Supervised Approaches and Dependency Parsing for Chinese Opinion Analysis at NTCIR-8

Bin LU, Benjamin K. TSOU and Tao JIANG

Language Information Sciences Research Centre
City University of Hong Kong
Outline

• Introduction
• Linguistic analysis of opinions
• Supervised approaches for subjectivity/polarity classification
• Opinion holder/target identification with dependency parsing
• Official Results
• Conclusion
Introduction

• The NTCIR-8 Multilingual Opinion Analysis Task (MOAT)

• the CityU (HK)’s system
 – the traditional Chinese task
 – four of the five subtasks:
 • opinionated sentence recognition
 • opinion polarity classification
 • opinion holder identification
 • opinion target identification
 – Three runs were submitted
Subjectivity & Polarity Classification
Linguistic analysis of opinions

- Features for opinionated sentence recognition

 - a) The report said the spying work of Putin was not quite successful...

 - b) The financial market was perhaps facing the danger of not being able to provide necessary funds.

- Reporting verbs: verbs indicating speech events

- Polar items: sentiment-bearing items (words or phrases)

- Adverb clues: adverbs frequently co-occurring with opinions.
Linguistic analysis of opinions (cont’d)

• Features for polarity classification
 – a) 報導中引述KGB在德國的上司卡魯金的話說，普
 亭的間諜工作並不特別成功。(The report said
 the spying work of Putin was not quite
 successful...)

 – c) 普亭雖然支持這項法案，但俄國民意對這項法案
 的反對聲浪高漲。((Although) Putin supports this bill,
 but the majority of Russian people is highly against it.)

Negation markers: words used to reverse the polarity of a polar item.

Discourse markers: those may reverse the polarity of previous clause.
Supervised approaches and ensemble techniques

• **Motivation**
 – make full use
 • the manual labeled lexicons
 • annotated corpora
 – the training corpus
 • the sample and test data for NTCIR-6 OAPT (traditional Chinese)
 • the sample data for NTCIR-7 MOAT (traditional Chinese)
System Architecture

1. sample and test data for NTCIR-6 & NTCIR-7 (traditional Chinese)
2. sample data for NTCIR-8 MOAT (traditional Chinese)
Lexical resources

• Lists of Polar item
 – NTU Sentiment Dictionary (NTUSD)
 – *The Lexicon of Chinese Positive Words* (LCPW)
 – *The Lexicon of Chinese Negative Words* (LCNW)
 – CityU’s polar word and phrase list (CPWP)
 – Polar items from sample data of NTCIR-6 OAPT (SIST)
 • marked with the *SENTIMENT_KW* tag

<table>
<thead>
<tr>
<th></th>
<th>NTUSD</th>
<th>LCPW</th>
<th>LCNW</th>
<th>CPWP</th>
<th>SWST</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td># Positive items</td>
<td>2812</td>
<td>5046</td>
<td>0</td>
<td>5838</td>
<td>2426</td>
<td>13,437</td>
</tr>
<tr>
<td># Negative items</td>
<td>8276</td>
<td>0</td>
<td>3499</td>
<td>9002</td>
<td>1252</td>
<td>18,365</td>
</tr>
<tr>
<td>Total</td>
<td>11088</td>
<td>5046</td>
<td>3499</td>
<td>14840</td>
<td>4234</td>
<td>31,802</td>
</tr>
</tbody>
</table>
the Lexicon-based method

• Identify opinionated sentences
 – check whether a polar item (including adverbs) or a reporting verb occur in it.
 – If yes, then opinionated,
 – Otherwise, not opinionated.
Lexicon adjustment process

Polar item lexicon;
Reporting verb lexicon

Two reasons for this adjustment on a large sentiment lexicon

a) **may contain errors or typos:** especially those polar items extracted from last year’s sample data are not quite clean, such as 隨着 (with), 可以 (be able to), etc.

b) **words could be contextual or not suitable for news domain:** since they are marked with annotators’ own subjectivities;
Supervised Lexicon Tuning

- Compute precision for each reporting verb / polar item (on the training data)

- Learn the best threshold combination (threshold for reporting verbs + threshold for polar items)

1. Tune *separately* for two subtasks (i.e. opinionated and polarity)
2. For polarity classification, only filter polar item lexicon, and reporting verbs were not used.
Lexicon adjustment

