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ABSTRACT

This paper gives the system description of the Dublin City
University Machine Translation system MaTrEx for our par-
ticipation in the translation subtask in the NTCIR-8 Patent
Translation Task under the team ID of DCUMT. Four tech-
niques are deployed in our systems: supertagged PB-SMT,
context-informed PB-SMT, noise reduction, and system com-
bination. For EN-JP, our system stood second in terms of
BLEU reference score among six participants.

Categories and Subject Descriptors
1.2.7 [Computation and Language]: natural language
processing—machine translation

General Terms
Languages

Keywords
Machine Translation, Supertag, Noise Reduction, System
Combination

1. INTRODUCTION

This paper describes new extensions to the hybrid MT sys-
tem MaTrEx (Machine Translation using Examples) devel-
oped at Dublin City University. We deployed four tech-
niques, under the team ID of DCUMT, in this NTCIR-8
Patent Translation Task [11].

The first technique deployed in our system is to incorpo-
rate the target-side supertag information to the MT sys-
tems, which has been demonstrated to be effective in [15].
Due to the availability of supertaggers only for English, we
apply this technique only in the Japanese to English di-
rection. This technique is challenging to be applied here.
Firstly, long distance dependencies in Japanese may not be
captured well by incorporating the supertag information in

English since this technique is often considered to be use-
ful for better local reorderings. Secondly, we noticed that
the quality of parsing outputs of patent data are sometimes
error-prone. This reflects the characteristics of patent cor-
pora that differ from the Penn-II treebanks on which English
parsers are often trained: notably reference numbers, many
parentheses, long sentences, technical terms, and symbols.
We use the HPSG supertagger ENJU [24, 31] instead of the
CCG supertagger [5] due to its robustness in these areas.

The second technique is to incorporate the source-side su-
pertag information to the MT systems [12], which is applied
only on the English to Japanese direction, due to the same
reasons outlined above. Compared to European language
pairs, this method is also a challenging task since Japanese
has some typical characteristics which may not be captured
by the source-side context information. Such characteris-
tics include structural ambiguity in syntactic constituency
rather than lexical ambiguity; the scrambling phenomenon
[14] which can rearrange the order among the constituents
of a sentence where the case particles can serve to identify
the functions of the accompanying NPs within the sentence,
and so forth.

The third technique is to reduce noisy sentences from the
training corpus [27], which relies on detecting failures in
word alignment. The rationale to apply this technique here
is that the patent corpus may include various paraphrases,
multi-word expressions and non- literal translations, which
were the original motivation for using this technique. How-
ever, the challenge here is to see whether the method works
under the phenomenon that error-prone word alignments are
also produced by long and complex sentences, and whether
it works when a few sentences are removed.

The fourth technique is to combine several translation out-
puts [1, 23, 8] via the MBR decoder [20]. This technique has
become one of the standard techniques in various recent M'T
evaluation campaigns, and it is shown to often empirically
improve the quality of MT.

The remainder of this paper is organized as follows. Sec-
tion 2 describes four components which are extended in our
systems; two syntax-based modules which incorporate su-
pertagged information in the PB-SMT (Phrase-Based SMT)
systems, the filtering module for noisy sentences, and the
system combination module. In Section 3, our experimental
setup is explained. In Section 4, our experimental results
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are presented. We conclude in Section 5.

2. THE MATREX SYSTEM

The MaTrEx system is a hybrid data-driven MT system
which exploits aspects of different MT paradigms [30]. The
system follows a modular design and facilitates to plug in
different MT engines and novel techniques equipped with a
system combination technique which enables us to combine
different MT outputs [8]. In the following subsections, we
describe the main techniques used in the participation of
NTCIR-8 [11].

2.1 Supertagged PB-SMT: JP — EN

We employ supertaggers to enrich the English side of the
parallel training corpus with a single supertag sequence per
sentence. Then we extract phrase pairs together with the co-
occurring English supertag sequence from this corpus via the
same phrase extraction method used in the baseline model.
This way we directly extend the baseline model with su-
pertags both in the phrase translation table and in the lan-
guage model. We define the probabilistic model that accom-
panies this syntactic enrichment of the baseline model.

