Overview of the ACLIA IR4QA (Information Retrieval for Question Answering) Task

Tetsuya SakaiNoriko KandoChuan-Jie LinTeruko MitamuraDonghong JiKuang-Hua ChenEric Nyberg

18th December 2008 @NTCIR-7, Tokyo

- 1. Task Objectives
- 2. Relevance Assessments
- 3. Evaluation Metrics
- 4. Participating Teams
- 5. Official Results
- 6. Lazy Evaluation
- 7. Unanswered Questions

What are the effective IR techniques for QA?

Traditional "ad hoc" IR vs IR4QA

- Ad hoc IR (evaluated using Average Precision etc.)
- Find as many (partially or marginally) relevant documents as possible and put them near the top of the ranked list
- IR4QA (evaluating using... WHAT?)
- Find relevant documents containing different correct answers?
- Find multiple documents supporting the same correct answer to enhance reliability of that answer?
- Combine partially relevant documents A and B to deduce a correct answer?

- 1. Task Objectives
- 2. Relevance Assessments
- 3. Evaluation Metrics
- 4. Participating Teams
- 5. Official Results
- 6. Lazy Evaluation
- 7. Unanswered Questions

Pooling for relevance assessments

Different pool depths for different topics

Relevance assessments coordinated independently by Donghong Ji (CS), Chuan-Jie Lin (CT) and Noriko Kando (JA)

Sorting the pooled documents for assessors

- Traditional approach: Docs sorted by IDs
- IR4QA approach: Sort docs in depth-X pool by:
- #runs containing the doc at or above rank X (primary sort key)
- Sum of ranks of the doc within these runs (secondary sort key)

Present ``popular'' documents first!

Assumptions behind the sort

- 1. Popular docs are more likely to be relevant than others.
- Supported by [Sakai and Kando EVIA 08]
- 2. If relevant docs are concentrated near the top of the list to be assessed, this is easier for the assessors to judge more *efficiently* and *consistently*.
- At NTCIR-2, the assessors actually did not like doc lists sorted by doc IDs
- (But we need more empirical evidence)

- 1. Task Objectives
- 2. Relevance Assessments
- 3. Evaluation Metrics
- 4. Participating Teams
- 5. Official Results
- 6. Lazy Evaluation
- 7. Unanswered Questions

- Used widely since the advent of TREC
- Mean over topics is referred to as "MAP"
- Cannot handle graded relevance (but many IR researchers just love it)

$$Q\text{-measure}(Q) \xrightarrow{\text{Persistence}}_{\substack{\text{Parameter }\beta\\\text{set to 1}}}$$
$$Q\text{-measure} = \frac{1}{R} \sum_{r} I(r) \frac{C(r) + \beta cg(r)}{r + \beta cg^{*}(r)}$$

 Generalises AP and handles graded relevance

 Properties similar to AP and higher discriminative power

 Not widely-used, but has been used for QA and INEX as well as IR Blended ratio at rank r (Combines Precision and normalised Cumulative Gain)

Sakai and Robertson EVIA 08 provides a user model for AP and Q

nDCG (Microsoft version)

Sum of discounted gains for a system output

$$nDCG = \frac{\sum_{r=1}^{l} g(r) / \log(r+1)}{\sum_{r=1}^{l} g^{*}(r) / \log(r+1)}$$

 Fixes a bug of the original nDCG Sum of discounted gains for an *ideal* output

- But lacks a parameter that reflects the user's persistence
- Most popular graded-relevance metric

IR4QA evaluation package (Works for ad hoc IR in general)

http://research.nii.ac.jp/ntcir/tools/ir4qa_eval-en

- 1. Task Objectives
- 2. Relevance Assessments
- 3. Evaluation Metrics
- 4. Participating Teams
- 5. Official Results
- 6. Lazy Evaluation
- 7. Unanswered Questions

Table 1. IR4QA participants.

team name	organisation
BRKLY	University of California, Berkeley
CMUJAV	Language Technologies Institute, Carnegie Mellon University
CYUT	Chaoyang University of Technology
HIT	Heilongjiang Institute of Technology User Group: HIT2 NLP Joint Lab
KECIR	Shenyang Institute of Aeronautical Engineering
MITEL	Institute of Computing Technology, Chinese Academy of Sciences
NLPAI	College of Computer Science and Technology, Wuhan University of Science and Technology
NTUBROWS	CSIE, National Taiwan University
OT	Open Text Corporation
RALI	University of Montreal
TA	Toyohashi University of Technology
WHUCC	Computer Center of Wuhan University

Crosslingual

- 12 participants from China/Taiwan, USA, Japan
- 40 CS runs (22 CS-CS, 18 EN-CS)
- 26 CT runs (19 CT-CT, 7 EN-CT)
- 25 JA runs (14 JA-JA, 11 EN-JA)

Monolingual

Oral presentations

- RALI (CS-CS, EN-CS, CT-CT, EN-CT)
- Uses Wikipedia to extracts cue words for BIOGRAPHY; Extracts person names using Wikipedia and Google; Uses Google translation
- CYUT (EN-CS, EN-CT, EN-JA)
- Uses Wikipedia for query expansion and translation; Uses Google translation
- MITEL (EN-CS, CT-CT)
- Uses SMT and Baidu for translation; data fusion
- CMUJAV (CS-CS, EN-CS, JA-JA, EN-JA)
- Proposes Pseudo Relevance Feedback using Lexico-Semantic Patterns (LSP-PRF)

Other interesting approaches

- BRKLY (JA-JA) A very experienced TREC/NTCIR participant
- HIT (EN-CS) PRF most successful
- KECIR (CS-CS) Query expansion length optimised for each question type (definition, biography...)
- NLPAI (CS-CS) Uses question analyses files from other teams (next slide)
- NTUBROWS (CT-CT) Query term filtering, data fusion
- OT (CS-CS, CT-CT, JA-JA) Data fusion-like PRF
- TA (EN-JA) SMT document translation from NTCIR-6
- WHUCC (CS-CS) Document reranking

Please visit the posters of all 12 IR4QA teams!

NLPAI (CS-CS) used question analysis files from other teams.

CSWHU-CS-CS-01-T: <KEYTERMS> <KEYTERM SCORE="1.0">宇宙大爆炸</KEYTERM> <KEYTERM SCORE="0.3">理论</KEYTERM> </KEYTERMS> Apath-CS-CS-01-T: <KEYTERMS> <KEYTERM SCORE="1.0">宇宙大爆炸理论</KEYTERM> </KEYTERMS> CMUJAV-CS-CS-01-T: <KEYTERMS> <KEYTERM SCORE="1.0">宇宙</KEYTERM> <KEYTERM SCORE="1.0">大</KEYTERM> <KEYTERM SCORE="1.0">爆炸</KEYTERM> <KEYTERM SCORE="1.0">理论</KEYTERM> <KEYTERM SCORE="1.0">宇宙 大 爆炸 理论</KEYTERM> <KEYTERM SCORE="1.0">宇宙大爆炸理论</KEYTERM> <KEYTERM SCORE="1.0">宇宙 大 爆炸</KEYTERM> <KEYTERM SCORE="1.0">宇宙大爆炸</KEYTERM> </KEYTERMS>

Different teams come up with different set of query terms with different weights. This clearly affects retrieval performance.

Special thanks to Maofu Liu (NLPAI)

- 1. Task Objectives
- 2. Relevance Assessments
- 3. Evaluation Metrics
- 4. Participating Teams
- 5. Official Results
- 6. Lazy Evaluation
- 7. Unanswered Questions

CS T-runs: Top 3 teams

	Mean AP		Mean Q		Mean nDCG
OT- CS-CS-04-T	.6337	OT- CS-CS-04-T	.6490	OT- CS-CS-04-T	.8270 [*]
MITEL- EN-CS-03-T	.5959	MITEL- EN-CS-03-T	.6124	CMUJAV- CS-CS-02-T	.7951
CMUJAV- CS-CS-02-T	.5930	CMUJAV- CS-CS-02-T	.6055	MITEL- EN-CS-01-T	.7949

MITEL is very good even though it is a crosslingual run
OT significantly outperforms CMUJAV with Mean nDCG (two-sided bootstrap test; α=0.05)
nDCG disagrees with AP and Q

