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ABSTRACT 
We describe a framework incorporating several information 
extraction methods for the NTCIR-9 One Click Access Task. Our 
framework first classifies a given query into pre-defined query 
classes, then extracts information from several Web resources by 
using a method suitable for the query type, and finally aggregates 
pieces of information into a short text. 
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1. INTRODUCTION 
Kyoto University, Department of Informatics, Digital Library 
laboratory (KUIDL) participated in the NTCIR-9 One Click 
Access (1CLICK) task. 1CLICK refers to a task that aims to 
satisfy the user with a single textual output, immediately after the 
user clicks on the SEARCH button [1].  In this task, the system is 
expected to present important pieces of information first, which 
are different for different types of queries. To tackle these 
problems, we incorporated different information extraction (IE) 
techniques for each type of queries. We propose a general 
framework for the 1CLICK task, which first classifies a given 
query into pre-defined query classes, then extracts information 
from several Web resources by using a method suitable for the 
query type, and finally aggregates pieces of information into a 
short text. 

2. FRAMEWORK 
In this section, we describe our framework that consists of query 
classifier, information extractor, and information summarizer. 
The implementation of a query classifier and information 
summarizer is then introduced right after the description of our 
framework, and that of information extractors is described in the 
following sections. 
Our framework is depicted in Figure 1. A query classifier first 
classifies a given query into pre-defined four query types, i.e. 
CELEBRITY, LOCATION, DEFINITION and QA. The classified 
query is processed by an information extractor that is suitable for 
the query type. The information extractor retrieves pieces of 
information from an appropriate data resource, and computes the 
importance score of each piece. The system then passes those 
pieces to an information summarizer for ranking them by 
considering the redundancy of information. Finally, the 
framework outputs ranked information pieces, which are 
shortened to fit either DESKTOP run (500 characters) or 

MOBILE run (140 characters). Note that we used the same 
algorithms for generating our DESKTOP and MOBILE runs.  

2.1 Query Classifier 
First of all, we classified a query into four types by using a multi-
class support vector machine, where we incorporated 8 types of 
features shown in Table 1. 
� Has Wikipedia article: It is a binary feature that indicates 

whether an article about the query exists in Wikipedia1. 
This feature takes 0 or 1. 

� Frequency of parts-of-speech: This feature represents the 
frequency of parts-of-speech (POS) in a query, for instance, 
noun, verb, adverb, and etc. We performed a morphological 
analysis for a given query, and computed the frequency of 
each POS in the query. The feature value of each POS was 
normalized by the number of morphs that appear in the 
query. We used MeCab 2  for Japanese morphological 
analysis. 

� Query unigram: This feature indicates what characters are 
included in a query. We empirically selected 85 single 
characters that were expected to be included especially in 
the name of CEREBRITY and LOCATION queries. For 
example, when a query includes a character such as “o 
( )” or “ko ( ),” the query is likely to be a personal 
name. 

                                                                 
1 Wikipedia, http://ja.wikipedia.org/ 
2 MeCab, http:// mecab.sourceforge.net/ 2 MeCab, http:// mecab.sourceforge.net/ 
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Figure 1. Our framework. 
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� Sentence pattern: In this feature category, there are two 
binary features: one is a feature indicating whether a 
sentence ends with terms such as “ka ( ),” “ha ( ),” or 
“?,” while another is a feature indicating if the query 
includes an interrogative such as “who ( ),” “why (

),” “when ( ),” and “where ( ).” These feature 
values are set to 1 if the query matches those patterns. 

� Number of documents containing expanded query: This 
feature is included for distinguishing CELEBRITY and 
DEFINITION, and is approximated in practice by a hit 
count of Web search results obtained for an expanded 
query. We prepared 15 prefixes such as “san ( ),” “shi 
( ),” and “towa ( ).” The classifier modified the query 
by using the prefixes such as “query-san (query ),” 
“query-sama (query ),” and “query-senshu (query

)” and got the number of Web search results obtained by 
the Yahoo! Japan Web search API3. If the ratio of hit counts 
of the modified queries to that of the original query is high, 
the query might be the name of CELEBRITY. 

� Has travel service: It is a binary feature that indicates 
whether the top 50 search results of a query contain the pre-
defined travel sites. 

� Number of search results: If the number of search results 
is more than 10, this value is 1; otherwise 0.  

� Terms in search results: We heuristically selected 39 
terms that may characteristically appear in search results in 
response to CEREBRITY and LOCATION queries. 
Examples of such terms are “born at,” “proper name” and 
“profile.” If these terms appear in a Web page, the page 
may contain information about a celebrity. Other examples 
are “access,” “minute walk away” and “chome ( ).” 
These terms may be helpful to classify the query into the 
LOCATION class or other classes. We used Yahoo! Japan 
Web search API and counted terms in the returned snippets. 
The value was normalized by the total number of search 
results. 

Training data was created manually including sample queries 
distributed to participants. The number of queries was 400, in 
which each class contained 100 queries. 