Let t and s be the target and source language sentences
respectively. Any (target or source) sentence z will consist
of two parts: a bag of elements (word phrases etc.) and an
order over that bag. In other words, z =< ¢, O, >, where
¢4 stands for the bag of phrases that constitute x, and O,
for the order of the phrases as given in x. Hence, we may
separate order from content.

arg max P(t]s)
= argmax P(s|t)P(t)
= arg <dr>naOX> P(¢s|¢t)P(Os|Ot)Pw(t)

I g)
where P, (t) is the target-language model, P(O,|O;) rep-
resents the conditional {order) linear distortion probability,
and P(¢s|¢+) stands for a probabilistic translation model
from target-language bags of phrases to source-language bags
of phrases using a phrase translation table.

Let ST represent a supertag sequence of the same length as
a target sentence t. Hence this equation becomes

arg max Z P(s|t, ST)Psr(t,ST) ~
ST

ar Ao
arg_max P(¢s[¢e, ST)P(O5|0r)

Psy(t, ST) exp/ ™ .

The approximations made in this formula are of two kinds:
the standard split into components and the search for the
most likely joint probability of a target hypothesis and a
supertag sequence co-occurring with the source sentence (a
kind of Viterbi approach to avoid the complex optimization
involving the sum over supertag sequences). The distortion
and word penalty models are the same as those used in the
baseline PB-SMT model.

The language model Psr (¢, ST) is a supertagger assigning
probabilities to sequences of word-supertag pairs. The lan-

guage model is further smoothed by log-linear interpolation
with the baseline language model over word sequences.

The supertagged phrase translation probability consists of
a combination of supertagged components analogous to their
counterparts in the baseline model, i.e. it consists of P(s|t, ST'),
its reverse and a word-level probability. We smooth this
probability by log-linear interpolation with the factored back-
off version P(s|t)P(s|ST"), where we import the baseline
phrase table probability and exploit the probability of a
source phrase given the target supertag sequence. A model
in which we omit P(s|ST) turns out to be slightly less opti-
mal than this one.

As in most state-of-the-art PB-SMT systems, we use GIZA++
to obtain word-level alignments in both language directions.
The bidirectional word alignment is used to obtain lexical
phrase translation pairs using heuristics presented in [26]
and [19]. Given the collected phrase pairs, we estimate the
phrase translation probability distribution by relative fre-
quency as follows:

- count(s,t)
Pon(slt) = =205 1)
on(s11) >, count(s,t)

For each extracted lexical phrase pair, we extract the cor-
responding supertagged phrase pairs from the supertagged
target sequence in the training corpus. For each lexical
phrase pair, there is at least one corresponding supertagged
phrase pair. The probability of the supertagged phrase pair
is estimated by relative frequency as follows:

count(s, t, st)
Psr(s|t,st) = =~ ————
sT(slt, st) >, count(s,t, st)

2.2 Context-Informed PB-SMT: EN — JP

One natural way to express a context-informed feature (hnm)
is to view the conditional probability P(éx|fx) conditioned
on its context information (CI) where (éx) denotes the target
phrases and ( fk) denotes the source phrase. That is

B (f, CI(f1), éx, si) = logP (éx| fr, CI(f1)).

Here, CI may include any feature (lexical, syntactic, etc.),
which can provide useful information to disambiguate the
given source phrase (fi). Beside supertags [12], we also
replicated the experiments [29] by considering the context
words and part-of-speech features. Like dependency infor-
mation [13], supertags capture the long-range word-to-word
dependency in a sentence and provide enough evidence to
disambiguate the source phrase. The lexical and syntactic
features used in our experiments are described in the follow-
ing subsections.

Lexical Features. These features include the direct left
and right context words of length [ (vesp. f;, —i...fs,—1 and
Jiw+1--fie41 ) of a given focus phrase fk = fi .S It forms
a window of size 2[ features. Thus lexical contextual infor-
mation (Clie.) can be described as follows:

CIlez(fk) = {fz’;‘.fh ~~~7fik717fjk+17 "~7.fjk+l}
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Syntactic Features (Part-of-Speech tag). In addition to
the lexical features, it is possible to exploit several knowledge
sources characterizing the context. For example, we can
consider the part-of-speech of the focus phrase and of the
context words. In our model, the POS tag of a multi-word
focus phrase is the concatenation of the POS tags of the
words composing that phrase. Thus a window of size 2 + 1
features is formed including the POS tag of focus phrase.
Thus contextual information (Clps) defining part-of-speech
features is described as follows:

