

Supervised Approaches and Dependency Parsing for Chinese Opinion Analysis at NTCIR-8

Bin LU, Benjamin K. TSOU and Tao JIANG (City University of Hong Kong)

1. Introduction

- In this paper, we describe our participating system, which is based on supervised approaches and dependency parsing, for opinion analysis on traditional Chinese texts at NTCIR-8:
 - 1) For opinionated sentence recognition, the supervised lexicon-based approach, SVM and Maximum Entropy are combined together.
 - 2) For polarity classification, we use only the supervised lexicon-based approach.
 - 3) on the basis of dependency parsing,
 - a) identify opinion holders by means of reporting verbs and
 - b) identify opinion targets by considering both opinion holders and opinion-bearing words.
- The results show that among all the teams participating in the traditional Chinese task, our system achieve:
 - the highest F-measure on the opinionated sentence recognition task,
 the second highest F-measure on the identification of both opinion holders and targets,
 - 3) the middle ranking for opinion polarity classification.

2. Linguistic Analysis of Opinions

2.1 Subjectivity and Polarity

- · Reporting verbs
- Sentiment-bearing items
- Adverb clues
- Negation marker
- Discourse marker

2.2 Opinion Holder & Target

- Opinion holders/targets are more diverse in *news texts* than in product reviews:
 - · Holders could be any named entities and noun phrases;
 - Targets are more abstract, could be noun phrases, verb phrases or even clauses.

2.3 Dependency Parsing and Opinion Holders / Targets

a) 俄國 外長 伊凡諾夫 說,北約東向擴張是"邁向 錯誤 的 方向"

3. Subjectivity and Polarity Classification

4. Identifying Opinion Holders/Targets with Dependency Parsing

4.1 Sentence Preprocessing for better parsing (SP)

- Named entities were first recognized with a large dictionary
- Parentheses enclosing only English words/numbers are removed from sentences

4.2 Opinion Holder Identification

a)Holder Candidate Generation

- Subject of Reporting Verb
- Heuristic Rules (HR)

b) Candidate Expansion (EP)

Attributive modifier:

- e.g. *俄國外長*伊凡諾夫(Russian Foreign Minister Ivanov)
- Quantifier modifier and 和/及 (and/or)
 - e.g. 蘇哈托和另外兩名軍方將領 (Suharto and two other army generals)

4.3 Opinion Target Identification with Opinion Holder and Opinionbearing Words

- a) Target Candidate Generation (Heuristic Rules, HR)
 - Subject in the embedded clause if holder is identified by a reporting verb
 the subject of the object (verb) of the reporting verb or find (after the reporting verb) the subject whose parent is an opinion-bearing word
 - · Subject/object of the whole sentence if no holder is found
 - Remove a target candidate if it is in the holder candidates (called holder conflict, **HC**)
- b) Target Candidate Expansion (EP)

5. Results

Supervised Lexicon-based method						Combination of SVM, MaxEnt, Supervised Lexicon-based method			
Group ID	Run	Opinionated			Polarity				
		P	R	F		P	R	F	
CTL	1	65.14	68.79	66.9	2	76.5	53.06	62.66	
CityUHK	2	56.39	85.71	68.0	3	44.14	38.5	41.13	
CityUHK	1	50.92	91.98	65.55 65.55 65.2 65.2 59.1		45.17	41.93	43.49	
CityUHK	3	50.92	91.98			45.17	41.93	43.49	
WIA	1	53.41	83.68			50.68	41.14	45.41	
WIA	2	53.41	83.68			50.66	40.45	44.98	
KLELAB	3	44.51	87.92						
KLELAB	1	41.98	94.94	58.2	2				
KLELAB	2	41.98	94.94	58.2	2				
NTU	2	41.85	92.22	57.5	7	44.35	41.19	42.71	
NTU	1	41.41	93.82	57.46		45.57	42.83	44.16	
cyut	1	42.71	87.74	57.4	5	40.49	35.6	37.89	
cyut	2	41.13	82.41	54.8	7	31.26	25.95	28.36	
UNINE	1	52.37	48.47	50.3	4	47.01	23.27	31.13	
cyut	3	47.55	43.99	45.7	7	36.68	16.19	22.46	

_	-				_
	Group ID	Run	Holder	Target	
	CTL	1	84.9	54.4	
	CityUHK	2	72.1	48.5	
	CityUHK	1	70	25.9	
	CityUHK	3	68.1	23.3	
	WIA	1	62.1	28.3	
	WIA	2	60.5	24.6	
	KLELAB	1	29.6		
	KLELAB	2	26.2		

6. Conclusion

The system ranked on the traditional Chinese task

- No. 1 for opinionated sentence recognition,
- · No. 2 for identification of both opinion holders and targets,
- the middle position for polarity classification.
- The result show that
 - 1) the combination of supervised lexicon-based approach and machine learning techniques (namely, SVM and Maximum Entropy) is effective for opinionated sentence recognition;
 - 2) the dependency parsing-based approach on opinion holder and target identification is effective.