646  |
| を.に.(動詞-自立)    | 59,294  |
| に.を.(動詞-自立)    | 53,438  |
| と.(動詞-自立)      | 39,354  |
| は. (動詞-自立)     | 36,164  |

.....



## **NTCIR Corpus Profile**

[10]

|                      | Training corpus (1,172,709 sentences) |            |
|----------------------|---------------------------------------|------------|
|                      | Chinese                               | Korean     |
| Number of words      | 30,761,076                            | 28,683,697 |
| Number of singletons | 131,219                               | 131,321    |
| Average length       | 26.23                                 |            |
|                      | Development corpus (609 sentences)    |            |
|                      | Japanese                              | Korean     |
| Number of words      | 15,997                                | 14,818     |
| Number of singletons | 2,697                                 | 2,817      |
| Average length       | 26.27                                 | 24.33      |
|                      | Test corpus (1,381 sentences)         |            |
|                      | Japanese                              | English    |
| Number of words      | 48,278                                | 44,910     |
| Number of singletons | 4,088                                 | 4,273      |
| Average length       | 34.96                                 | 32.52      |



[11]

## **Experimental Scenario**

### **4** Corpus processing

Japanese: Cabocha tokenizer and parser

http://chasen.org/~taku/software/cabocha/

### **& English-to-Japanese SMT**

Vanilla MOSES with 5-gram LM

## **4** Japanese-to-English SMT

Vanilla MOSES with syntactic motivated knowledge

- Source word reordering model as preprocessing
- Cluster-based model as post-processing



## **NTCIR7 Results**

| [12] |
|------|
|------|

| 1 |               |       |
|---|---------------|-------|
| J | Method        | Bleu  |
|   | Baseline      | 24.48 |
|   | First Method  | 24.21 |
|   | Second Method | 23.45 |

Table4.TheBleuvalueswhenreordering models are applied.

|   | 2                    |          |               |
|---|----------------------|----------|---------------|
| 6 | Training corpus size | Baseline | Cluster-based |
|   | 50k                  | 21.48    | 22.14         |
|   | 100k                 | 22.55    | 22.91         |
|   | 300k                 | 23.46    | 23.74         |
|   | All                  | 24.48    | 24.67         |

Table 7. The Bleu values when the training corpus size is different.

| General LM                        | Bleu  |
|-----------------------------------|-------|
| Baseline                          | 24.48 |
| (1 - λ ) * General LM             | Dia   |
| + $\lambda$ * Cluster-specific LM | Bleu  |
| $\lambda = 0.1$                   | 24.67 |
| $\lambda = 0.2$                   | 24.54 |
| $\lambda = 0.3$                   | 24.52 |
| λ = 0.4                           | 24.44 |
| $\lambda = 0.5$                   | 24.28 |
| $\lambda = 0.6$                   | 24.25 |
| $\lambda = 0.7$                   | 23.99 |
| $\lambda = 0.8$                   | 23.76 |
| $\lambda = 0.9$                   | 23.59 |

Table 6. The optimized parameter when integrating general and cluster-specific LM.

 $\checkmark$  This is not the official experimental results.



## **Conclusion & Future Work**

### **4** Source word reordering model

- Need human evaluation to verity the effectiveness of proposed method
- Cluster-based model
  - Applied to a small size corpus, it worked better than when applied to a large size one
  - Cluster types are too simple which can cause multiple matching
- **4** Enlightening SMT with various linguistic knowledge
  - Developing more elaborate reordering rules & applying other cluster types

#### KLE Lab = 🛞 = POSTECH

POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

[14]

## Reference

- [1] Michael Collins, Philip Koehn, and Ivona Kučerová, Clause restructuring for statistical machine translation, In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, 2005
- 4 [2] Fei Xia and Michael McCord, *Improving a statistical MT system with automatically learned rewrite patterns*. In Proceedings of the 20th international Conference on Computational Linguistics, 2004
- [3] Chao Wang, Michael Collins, Philip Koehn, Chinese Syntactic Reordering for Statistical Machine Translation Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp.737-745, 2007
- **4** [4] Deepa Gupta, Mauro Cettolo, and Marcello Federico. *POS-based reordering models for statistical machine translation*. In Proceedings of Machine Translation Summit XI, pp. 207-213, 2007
- **4** [5] Kay Rottmann and Stephan Vogel. *Word reordering in statistical machine translation with a POS-based distortion model*; Proceedings of the 11th International Conference on Theoretical and Methodological Issues in Machine Translation, 2007
- [6] Yuqi Zhang, Richard Zens, and Hermann Nev: Chunk-level reordering of source sentences with automatically learned rules for statistical machine translation. Workshop at op at NAACL-HLT 2007 "Syntax and structure in statistical translation", pp.1-8, 2007

## Reference

- [7] Yuqi Zhang, Richard Zens, Hermann Ney: Improved chunk-level reordering for statistical machine translation. In Proceeding of International Workshop on Spoken Language Translation, 2007
- [8] Sasa Hasan, Hermann Ney. Clustered Language Models based on Regular Expressions for SMT, 2005, EAMT
- **4** [9] Hirofumi Yamamoto, Eiichiro Sumita. *Bilingual Cluster Based Models for Statistical Machine Translation*, 2007, EMNLP
- [10] Matthias Eck, Stephan Vogel, Alex Waibel. Language Model Adaptation for Statistical Machine Translation based on Information Retrieval, 2004, LREC
- [11] Bing Zhao, Matthias Eck, Stephan Vogel. Language Model Adaptation for Statistical Machine Translation with Structured Query Models, 2004, COLING
- [12] Masao Utiyama and Hitoshi Isahara. A Japanese-English patent parallel corpus. MT Summit XI, 2007
- [13] Masao Utiyama, Mikio Yamamoto, Atsushi Fujii, and Takehito Utsuro. Description of Patent Parallel Corpus for NTCIR-7 Patent Translation Task. http://iflab.slis.tsukuba.ac.jp/fujii/ntc7patmt/ppc.pdf
- [14] Atsushi Fujii, Masao Utiyama, Mikio Yamamoto, Takehito Utsuro. Overview of the Patent Translation Task at the NTCIR-7 Workshop. Proceedings of the 7th NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross-lingual Information Access, 2008.

[15]

KLE Lab - 🐼 - POSTECH

POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY