Microsoft Research Asia With Redmond at the NTCIR-8 Community QA Pilot Task

Young-In Song, Jing Liu, Tetsuya Sakai, Xin-Jing Wang, Guwen Feng, Yunbo Cao, Hisami Suzuki and Chin-Yew Lin Microsoft Research Asia & Microsoft Research

Overview

- Best quality answer finding task in NTCIR
 - For a given QA thread consisting of one question q and its answers $a_1, ..., a_n$ ($n \ge 1$), rank answers according to their quality for q.
 - Can be regarded as a statistical learning problem on a preference to the best quality answer in a QA thread
 - An answer is represented as a feature vector
 - A statistical model is trained by regarding the best answer selected by a user as a good quality answer

Four aspects in feature selection

Relevance to question

 Obviously, quality of an answer should be defined in the context of a question

Authority and expertise of answerer

• A highly authoritative users with expert knowledge on a question domain will be more likely to give a good quality answer

Informativeness of answer

• A good quality answer generally contains rich and detail information for a question

Discourse and modality

• A discourse structure of QA threads (e.g., a position of an answer) or modality of an answer (kindness) can be an effective evidence

Features

Туре	Name		
Relevance	Unigram LM relevance score		
	Graph-based relevance score	Examined in other task	
Authority & Expertise	Number of best answers posted by a user	Examined in other media	
	Success rate of a user to post best answers	Newly examined	
	Likelihood to be a winner	Newly examined	
	Relevance of question to user's expertise	Newly examined	
Informativeness	Length of an answer		
	Existence of URL address in an answer		
	Lexical centrality of an answer in a thread	Newly examined	
Discourse	Position of answers	With new aspect	
	Use of negative words		
	Agreement relation between Q and A		

New Features

New Features

- User Expertise LM Score (UE)
 - If a question is *well matched an answerer's knowledge*, there will be a higher probability that quality of the answer from the answerer is good
 - Build expertise language model from user's answers
 - Estimate a probability generating a question from one's expertise model
- Lexical centrality of an answer in a thread (LEX)
 - In terms of informativeness, the best quality answer is the best summary of QA thread
 - Use the possibility of an answer to be a good summary as a feature
 - LexRank approach are applied [Erkan et al, 2004]

New Features

- Position of answers (PA)
 - Top contributors in CQA community have a tendency to answer questions only if necessary [Nam et al, 2009]
 - If there is sufficiently good answer, they will skip the thread
 - The lastly posted answer is more likely to be better quality answer

$$PA(a_i) = \frac{1}{|T_j| - Pos(a_i)}$$

Models

- Classification vs. Pairwise learning
 - Best quality answer finding task can be formulated as a Binary classification task
 - Assuming BAs as good quality answer (positive) and Non-BAs as bad quality answer (negative)
 - Too many false negatives: Some of non-BAs are actually good quality answers
 - Advantage of using pairwise learning approach
 - The assumption is relaxed: 'BA' is better than non-BA
 - False negative only happens when non-BA is better than BA in quality
 - SVM rank is used as our default model in the experiments

Models

- Analogical Model [Wang, 2009]
 - Two similar questions may share similar good quality answers
 - By utilizing previously-posted QA threads similar to a new question, a better answer quality evaluation would be possible
 - One problem on test data configuration
 - All questions in NTCIR test data are found in the training data
 - Under this setting, the analogical model will take unrealistic advantages
 - Always, it has a chance to optimize model parameters based on 'correct best answers'

Run Configuration

Run 3 is a run extensively using authority and expertise features, and Run 4 is a run mainly to examine relatively

Table 1: Feature configurations of new features

	Feature	Run 1	Run 2	Run 3	Run 4	Run 5	
Relevance	LMRS ³						
	GRS	V	1				
Authority and Expertise	NBA			V			
	PS	V	1	V			Run 5 is a run to test analogical model with
	LW			V	V		the basic leature set (same to Kull 1)
	UE		1	V	V		
Informati veness	NLA	V	V			\checkmark	
	URL	V	V	V	V	\checkmark	
	LEX+NLA				V		
	LEX+PS			V			
Discourse	PA	V	V	V	V	V	
and	NW		V	V	V		
Modality	AR		1	V	V		

Run 1 is the simplest system designed with minimum number of features

Run 2 represents the most effective system using all features effective in our preliminary experiments with BAs

Results

		BA-Hit@1	GA-Hit@1	GA-nG@1	GA-nDCG	GA-Q
	Run 2	$0.4980 (\Delta_{B2}, \Delta_{R1})$	0.9967 (Δ _{B2})	0.9211 (Δ_{B2}, Δ_{R1})	0.9747 (Δ_{B2}, Δ_{R1})	0.9690 (Δ_{B2}, Δ_{R1})
	Run 1	0.4980 (Δ _{B2})	0.9967 (Δ _{B2})	0.9203 (Δ _{B2})	0.9741 (Δ _{B2})	0.9682 (Δ _{B2})
	Run 4	0.4847	$0.9973 (\Delta_{B2}, \Delta_{R1})$	0.9202 (Δ _{B2})	$0.9745 (\Delta_{B2}, \Delta_{R1})$	$0.9688 (\Delta_{B2}, \Delta_{R1})$
	Baseline-2 (Length only)	0.4847	0.9953	0.9170	0.9735	0.9680
00000	Run 3	0.4813	0.9960 (Δ _{B2})	0.8956	0.9679	0.9609
	Run 5	0.7773 (Δ_{B2}, Δ_{R1})	0.9987 (Δ_{B2}, Δ_{R1})	0.8863	0.9604	0.9499
	Baseline-3 (Posting Time)	0.3820	0.9940	0.8213	0.9460	0.9359
	Baseline-1 (Random)	0.2713	0.9920	0.7751	0.9311	0.9169

Askers (best answers) vs. our system?

	GA-nG@1	L3-Hit@1
Run 2	0.9211	0.8054
BA as top 1 rank	0.8900	0.7315

Observations

- The best answer selected by an asker is not only the best answer and often it is not really the best answer
- Length is a very powerful feature in best quality answer finding
 - The improvements by other features were only marginal
 - The Ga-nG@1 and GA-nDCG score of length-based ranking: 0.9170 / 0.9735
- How to train a model better based on noisy and partial positive examples?