

Overview of the Patent Machine Translation Task at the NTCIR-9 Workshop

Isao Goto (NICT)

Bin Lu (City Univ. of Hong Kong / Hong Kong Institute of Education)

Ka Po Chow (Hong Kong Institute of Education)

Eiichiro Sumita (NICT)

Benjamin K. Tsou (Hong Kong Institute of Education / City Univ. of Hong Kong)

Table of Contents

- Motivation and Goals
- Previous tasks and comparison
- Remarkable Findings at NTCIR-9
- PatentMT at NTCIR-9
- JE and EJ Subtasks
- CE Subtask
- Meta-Evaluation of Automatic Evaluation based on Human Evaluation
- Summary

Motivation

- There is a significant practical need for patent translation.
 - to understand patent information written in foreign languages
 - to apply for patents in foreign countries
- Patents constitute one of the challenging domains.
 - Patent sentences can be quite long and contain complex structures

Goals of PatentMT

- To develop challenging and significant practical research into patent machine translation.
- To investigate the performance of state-of-the-art machine translation systems in terms of patent translations involving Japanese, English, and Chinese.
- To compare the effects of different methods of patent translation by applying them to the same test data.
- To create publicly-available parallel corpora of patent documents and human evaluations of MT results for patent information processing research.
- To drive machine translation research, which is an important technology for cross-lingual access of information written in unknown languages.
- The ultimate goal is fostering scientific cooperation.

Findings of Previous Patent Translation Tasks

NTCIR-7	Human evaluation	RBMT was better than SMT for JE and EJ.	
	CLIR evaluation	 SMT was better than RBMT for EJ. The translations were used as bag-of-words. This means that word selection by SMT was better than that by RBMT. 	
NTCIR-8	Automatic evaluation	A hybrid system (RBMT with statistical post edit) achieved the best score for JE.	

Comparison of NTCIR-7, 8, and 9

	NTCIR-7	NTCIR-8	NTCIR-9 New
Language	Japanese to English English to Japanese	Japanese to English English to Japanese	Chinese to English Japanese to English English to Japanese
Human evaluation	Adequacy Fluency	No human evaluation	Adequacy New Acceptability
Extrinsic evaluation	CLIR	CLIR	No extrinsic evaluation
Number of participants	15	8	21

At NTCIR-9, participants can choose subtasks from three language directions, including **Chinese to English**.

Remarkable Findings at NTCIR-9

- SMT was the best system for CE and EJ patent translation.
 - This is the first time for SMT to be demonstrated equal or better quality than that of the top-level RBMT for EJ patent translation.

■ 80% of patent sentences could be understood in the best system for **CE** patent translation.

PatentMT at NTCIR-9

Features of PatentMT at NTCIR-9

Provided data

	CE	1 million patent parallel sentence pairs	
		Over 300 million patent monolingual sentences in English	
Training	JE	Approximately 3.2 million patent parallel sentence pairs	
Training		Over 300 million patent monolingual sentences in English	
	EJ	Approximately 3.2 million patent parallel sentence pairs	
		Over 400 million patent monolingual sentences in Japanese	
Development	All	2,000 patent description parallel sentence pairs	
Test	All	2,000 patent description sentences	
		2,000 reference translations	

- The periods for the training and test data are different (Training data: 2005 or before, Test data: 2006 or later)
- Human evaluation Primary evaluation
 - Adequacy and Acceptability

Flow and Schedule of the Task

Participants

Group ID	Organization	Nationality	CE	JE	EJ
BJTUX	Beijing Jiaotong University	P.R. China	1		1
FRDC	Fujitsu R&D Center CO., LTD	P.R. China	1	1	1
ISTIC	Institute of Scientific and Technical Information of China	P.R. China	1		
ICT	Institute of Computing Technology, Chinese Academy of Sciences	P.R. China	1	1	1
BUAA	Institute of Intelligent Information Processing, Beihang University	P.R. China	1		
NEU	Northeastern University	P.R. China	1	1	
KECIR	Shenyang Aerospace University	P.R. China	1		
JAPIO	Japan Patent Information Organization	Japan		1	1
KYOTO	Kyoto University	Japan	1	1	1
NAIST	Nara Institute of Science and Technology	Japan		1	
NTT-UT	NTT Communication Science Labs. and the University of Tokyo	Japan	1	1	1
UOTTS	The University of Tokyo	Japan	1	1	1
TORI	Tottori University	Japan		1	1
EIWA	Yamanashi Eiwa College	Japan	1	1	
IDEAS	Institute for Information Industry, Chaoyang University of Technology and National Tsing Hua University	Taiwan	1		
NCW	NTNU, NCCU, and WebGenie Information Ltd.	Taiwan	1		
KLE	Pohang University of Science and Technology (POSTECH)	Korea	1	1	1
LIUM	University of Le Mans	France	1		
RWTH	RWTH Aachen University	Germany	1	1	
IBM	IBM Research	USA	1		
BBN	Raytheon BBN Technologies	USA	1		