• Two kinds of items filtered out:
 – 1) noisy terms: actually not reporting verbs or polar items according to our judgment, e.g.
 • 觀光 (sightseeing) in LCPW, 定下 (set) and 前往 (head for) in SKPI;
 – 2) reporting verbs or polar items: may present facts and frequently occur in factual sentences,
 • e.g. 暴雨 (downpour) in NTUSD and 襲擊 (attack) in NTUSD and CPWP.
Combination method

• Combination method for the *opinionated sentence recognition* task:
 – majority voting
 – if two of the three component classifiers label a sentence as opinionated, the sentence would be marked as opinionated;
Official Results

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Run</th>
<th>Opinionated</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>CTL</td>
<td>1</td>
<td>65.14</td>
<td>68.79</td>
</tr>
<tr>
<td>CityUHK</td>
<td>2</td>
<td>56.39</td>
<td>85.71</td>
</tr>
<tr>
<td>CityUHK</td>
<td>1</td>
<td>50.92</td>
<td>91.98</td>
</tr>
<tr>
<td>CityUHK</td>
<td>3</td>
<td>50.92</td>
<td>91.98</td>
</tr>
<tr>
<td>WIA</td>
<td>1</td>
<td>53.41</td>
<td>83.68</td>
</tr>
<tr>
<td>WIA</td>
<td>2</td>
<td>53.41</td>
<td>83.68</td>
</tr>
<tr>
<td>KLELAB</td>
<td>3</td>
<td>44.51</td>
<td>87.92</td>
</tr>
<tr>
<td>KLELAB</td>
<td>1</td>
<td>41.98</td>
<td>94.94</td>
</tr>
<tr>
<td>KLELAB</td>
<td>2</td>
<td>41.98</td>
<td>94.94</td>
</tr>
<tr>
<td>NTU</td>
<td>2</td>
<td>41.85</td>
<td>92.22</td>
</tr>
<tr>
<td>NTU</td>
<td>1</td>
<td>41.41</td>
<td>93.82</td>
</tr>
<tr>
<td>cyut</td>
<td>1</td>
<td>42.71</td>
<td>87.74</td>
</tr>
<tr>
<td>cyut</td>
<td>2</td>
<td>41.13</td>
<td>82.41</td>
</tr>
<tr>
<td>UNINE</td>
<td>1</td>
<td>52.37</td>
<td>48.47</td>
</tr>
<tr>
<td>cyut</td>
<td>3</td>
<td>47.55</td>
<td>43.99</td>
</tr>
</tbody>
</table>
Official Results

Combination of SVM, MaxEnt, Supervised Lexicon-based method

<table>
<thead>
<tr>
<th>Run</th>
<th>Opinionated</th>
<th></th>
<th></th>
<th>Polarity</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F</td>
<td>P</td>
<td>R</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>56.39</td>
<td>85.71</td>
<td>68.03</td>
<td>44.14</td>
<td>38.5</td>
<td>41.13</td>
</tr>
<tr>
<td>1/3</td>
<td>50.92</td>
<td>91.98</td>
<td>65.55</td>
<td>45.17</td>
<td>41.93</td>
<td>43.49</td>
</tr>
</tbody>
</table>
Holder/Target Identification
Opinion Holder & Target

• Opinion holders/targets are more diverse in *news texts* than in product reviews:
 – Holders could be any named entities and noun phrases
 – Targets are more abstract, could be noun phrases, verb phrases or even clauses
Dependency Parsing and Opinion Holders / Targets

a) 俄國外長伊凡諾夫說，北約東向擴張是“邁向錯誤的方向”。

Russian Foreign Minister Ivanov said that NATO's eastward expansion was "towards the wrong direction."
Holder Candidate Generation

- Reporting Verb?
 - Yes
 - Subject?
 - Yes
 - Object/Attri?
 - Yes
 - Holder Candidate Found
 - No
 - Author as Holder
 - No
- No

- Yes
- No

- Headline?
 - Yes
 - Noun before ?
 - Yes
 - Holder in previous sentence
 - No
 - No
- No
Opinion Holder Identification

• Holder Candidate Generation
 – Subject of Reporting Verb
 – Heuristic Rules (HR)