Clyos(fi) = {pos(fir 1), .. pos(fi, 1),
pOS(fk),pOS(fjk.+1)7 "'7p08(fjk+l)}

Syntactic Features (Supertags). As well as using local
words and POS-tags as features, as in [29], we incorpo-
rate supertags as a syntactic source context feature in the
log-linear model of PB-SMT. In our experiments two kinds
of supertags are employed: those from Lexicalized Tree-
Adjoining Grammar (LTAG: [2]) and Combinatory Cate-
gorial Grammar (CCG: [6]). Both the LTAG [3] and the
CCG supertag sets [16] were acquired from the WSJ section
of the Penn-II Treebank using hand-built extraction rules.
Here we test both the LTAG and CCG supertaggers. The
contextual information (Cls:) for supertag is defined as

CIst(fk) = {St(fik.—1)7 sy St(fik*l)f St(fk)7
SE(fint1)y - SE(fint1)}

Similar to the Clp,s feature, the supertag of a multi-word
focus phrase is the concatenation of the supertags of the
words composing that phrase. Thus the supertag-based CI
forms a window of size 2] 4 1 features including the supertag
of the focus phrase. In our experiments, we used +1 and £2
lexical and syntactic features (i.e. { = 1,2).

We refer the interested reader to [29] and [12] for more de-
tails of how memory-based features are integrated in the
log-linear MT framework of Moses.

2.3 Noise Reduction

Given that the amount of training data available for these
tasks is limited, developing techniques to make the best use
of them is essential for the performance of the MT systems.
We used a technique to improve the translation model by
differentiating “good” and “bad” data, where our good points
algorithm selects high quality parallel sentence pairs in the
training data to build MT systems. This leads to better
word alignments since this process can remove noisy sen-
tence pairs (also called outliers) from training data. Given
that state-of-the-art word alignment models only allows 1-
to-n mappings between source and target words, those sen-
tences which include n-to-m mappings between source and
target words (for example, paraphrases, non-literal trans-
lations, and multiword expressions) are considered to be
noise. The noisy sentence pairs can potentially hinder a
word aligner in achieving high quality alignments; more-
over, the errors in word alignment will be propagated in
later stages of MT training including phrase extraction. To

remove the noisy sentence pairs, we use a method as shown
in Algorithm 1 [27].

Algorithm 1 Good Points Algorithm
Step 1: Train WB-SMT (Word-Based SMT) using the
whole training data, and translate all the sentences in the
training data to output n-best lists.
Step 2: For the n-best translations for each source sen-
tence, obtain the (maximum) cumulative X-gram (X €
{1,---,4}) score Swp,x by comparing each translation
against the reference target sentence. This score is used
measure the quality of the current sentence pair.
Step 3: Train PB-SMT using the whole training data.
Translate all training sentences to output n-best lists.
Step 4: For the n-best translations for each source sen-
tence, obtain the (maximum) cumulative X-gram (X €
{1,--+,4}) score Spp.x by comparing each translation
against the reference target sentence. This score is also
used measure the quality of the current sentence pair.
Step 5: Remove sentence pairs where Swpg,2 = 0 and
Spp,2 = 0, and sentence length is greater than 2.
Step 6: The remaining sentence pairs after removal in
Step 5 are used to train the final PB-SMT systems.

2.4 Multiple System Combination

Multiple system combination [8] is deployed to combine the
outputs from three different prototype Statistical Machine
Translation systems, namely PB-SMT and HBP-SMT (Hi-
erarchical Phrase-Based SMT).

For multiple system combination, we implement an Mini-
mum Bayes-Risk-Confusion Network (MBR-CN) framework
as used in [8]. Due to the varying word order in the MT
hypotheses, it is essential to decide the backbone which de-
termines the general word order of the confusion network.
Instead of using a single system output as the skeleton, we
employ a MBR decoder to select the best single system out-
put from the merged n-best list by minimizing the BLEU
loss, as follows:

N
é = argmin Y {1— BLEU(e;,e:)}
ie{l‘r""’N}jZI

where e; and e; are hypotheses in the n-best list, and N
indicates the number of hypotheses in the merged n-best
list. BLEU (ej,e;) calculates sentence-level BLEU score of
e; with e; as th e reference translation.