Baseline Systems

SYSTEM-ID	System	Туре	CE	JE	EJ
BASELINE1	Moses hierarchical phrase-based SMT system	CNAT	1	1	1
BASELINE2	Moses phrase-based SMT system	SMT	1	1	1
RBMTx	SYSTRAN 7 Premium Translator		1		
RBMTx	Huajian Multilingual EasyTrans version 3.0		1		
RBMTx	The Honyaku 2009 premium patent edition	RBMT		1	1
RBMTx	ATLAS V14			1	1
RBMTx	PAT-Transer 2009			1	1
ONLINE1	Google online translation system	SMT	1	1	1

- These commercial RBMT systems are well known for their language pairs.
 - The SYSTEM-IDs of the commercial RBMT systems are anonymized.
- The translation procedures for BASELINE1 and 2 were published on the PatentMT web page.

Human Evaluation

- Evaluation methods
 - Human evaluations were carried out by paid evaluation experts.
 - 300 sentences were evaluated per system.
 - Number of evaluators: three.
 - Each evaluator evaluated 100 sentences per system.
- Evaluation criteria
 - Adequacy
 - The main purpose is comparison between the systems.
 - All of the first priority submissions were evaluated at the least.
 - Acceptability
 - The main purpose is to clarify the percentage of translated sentences whose source sentence meanings can be understood.
 - Due to budget limitations, only selected systems were evaluated. 13

Adequacy

- The criterion of adequacy used this evaluation
 - A 5-scale (1 to 5) evaluation.
 - Clause-level meanings were considered.
- Characteristics
 - This evaluation is effective for system comparison.
 - It is unknown what percentage of the translated sentences express the correct meaning of the source sentence.
 - This is because the scoring criterion for scores of between 2 to 4 is unclear.

AA

Yes

Native level

Acceptability

Criterion

- Characteristics
 - This evaluation aims more at practical evaluation than adequacy.
 - It is known what percentage of the translated sentences express the correct meaning of the source sentence.
 - If a requirement for a translation system is that the source sentence meaning can be understood, then translations of C or higher are useful.

JE and EJ Subtasks

JE Patent Parallel Corpus

- How a corpus was built
 - Parallel patent documents in Japanese and English were extracted from patent families.
 - Patent families are one of the ways to apply for patents in more than one country.
 - The parallel sentences were automatically extracted from the parallel patent documents using bilingual dictionaries.
- Test data and reference translations
 - We manually selected 2,000 correct parallel sentence pairs from the automatically extracted pairs.

Explored Ideas for JE Subtask

Туре	Ideas	
Pre-ordering	POS-based reordering for dependency structure of Japanese (NTT-UT)	
	Linear ordering problem based reordering (NAIST)	
Hybrid decoder	RBMT and statistical post edit (EIWA, TORI)	
Deserving	Hybrid reordering model (NEU)	
Decoding	Example-based MT (KYOTO, NEU)	
System combination	Generalized minimum Bayes risk system combination (NTT-UT)	
Reranking	Bagging-based reranking (ICT)	
Tokenization	Merging Japanese verb endings / splitting for katakana words (RWTH)	
Preprocessing	Handling parentheses (FRDC)	
Dictionary	Adding technical field dictionaries to RBMT (JAPIO)	
Alignment	Bayesian subtree alignment (KYOTO)	

JE Adequacy Results

- The RBMT systems were better than the state-ofthe-art SMT systems.
- The baseline hierarchical phrase-based SMT was slightly better than the baseline phrase-based SMT.

JE Acceptability Results

- 63% sentences could be understood (C-rank and above) in the best system (JAPIO-1) using RBMT.
- 25% sentences could be understood for the best SMT (NTT-UT1).
- There was a large difference in ability to retain the sentence level meanings between the RBMT systems and the SMT systems.

Explored Ideas for EJ Subtask

Туре	Ideas	
Duo and anima	Head Finalization for English (NTT-UT)	
Pre-ordering	Syntactic reordering (KLE)	
	Transferring syntactic roles (KLE)	
Preprocessing	Inserting pseudo-particles (NTT-UT)	
	Handling parentheses (FRDC)	
Hybrid decoder	er Cascading RBMT and SMT (TORI)	
	HPSG forest-to-string MT (UOTTS)	
Decoding	Example based MT (KYOTO)	
	Factored translation model (BJTUX)	
System combination	Generalized minimum Bayes risk system combination (NTT-UT)	
Reranking	Bagging-based reranking (ICT)	
Dictionary	Adding technical field dictionaries to RBMT (JAPIO)	
Alignment	Bayesian subtree alignment (KYOTO)	

EJ Adequacy Results

- The top SMT systems (NTT-UT-1 and NTT-UT3) were equal or better than the top-level commercial RBMT systems.
- No SMT system did this at NTCIR-7, and it is the first time for this achievement.
- The baseline RBMT systems were better than those for SMT systems other than NTT-UT-1 and NTT-UT-3.