CT T-runs: Top 3 teams

	Mean AP		Mean Q		Mean nDCG
MITEL- CT-CT-02-T	.5839	MITEL- CT-CT-02-T	.6018	MITEL- CT-CT-02-T	.7873
ОТ- СТ-СТ-04-Т	.5521**	ОТ- СТ-СТ-04-Т	.5724**	ОТ- СТ-СТ-04-Т	.7656 **
RALI- CT-CT-05-T	.3952	RALI- CT-CT-05-T	.4096	RALI- CT-CT-05-T	.6559 **

- MITEL and OT not significantly different from each other
- OT significantly outperforms RALI

(two-sided bootstrap test; α =0.01)

but RALI's performance is actually very high after bug fix

JA T-runs: Top 3 teams

	Mean		Mean		Mean
	AP		Q		nDCG
OT-	.6979 **	OT-	.7090 **	OT-	.8650 **
JA-JA-04-T		JA-JA-04-T		JA-JA-04-T	
CMUJAV-	.5932	CMUJAV-	.5996	CMUJAV-	.7832
JA-JA-01-T		JA-JA-01-T		JA-JA-01-T	
BRKLY-	.5838 **	BRKLY-	.5996 **	BRKLY-	.7831 **
JA-JA-02-T		JA-JA-02-T		JA-JA-02-T	

- OT significantly outperforms CMUJAV

- BRKLY significantly outperforms the 4th team (CYUT crosslingual run)

(two-sided bootstrap test; α =0.01)

System ranking by Q/nDCG vs that by AP

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

The most "novel" runs

Relevant docs retrieved by all other teams

RALI-EN-CS-04-T found 63 unique relevant docs (53 for topic CS-T42) **RALI-EN-CT-05-T** found 32 unique relevant docs (16 for topic CT-T442) **OT-JA-JA-01-T** found 51 unique relevant docs (12 for JA-T236)

These runs are valuable for making the relevance assessments as exhaustive as possible

Successful PRF

	Mean AP	Mean Q	Mean nDCG
HIT-EN-CS-01-DN	.5690**	.5840 **	.7560 **
HIT-EN-CS-02-DN	.4634	.4827	.6910
OT-CT-CT-04-T	.5521 **	.5724 **	.7656 **
OT-CT-CT-02-T	.5111	.5339	.7432
BRKLY-JA-JA-02-T	.5838 *	.5996 **	.7831 **
BRKLY-JA-JA-03-T	.5407	.5509	.7475
OT-JA-JA-04-T	.6979 *	.7090 *	.8650 **
OT-JA-JA-02-T	.6698	.6808	.8473

Other teams appear to be less successful with PRF. This may be partly because the grels are very incomplete.

Per-topic AP/Q/nDCG averaged over runs (CS)

Per-topic AP/Q/nDCG averaged over runs (CT)

Per-topic AP/Q/nDCG averaged over runs (JA)

- 1. Task Objectives
- 2. Relevance Assessments
- 3. Evaluation Metrics
- 4. Participating Teams
- 5. Official Results
- 6. Lazy Evaluation
- 7. Unanswered Questions

Forming pseudo-qrels

- QUESTION: Can we get away with not doing any relevance assessments at all?
- 1. Sort pooled docs by
- (1) Number of runs that retrieved it; and then
- (2) Sum of its ranks within these runs.
- 2. Take the top 10 docs in the sorted pool and treat them all as L1-relevant!

Sakai and Kando EVIA 08 actually shows that the top 10 docs are more likely to be relevant than others on average

System ranking by real MAP vs that by pseudo MAP (CS)

"Pseudo MAP" assumes that "popular" documents are relevant

System ranking by real MAP vs that by pseudo MAP (CT)

System ranking by real MAP vs that by pseudo MAP (JA)

- 1. Task Objectives
- 2. Relevance Assessments
- 3. Evaluation Metrics
- 4. Participating Teams
- 5. Official Results
- 6. Lazy Evaluation
- 7. Unanswered Questions

Unanswered Questions

- What IR strategies are good for QA? (e.g. How does question classification help?)
- What are the general/language-specific challenges for mono/crosslingual IR4QA?
- How incomplete are the IR4QA test collections? How reusable are they?
- What are the best evaluation methods?
- How do IR4QA and the entire ACLIA results correlate?