• Candidate Expansion (EP)
 – Attributive modifier
 • e.g. 俄國外長 伊凡諾夫 (Russian Foreign Minister Ivanov)
 – Quantifier modifier and 和/及 (and/or)
 • e.g. 蘇哈托 和另外 兩名 軍方將領 (Suharto and two other army generals)
Opinion Target Identification with Opinion Holder and Opinion-bearing Words

• Target Candidate Generation (Heuristic Rules, HR)
 – Subject in the embedded clause if holder is identified by a reporting verb
 • the subject of the object (verb) of the reporting verb or find (after the reporting verb) the subject whose parent is an opinion-bearing word
 – Subject/object of the whole sentence if no holder is found
 – Remove a target candidate if it is in the holder candidates (called holder conflict, HC)

• Target Candidate Expansion (EP)
 – similar to holder candidate expansion
Official Results

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Run</th>
<th>Holder</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>1</td>
<td>84.9</td>
<td>54.4</td>
</tr>
<tr>
<td>CityUHK</td>
<td>2</td>
<td>72.1</td>
<td>48.5</td>
</tr>
<tr>
<td>CityUHK</td>
<td>1</td>
<td>70</td>
<td>25.9</td>
</tr>
<tr>
<td>CityUHK</td>
<td>3</td>
<td>68.1</td>
<td>23.3</td>
</tr>
<tr>
<td>WIA</td>
<td>1</td>
<td>62.1</td>
<td>28.3</td>
</tr>
<tr>
<td>WIA</td>
<td>2</td>
<td>60.5</td>
<td>26</td>
</tr>
<tr>
<td>KLELAB</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KLELAB</td>
<td>2</td>
<td>20.2</td>
<td></td>
</tr>
</tbody>
</table>

the method described above

add more heuristic rules obtained on NTCIR-7 data
Official Results

<table>
<thead>
<tr>
<th>Group</th>
<th>Target</th>
<th>24.6</th>
<th>28.36</th>
<th>23.36</th>
<th>25.91</th>
<th>26.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54.4</td>
</tr>
<tr>
<td>CityUHK</td>
<td>2</td>
<td>72.1</td>
<td></td>
<td></td>
<td></td>
<td>48.5</td>
</tr>
<tr>
<td>CityUHK</td>
<td>1</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td>25.9</td>
</tr>
<tr>
<td>CityUHK</td>
<td>3</td>
<td>68.1</td>
<td></td>
<td></td>
<td></td>
<td>23.3</td>
</tr>
<tr>
<td>WIA</td>
<td>1</td>
<td>62.1</td>
<td></td>
<td></td>
<td></td>
<td>28.3</td>
</tr>
<tr>
<td>WIA</td>
<td>2</td>
<td>60.5</td>
<td></td>
<td></td>
<td></td>
<td>24.6</td>
</tr>
<tr>
<td>KLELAB</td>
<td>1</td>
<td>29.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KLELAB</td>
<td>2</td>
<td>26.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a big difference: annotators have significantly different opinions on opinion analysis of news sentences.
Conclusion

• The result show that
 – the combination of supervised lexicon-based approach and machine learning techniques (namely, SVM and Maximum Entropy) is effective for opinionated sentence recognition;
 • No. 1 for opinionated sentence recognition,

 – the dependency parsing-based approach on opinion holder and target identification is effective.
 • No. 2 for identification of both opinion holders and targets,
Conclusion on Subjectivity Classification

• Large sentiment lexicons needs some adaptation on the new domain

• the combination lexicon and machine learning can improve the performance on opinionated sentence recognition
Conclusion on Holder/Target Extraction

• Dependency parsing-based approach on opinion holder and target identification is effective.

• The existence of reporting verbs is a very important feature for identifying opinion holders in news texts;

• The identification of opinion targets should not be done alone without considering opinion holders in news
 – opinion holders are much easier to be identified in news texts
 – the identified holders are quite useful for the identification of the associated targets.
Future Work

• Polarity classification
 – contextual information
 – topic-related features
 – shallow parsing techniques

• Identifying opinion holder/target based only on dependency parsing
 – not robust to the dependency errors
 – to further investigate machine learning approaches by treating dependency structures as features
 • should be more robust to dependency errors
Thanks!

Q & A