2.2 Information Summarizer 
Through information extraction, several sentences that describe a 
given query are obtained. The final output is made by 

                                                                 
3 Yahoo! Japan Web search API, http://developer.yahoo.co.jp/ 

summarizing the sentences. Out method is based on Maximal 
Marginal Relevance (MMR), which is a document summarization 
method proposed by Carbonell and Goldstein [2]. The summarizer 
needs to consider both relevance of each output sentence and 
diversity of the whole output. That is, the output should not 
contain similar sentences even if they are relevant, since the 
output length is strictly limited. 
The relevance of a candidate sentence is computed differently 
according to the query type. Therefore, the input for the 
summarizer is a set of pairs of a sentence and its relevance score. 
An output sentence is decided by the following formula: 

 

Where  is a given sentence collection,  is a score of a 
sentence ,  is a subset of sentences in  that are selected as the 
output,  is a subset of sentences in  that have not yet 
selected as the output, and  gives the similarity 
between sentence  and .  is a controlling parameter. 

This formula selects a sentence for the output. The selected 
sentence is added to , and the formula is calculated again to 
select the next sentence to be included. If  has enough sentences 
for the output, the method stops. 
The similarity between two sentences is defined by a cosine value 
of their feature vectors. A feature vector is generated for each 
sentence. First, morphological analysis is performed to a sentence. 
All nouns, verbs, and adjectives are extracted from the sentence. 
TF weighting or TF-IDF weighting is used to make a feature 
vector. When a sentence does not have any noun, verb, or 
adjective, the vector of the sentence is a zero vector. In this case, 
we define the similarity between the sentence and any other 
sentence as zero. 
Some information extraction methods for CEREBRITY and 
LOCATION give sentences where each of the sentences consists 
of an attribute and its value. For example, a tuple (“Phone”, “075-
753-5385”) is given as a sentence. In this case, words that appear 
in the attribute and ones in the value are treated differently. It 
means that even if the same word appears in both of them, they 
are treated as different dimensions in a generated feature vector.  

3. IE METHODS 
We propose four types of IE methods, which are designed so that 
required information for each query type can be extracted 
effectively. 

3.1 IE for CELEBRITY Query 
For the CELEBRITY type of queries, required information 
indicated in a document of NTCIR-9 1CLICK nugget creation 
policy4 includes date/place of birth, real name, blood type, height, 
and etc. Those kinds of information can be represented as an 
attribute name and attribute value pair, though some of them are 
difficult to represent in such a form (e.g. personal history). Thus, 
we propose a method to extract pairs of attribute name and its 
value, and predict the importance of those pairs. On another front, 
it is difficult to precisely extract pairs of an attribute name and its 
value from unstructured text. For robustly extracting important 
pieces of information from the Web, we also introduce a method 
that extracts important sentences from the text by using a machine 
learning technique. 

                                                                 
4 http://research.microsoft.com/en-us/people/tesakai/1click.aspx 

Table 1. Features used in query classification. 

Feature # of features 
Has Wikipedia article   1 
Frequency of Parts-of-speech 44 
Query unigram 85 
Sentence pattern   2 
Number of documents 
containing expanded query 15 

Has Travel services   1 
Number of search results   1 
Terms in search results 39 
Total 185 
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3.1.1 Attribute Name and Value Pair Extraction 
In this method, we hypothesize that important information about 
the celebrity can be represented by a pair of an attribute and its 
value. For example, a sentence of “His birth date is April 15.” is 
represented as (birth date, April 15), and “Tennis is his hobby.” as 
(hobby, tennis). However, it is not so easy to correctly extract 
attributes and their values from documents, even from a sentence. 
Therefore, we need to detect sources that include as little noise as 
possible. As such a source, we leverage Infobox in Wikipedia. In 
Infobox of a celebrity, attributes and their values are written in a 
well-structured table with a HTML <table> tag. We extract pairs 
of attributes and their values by means of regular expression from 
the table. We then obtain a list of pairs of attributes and their 
values for a celebrity x as following: 

Lx = [(a1, v1), (a2, v2),…,(ak, vk)] 
where ai is an attribute, vi is the value, and k is the number of pairs 
for the celebrity. We regard an attribute and its value written in 
upper rows in Infobox as more important information than those 
in lower rows. That is, the order of pairs in the list is that in 
Infobox. 
We also use sentences in an article of a celebrity x in Wikipedia 
because the amount of information from Infobox is not enough for 
some of celebrities. However, it is difficult to extract attributes 
and values from sentences as discussed earlier. To avoid false 
detection, we use sentences as they are. First, we retrieve all the 
sentences from the article. Then we apply LexRank algorithm to 
the sentences. We explain the details of the LexRank algorithm in 
Section 3.3. The LexRank algorithm returns a set of sentence-
importance pairs. Finally, we apply the MMR algorithm to the 
resultant set and obtain a set of sentence-ranking pairs. 

Rx = {(s1,r1),(s2,r2),…,(sn,rn)} 
We join the sentences for the output of our system based on Lx and 
Rx. From Lx, we make an sentence of “a1 is v1, a2 is v2, …, and ak 
is vk”. Then we append each sentence in Rx in order of ri to the end 
of the sentence generated from Lx.  

