

Text Retrieval Baseline for GeoTime

Ray R. Larson
School of Information
University of California, Berkeley

Overview

- For GeoTime Berkeley participated all of the tasks, both English and Japanese Monolingual and Cross-Language tracks
- We used a number of retrieval methods for different runs, including
 - Logistic Regression with Blind Feedback
 - Logistic Regression without Feedback
 - Okapi BM-25 without feedback

Logistic Regression Ranking

Probability of relevance is based on Logistic regression from a sample set of documents to determine values of the coefficients.

At retrieval the probability estimate is obtained by:

$$P(R \mid Q, D) = \frac{e^{\log O(R \mid Q, C)}}{1 + e^{\log O(R \mid Q, C)}} = b_0 + \sum_{i=1}^{m} b_i X_i$$

For some set of m statistical measures, X_i , derived from the collection and query

TREC2 Algorithm

$$\log O(R \mid C, Q) = c_o + c_1 \frac{1}{\sqrt{|Q_c| + 1}} \sum_{i=1}^{|Q_c|} \frac{qtf_i}{ql + 35}$$

Term Freq for:

Query

$$+c_2 \frac{1}{\sqrt{|Q_c|+1}} \sum_{i=1}^{|Q_c|} \log \frac{tf_i}{cl+80}$$
 Document

$$+ c_3 \frac{1}{\sqrt{|Q_c|+1}} \sum_{i=1}^{|Q_c|} \log \frac{ctf_i}{N_t}$$
 Collection

+ $c_4|Q_c|$

Matching **Terms**

Blind Feedback

 Term selection from top-ranked documents is based on the classic Robertson/Sparck Jones probabilistic model:

Document Relevance

For	each	term	t
	Cucii		ı

Document indexing

	R	N-R	N
-	$R-R_t$	$N-N_t-R+R$	N - N_t
+	R_t	$N_t - R_t$	N_t
rm t	+	_	

Blind Feedback

- Top x new terms taken from top y documents
 - For each term in the top **y** assumed relevant set...

$$termwt = \log \frac{\left(\frac{R_t}{R - R_t}\right)}{\left(\frac{N_t - R_t}{N - N_t - R + R_t}\right)}$$

 Terms are ranked by termwt and the top x selected for inclusion in the query

Okapi BM25

$$\sum_{T \in Q} w^{(1)} \frac{(k_1 + 1)tf}{K + tf} \frac{(k_3 + 1)qtf}{k_3 + qtf}$$

- · Where:
- Q is a query containing terms T
- $K \text{ is } k_1((1-b) + b.dl/avdl)$
- k_1 , b and k_3 are parameters, usually 1.2, 0.75 and 7-1000
- tf is the frequency of the term in a specific document
- qtf is the frequency of the term in a topic from which Q was derived
- dl and avdl are the document length and the average document length measured in some convenient unit
- $w^{(1)}$ is the Robertson-Sparck Jones weight: $w^{(1)} = \log \frac{\left(\frac{r+0.5}{R-r+0.5}\right)}{\left(\frac{n-r+0.5}{N-n-R+r+0.5}\right)}$

GeoTime Submitted Runs

runID	Lang	mean AP	mean Q	mean nDCG	system description
BRKLY-EN-EN- 02-DN	EN	0.4	0.42	0.61	Probabilistic retrieval based on logistic regression with blind feedback using DESCRIPTION and NARRATIVE text from topics.
BRKLY-EN-EN- 03-D	EN	0.36	0.38	0.56	Probabilistic retrieval based on logistic regression with blind feedback using DESCRIPTION only text from topics.
BRKLY-EN-EN- 04-DN	EN	0.34	0.36	0.58	Probabilistic retrieval based on logistic regression using DESCRIPTION and NARRATIVE text from topics.
BRKLY-EN-JA- 01-DN	EN > JA	0.36	0.38	0.59	Probabilistic retrieval based on logistic regression with blind feedback using QUESTION and NARRATIVE text. EN->JA translation with GOOGLE Translate
BRKLY-EN-JA- 02-T	EN > JA	0.35	0.36	0.54	Probabilistic retrieval based on logistic regression with blind feedback using QUESTION text only. EN->JA translation with GOOGLE Translate
BRKLY-JA-JA-01- DN	JA	0.43	0.45	0.65	Probabilistic retrieval based on logistic regression with blind feedback on QUESTION and NARRATIVE text.
BRKLY-JA-JA-02- T	JA	0.41	0.43	0.63	Probabilistic retrieval based on logistic regression with blind feedback on QUESTION text only.
BRKLY-JA-JA-03- DN	JA	0.16	0.16	0.31	Probabilistic retrieval based on OKAPI weighting on QUESTION and NARRATIVE text.
BRKLY-JA-JA-04- DN	JA	0.32	0.34	0.58	Probabilistic retrieval based on logistic regression using both QUESTION and NARRATIVE text.
BRKLY-JA-JA-05- T	JA	0.3	0.32	0.54	Probabilistic retrieval based on logistic regression using QUESTION text only.
BRKLY-JA-EN- 01-DN	JA > EN	0.42	0.43	0.62	Probabilistic retrieval based on logistic regression with blind feedback using DESCRIPTION and NARRATIVE text from JA topics after Google Translate to EN topics.
BRKLY-JA-EN- 02-D	JA > EN	0.38	0.39	0.56	Probabilistic retrieval based on logistic regression with blind feedback using DESCRIPTION only text from JA topics after Google Translate to EN topics.