The confusion network is built using the output of MBR de-
coder as the backbone which determines the word order of
the combination. The other hypotheses are aligned against
the backbone based on the TER metric. NULL words are
allowed in the alignment. Either votes or some form of con-
fidence measures are assigned to each word in the network.
Each arc in the CN represents an alternative word at that
position in the sentence and the number of votes for each
word is counted when constructing the network. The fea-
tures we used are as follows:

e word posterior probability [10]
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Systems BLEU | #00V Systems BLEU
System combination 27.61° | 321 System combination 33.03
HPB-SMT 1 26.86" 314 HPB-SMT 1 32.50
PB-SMT 1 26.51" 194 PB-SMT 1 30.53
Noise reduction (PB-SMT) 24.01 443 PB-SMT 2" 30.08
PB-SMT 27" 23.91* | 316 Noise reduction 29.53
Preprocessing (PB-SMT) ™" 23.82 194 Preprocessing (PB-SMT)™" 27.93
HPB-SMT 2 23.30 303 HPB-SMT 2 27.23
Supertag (ENJU) 1 20.68 430 Context supertag (Base) 26.83
Supertag (ENJU) 2 18.27 426 Context supertag (Superpair) 26.45
System combination (unofficial run) | 28.43 331 Context supertag (CCG) 26.38
Context supertag (LTAG) 26.38

Table 1: Intrinsic evaluation results (JP-EN). The Context supertag (CCG-LTAG) | 26.22
HPB-SMT 1 bases on the chart-based Moses and Context supertag (POS) 26.21

the HPB-SMT 2 bases on joshua. The PB-SMT
1 bases on Moses with the distortion limit 12 over
600k training corpus, while the PB-SMT 2 bases on
Moses with the distortion limit 6 over 3,200k train-
ing corpus. The supertag (ENJU) 1 uses the con-
figuration of MERT process tuned with one factor,
while the supertag (ENJU) 2 uses the configuration
of MERT process tuned with two factors. It is noted
that the official BLEU scores which have asterisk
in their shoulder are evaluated after the removal of
OOV words. It is noted that we trained over 3,200k
training corpus for the systems marked with T and
over 600k training corpus for other systems.

e trigram and 4-gram target language model
e word length penalty

e NULL word length penalty

Minimum Error-Rate Training (MERT) is used to tune the
weights of the confusion network.

3. EXPERIMENTAL SETUP

Two open-source SMT systems, PB-SMT and chart-based
SMT system Moses [18] and HPB-SMT system Joshua [21],
are used in our experiments.

The baseline in our experiments is a standard log-linear PB-
SMT system based on Moses. The GIZA++ implementa-
tion [26] of IBM Model 4 is used as the baseline for word
alignment: Model 4 is incrementally trained by performing
5 iterations of Model 1, 5 iterations of HMM, 3 iterations
of Model 3, and 3 iterations of Model 4. For phrase extrac-
tion the grow-diag-final heuristics described in [19] is used to
derive the refined alignment from bidirectional alignments.
We then perform MERT process [25] which optimizes the
BLEU metric, while a 5-gram language model is derived
with Kneser-Ney smoothing [17] trained with SRILM [28§]
on the English side of the training data. We use Moses for
decoding.

For the HPB-SMT system, we use two systems: the chart-
based decoder of Moses [18] and that of Joshua [21]. Most
of the procedures are identical with the PB-SMT systems
except the rule extraction process [4].

Additionally, we use the factored model of Moses for the

Table 2: Intrinsic evaluation results (EN-JP). The
HPB-SMT 1 bases on the chart-based Moses and
the HPB-SMT 2 bases on joshua. The PB-SMT
1 bases on Moses with the distortion limit 12 over
600k training corpus, while the PB-SMT 2 bases
on Moses with the distortion limit 6 over 3,200k
training corpus. It is noted that we trained over
3,200k training corpus for the systems marked with
T and over 600k training corpus for other systems.

first and the second technique, and we use memory-based
classifiers [7] for the second technique.

In our experiments, we used data provided within the NTCIR-
8 Patent Translation Task; no additional data resources we
used.

4. EXPERIMENTAL RESULTS

We report the experimental results obtained on the tech-
niques described above on three different systems, PB-SMT,
HPB-SMT and WB-SMT, where WB-SMT is used inter-
nally in noise reduction technique. System combination re-
sults are finally obtained based on the single-best translation
outputs. For extrinsic evaluation, we used the same four sys-
tems which we used for intrinsic evaluation.

Intrinsic Evaluation. The results for JP-EN and EN-JP
directions are shown in Tables 1 and 2 respectively. The
scores for the primary runs are underlined.

For the JP-EN direction, the primary run is the output of
system combination of four systems (HPB-SMT 1 and 2,
PB-SMT 1 and 2). This was the fourth-best scoring system
among seven participants. After the submission, we con-
ducted another run of system combination combining seven
systems (HPB-SMT 1 and 2, PB-SMT 1 and 2, noise re-
duction, supertag (ENJU) 1, and preprocessing) that scored
28.43 BLEU points. It is to be noted that due to our in-
ternal human communication problems when we run the ex-
periments, several runs were submitted after the removal of
OOV words (Out Of Vocabulary words) from the transla-
tion outputs (indicated by asterisk in Table 1) and others
were not.

