WIA Opinmine System in NTCIR-8 MOAT Evaluation

Lanjun Zhou¹, Yunqing Xia², Binyang Li¹, Kam-Fai Wong¹ 1: Department of SE&EM, The Chinese University of Hong Kong 2: Department of CS&T Tsinghua University, Beijing, China

Architecture and Workflow

INPUT:

NTCIR MOAT Task formal run data

- STNO files
- OTNO files
- topic descriptions
- raw texts

Output:

Raw ' Toj Mode Topic N	Texts pic eling Models	Test Data Topics Documents Sentences	Pre-processing
		Relevance	Opinionated
levance	judgment	Judgment	Judgment

Polarity Judgment

In addition to the features used in Opinionatedness Judgment, we incorporate features of s-VSM (Sentiment Vector Space Model) to enhance the performance of polarity judgment.

f_i	Number of sentiment units satisfying
f_1	fPSW > 0, fNSW = fNEG = fMOD = 0
f_2	$f_{PSW} = 0, f_{NSW} > 0, f_{NEG} = f_{MOD} = 0$
f_3	<i>fpsw</i> >0, <i>fnsw</i> =0, <i>fneg</i> >0, <i>fmod</i> =0
f_4	<i>fpsw</i> =0, <i>fnsw</i> >0, <i>fneg</i> >0, <i>fmod</i> =0
f_5	$f_{PSW} > 0, f_{NSW} = 0, f_{NEG} = 0, f_{MOD} > 0$
f_6	$f_{PSW} = 0, f_{NSW} > 0, f_{NEG} = 0, f_{MOD} > 0$
f_7	<i>fpsw</i> >0, <i>fnsw</i> =0, <i>fneg</i> >0, <i>fmod</i> >0
f_8	<i>fpsw</i> =0, <i>fnsw</i> >0, <i>fneg</i> >0, <i>fmod</i> >0

File-1: Containing results of relevance judgment and opinionated judgment. *File-2*: Containing results of polarity and holder&target information for each opinionated sentence.

Lexicon List

A Refined Opinion Lexicon

Туре	Lexicons		
Sentiment Words	Positive sentiment words Negative sentiment words		
Degree Adverbs	Degree adverbs		
Conjunctions	Coordinating conjunctions Subordinating Conjunctions Correlative Conjunctions		
Other Words	Opinion indicators Opinion operators Negations		

We select all neutral sentences and use PrefixSpan to mine useful patterns while maintaining the sequence of words.

Holder&Target Recognition

Both a dependency parser and a semantic role labeling (SRL) tool are incorporated in WIA-Opinmine. The meanings of A0's, A1's are different from one verb to another. In most conditions, A0 represents the **subject** of a verb and A1 represents the <u>object</u>.

0

Relevance Judgment

A topic model based algorithm is proposed for relevance sentence judgment. 60% top ranked sentences of each topic are output as relevant sentences.

$$q = term_1$$
 OR $term_2$ OR OR $term_k$

$$cv_{i} = \frac{1}{avg_{i}} \cdot \sqrt{\sum_{j=2002}^{2005} (tf_{i}^{j} - avg_{i})^{2} \cdot \frac{1}{4}}$$

$$Sim(S_{i}, M) = \frac{S_{i} \cdot M}{\|S_{i}\| \|M\|}$$

 $W_i = tf_i \cdot CV_i$

Original + Coefficient of

A ranking method was proposed by using topic model and the position information. (a_0, a_1, a_2) is estimated using linear regression with ordinary least square (OLS) method on training data.

$$score(A) = a_0 \cdot \frac{A \cdot M}{\|A\| \|M\|} + a_1 \cdot \log \frac{N}{ap} + a_2 \cdot \log \frac{N}{vp}$$

Results and Future work

The NTCIR8 evaluation results show that our system could effectively recognize relevance sentences, opinionated sentences and polarities on both Simplified Chinese (SC) and Traditional Chinese (TC). But the performance of holder&target recognition is not satisfying. (Note that the performance of opinionated sentence judgment between TC and SC are very different)

Evaluation		ТС	SC	Evolution		SC	
	Р	89.46	98.22	Evaluation		Holder	Target
Relevance	R	58.74	59.17	Holder and	P	85.5	36.9
Judgment	F	70.92	73.85	Target	R	76.8	33.0
Oninionated	Р	53.39	29.2	Recognition	\mathbf{F}	80.9	34.9
Sentence	R	83.68	95.9			1	
Judgment	F	65.19	44.77	Fyaluation		TC	
	P	50.65	50.72			Holder	Target
Polarity	T D	<i>J</i> U.UJ <i>A</i> 1 11	16.57	Holder and	Strict	62.1	28.3
Judgment	K F	41.11 45.38	40.57	TargetRecognition	Lenient	51.3	23.3

Original	Variation
歐元,歐洲,投資人,銀行,貨幣,	歐元, 匯價, 經濟, 羅尤, 基金,
投資,基金,匯價,資產,市場,美	升值, 銀行, 投資, 貨幣, 投資人,
國,價位,主管,升值,指出,經濟,	價位, 復甦, 存款, 物價, 主管,
認為,利率,建議,外匯	債券, 指出, 澳幣, 日圓, 央行

Opinionatedness Judgment

- A SVM classifier is trained based on following features:
- Punctuation level features
- Word-Level and entity-level features
- Bi-gram features

All features are combined using a RBF kernel and a SVM classifier is trained leading to get a recall of over 80% with tolerable *F*-score on development set.

The future work will be focused on two directions:

- Introducing discourse information in opinionated and polarity judgment such as sentence-level, paragraph-level and document-level features
- Boosting the performance of holder and target recognition.