EJ Acceptability Results

- 60% sentences could be understood (C-rank and above) for the top three systems (NTT-UT-1, RBMT6-1, and JAPIO-1).
- The translation quality of the top SMT system (NTT-UT-1) was equal to or surpassing that of the top-level RBMT systems in retaining the sentence-level meanings.
- This evaluation demonstrated the effectiveness of the NTT-UT system.

CE Subtask

CE Patent Parallel Corpus

- How the corpus was built
 - Comparable patent documents in Chinese and English were extracted from PCT patents.
 - PCT patents are one of the ways to apply for patents in more than one country.
 - The parallel sentences were automatically extracted from the comparable patent documents using length information, bilingual dictionaries and statistical translation probability.
- Test data and reference translations
 - manually selected 2,000 parallel sentence pairs from the automatically extracted pairs.

Explored Ideas for CE Subtask (1/2)

Туре	Ideas	
	Optimizing the Chinese word segmenter based on MT	
Tokenization	performance (BBN)	
TORETHZACION	Tokenizing ASCII string in Chinese (BBN)	
	Training the Chinese segmenter (NCW)	
	Replacing infrequent special words to special tokens (BBN)	
	Rule-based entity classing (IBM)	
	Incorporating manually written templates (ICT)	
Preprocessing	Chemical expression substitution (ICT)	
	Chinese sentence paraphrasing (FRDC)	
	Handling parentheses (FRDC)	
	Prior Translation of unknown words and singletons (IDEAS)	
Pre-ordering	Parsing-based pre-ordering (IBM)	
	LM adaptation for input sentences (BBN)	
A de setetie se	TM adaptation using monolingual data (LIUM)	
Adaptation	Bayesian word alignment adaptation (NTT-UT)	
	Domain adaptation using four domains (ICT)	

Explored Ideas for CE Subtask (2/2)

Туре	Ideas
	String-to-dependency MT (BBN)
	Using additional 8 features (BBN)
	Direct translation model (a special maximum entropy model) (IBM)
	Tree-to-string MT (IBM)
Deceding	Tree-to-tree MT (BUAA)
Decoding	BTG constraint into reordering model (BUAA)
	Example-based MT (KYOTO, NEU)
	SMT system using an example-based decorder (BUAA)
	Hybrid reodering model (NEU)
	Factored translation model (BJTUX)
Hybrid decoder	RBMT and statistical post edit (EIWA)
	System combination of bidirectional translation systems (RWTH)
System	System combination based on incremental alignment (IBM)
combination	Generalized minimum Bayes risk system combination (NTT-UT)
	System combination based on word and phrase (ISTIC)
Alignment	Bayesian subtree alignment (KYOTO)
Dictionary	Adding external bilingual dictionaries (NCW)

CE Adequacy Results

- All the top systems were SMT systems.
- The top system (BBN-1) achieves significantly better scores than the other systems.
 - The hierarchical phrase-based SMT baseline was better than the phrase-based SMT baseline.
- The SMT baseline systems were better than the baseline RBMT systems.

CE Acceptability Results

- 80% sentences could be understood (Crank and above) in the best system (BBN-1).
- This evaluation demonstrated the effectiveness of the BBN system.

Meta-Evaluation of Automatic Evaluation based on Human Evaluation

JE Correlations between Human and Auto

Spearman's p

	All	Excluding RBMT
BLEU	-0.042	0.618
NIST	-0.114	0.543
RIBES	0.632	0.679

- Reliability for RBMT was not high.
- RIBES was better than BLEU and NIST.

EJ Correlations between Human and Auto

Spearman's p

	All	Excluding RBMT
BLEU	-0.029	0.511
NIST	-0.074	0.412
RIBES	0.716	0.929

- Reliability for RBMT was not high.
- RIBES was better than BLEU and NIST.

CE Correlations between Human and Auto

Spearman's p

	All
BLEU	0.931
NIST	0.911
RIBES	0.949

Automatic scores had a high correlation with the human evaluation.

Summary of PatentMT

- Goal: To foster challenging and practical research into patent machine translation
- Large-scale CE and JE patent parallel corpora were provided.
- 21 research groups participated.
- 8 baseline systems including 5 RBMT systems.
- Human evaluations were conducted.
- Various ideas were explored and the effectiveness of systems in patent translation was shown in evaluations.
- The effectiveness of each idea will be presented by the participants.

Oral Presentations of Participants

Group ID	Organization	Authors	Remarkable Results
BBN	BBN Technologies, USA	Jeff Ma and Spyros Matsoukas	The best system for the CE subtask
NTT-UT	NTT Communication Science Labs., Japan and The University of Tokyo, Japan	Katsuhito Sudoh et al.	The best system for the EJ subtask
NEU	Northeastern University, P.R. China	Tong Xiao et al.	Highly ranked system for the CE subtask
RWTH	RWTH Aachen University, Germany	Minwei Feng et al.	Highly ranked system for the CE subtask
IBM	IBM T. J. Watson Research Center, USA	Young-Suk Lee et al.	Highly ranked system for the CE subtask

Thank you