For EN-JP direction, the primary run is the output of the
system combination of four systems (HPB-SMT 1 and 2,
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PB-SMT with preprocessing® | 22.35 0.21 0.55

Systems BLEU | MAP | r@100 | r@200 | r@500 | r@1000
PB-SMT 17* 24.00 | 021 | 055 063 |072 |0.78
HPB-SMT 2 23.71 0.18 0.53 0.59 0.68 0.73
HPB-SMT 1 23.48 | 0.18 | 0.53 0.59 0.68 0.74

0.64 0.70 0.76

Table 3: Extrinsic evaluation results. The column shows the evaluated measure whether it is BLEU, MAP
(Mean Average Precision) or Recall@N (which is abbreviated in a table as r@N). It is noted that we trained

over 3,200k training corpus for the systems marked

PB-SMT 1 and 2). This run stands second among six par-
ticipants. Six runs of the context-informed SMT, shown in
the lower six rows in Table 2, were worse than the other
seven runs. This is due to the poor quality of CCG and
LTAG parser when confronted with the patent data. It is
to be noted that although we used the ENJU parser for the
JP-EN direction, we used the CCG / LTAG parser for the
EN-JP direction. However, at the same time, we observed
from our translation outputs that function words seem to be
often translated differently. We might need to handle struc-
tural ambiguity as well if we want to cope well with lexical
ambiguity in the case of Japanese.

Extrinsic Evaluation. Each group was requested to ma-
chine translate the search topics and the retrieval was per-
formed by the organizers using the translated search topics
[11]. Examples of such models include technology survey, in
which patents related to a specific technology are searched
for, and invalidity search, in which prior art related to a
patent application are searched for.

Two evaluation measures for CLPR (Cross-Lingual Patent

with * and over 600k training corpus for other systems.

statistically significant at the 5 % level.

Supertagged PB-SMT and context-informed PB-SMT seem
to have difficulties probably due to the typical characteristics
of Japanese we mentioned in section 1, since both methods
are not originally intended for Japanese. On the one hand,
difficulties in supertagged PB-SMT may be attributed to the
better reordering model which can cope with long distance
dependencies in Japanese. On the other hand, the main
difficulties in context-informed PB-SMT may be ascribed
to the additional components which can handle structural
disambiguity in Japanese as well as lexical disambiguity.

There are several avenues for further work. Firstly, the N'T-
CIR patent corpora include various equations, parentheses,
and symbols. Since these components are often handled by
preprocessing methods in a deterministic manner, this is-
sue looks trivial at first sight for an MT system. However,
to choose the correct preprocessing methods and to apply
them to the corpora often determines the final quality of
the translations. Since this process is often ad hoc and time-
consuming, a more organized approach may be required for
data similar to the NTCIR patent corpora. Secondly, Table

Retrieval) were additionally used where these evaluation mea- 1 shows that there were quite a few OOV words untranslated

sures discard the information about the word order: Mean
Average Precision (MAP) and Recall@N which stands for
Recall for the top N documents. Okapi BM25 is used as
the retrieval model where documents are sorted according
to the score and are retrieved up to the top 1000 documents
for each topic.

Table 3 shows our extrinsic evaluation results where PB-
SMT performs consistently better than HPB-SMT across
all the measures, namely BLEU, MAP and r@QN measures.
This might indicate that the key patent terminologies are
better retrieved by PB-SMT than by HBP-SMT probably
because of its constituency nature.

5. CONCLUSIONS

In this paper we described four new techniques deployed in
the Dublin City University MaTrEx system under the team
1D of DCUMT:: supertagged PB-SMT, context-informed PB-
SMT, noise reduction, and system combination.

We showed that the system combination strategy is effec-
tive in both EN-JP and JP-EN directions even though we
combine only four 1-best translation outputs. Improvements
were 0.75 BLEU points absolute and 2.8 % relative for JP-
EN (1.57 BLEU points absolute and 1.6 % relative for un-
official run which combined seven 1-best outputs) and 0.53
BLEU points absolute and 1.6 % relative for EN-JP com-
pared to the single best outputs. Both improvements were

in the translation outputs. The word lattice-based decoding
approach [9, 22] may reduce this number.
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