3.1.2 Important Sentence Extraction 
In this method, we extract important sentences from Wikipedia 
articles as we believe those articles contain sufficient information 
that meet the need of a celebrity query. We extract twelve features 
from each sentence, and apply a machine learning method to 
predict the importance of those sentences. Before extracting each 
feature from sentences, we divide the whole article into several 
sections according to the list of contents. 
� RelativePosition: The position of a sentence in a document 

implies the importance of the sentence in the document. For 
example, a sentence that appears at the very beginning of a 
document may be the most important sentence in the 
document. Thus, we utilize the position of a sentence in a 
section as a feature, which is defined as follows: 

 

where  is the length of a sentence , n is the total 
number of sentences in each section. 

� ContainsQuery: We include a feature indicating whether 
the current sentence contains the query or not. 

 

� ContainsInfobox: As we described in 3.1.1, we have 
already extracted pairs of attributes and their values from 
Infobox. Here we use a binary feature that indicates whether 
a sentence contains any attribute or value word. 

� MaxCos, MinCos, MaxInnerProd, MinInnerProd,  
AvgCos, AvgInnerProd: In these six methods, we first 
search by a given query through Yahoo! Japan Web search 
API to retrieve the top n (n = 20) search results. Then we 
calculate the cosine, and inner-product between each 
sentence from Wikipedia and each snippet from the search 
results. The maximum, minimum, and average of cosine and 
inner-product values are found for each sentence from 
Wikipedia. We apply normalization after calculating scores 
of all the sentences in a section.  

� ProperNounNum: For each sentence in each section, we 
perform morphological analysis to count how many proper 
nouns are included, and finally apply normalization to get a 
score between 0 and 1. 

� NumberNum: This feature indicates how many numbers 
are included in a sentence, as we think number information 
such as year information is important for some kinds of 
query. 

� ImportantWordNum: We constructed an important word 
list in advance. Those words include “first”, “hometown”, 
“debut”, “get a prize”, “nickname”, “like” and “hate”. Then 
we count how many times those important words appear in 
each sentence and finally apply normalization to get a score 
between 0 and 1. 

In addition, we extract link information, such as the URLs of each 
celebrity’s twitter, blog, official personal page, and so on. 
To predict the importance of each sentence, we built a support 
vector machine regressor. Training data were constructed by test 
queries that were distributed to participants before the formal run. 
We extracted sentences for the test queries and features of those 
sentences. Two assessors evaluated the importance of nuggets for 
each query at 3 scales, and simply used the sum of the two 
assessors’ scores as the importance score of each nugget. We then 
estimated the importance of sentences based on the scored 
nuggets. To automatically estimate the importance score of 
sentences, we proposed a method to estimate the relevance of a 
sentence to a nugget. It is difficult to automatically estimate the 
relevance of text to a nugget, and the difficulty is caused by 
several factors. Nuggets are typically very short, can take different 
forms for the same meaning, and sometimes contain digits and 
symbols, e.g. phone number, date, and address. Thus, we 
estimated the nugget relevance as not binary value but probability 
of the relevance. Moreover, character matching was used instead 
of word matching to calculate the nugget relevance. We defined 
the relevance of a sentence s to a nugget n as follows: 

n

sn

C
CC

sn
�

�),(Rel  

where Cn and Cs is a set of characters contained in the nugget n 
and sentence s, respectively. The nugget relevance occasionally 
achieves score to some extent when a given sentence is long, even 
if the sentence is not relevant to a nugget. Therefore, we set a 
threshold to exclude low nugget relevance, which is usually noise. 
Based on the nugget relevance, we computed the importance of 
each sentence as follows: 
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where Score(n) is the sum of the two assessors’ evaluation scores, 
and N is a set of nuggets for a query. 
Finally, we trained a support vector machine regressor with the 
training data to predict the importance score. We opted to use 
LIVSVM5 with a default parameter setting for this regression. To 
avoid the redundancy of information, we applied the information 
summarizer to sentences with the importance score, and obtained 
ranked sentences. The output of a celebrity query was obtained by 
concatenating top-ranked sentences up to the limit length. 

3.2 IE for LOCATION Query 
For the LOCATION query, the system needs to return information 
that enables the user to physically visit or contact a facility. Thus, 
the system should return facts such as postal and email addresses, 
phone and fax numbers, opening hours, how to access the facility 
by train/bus/car, nearest stations, time required for the travel, 
whether the facility has a car park, its opening hours, and etc., 
according to the NTCIR-9 1CLICK nugget creation policy.  
In this method, we first search for Web pages that may contain 
those kinds of required information. We assume that required 
information for the LOCATION query is described in the official 
Web pages of the facility. For example, when the query is 
“Kanazawa University”, required information is usually described 
in the homepage of Kanazawa University. To find these official 
Web pages, we first use the Yahoo! Japan Web search API, and 
obtain the domain of the top search result in response to the given 
query. We then create new queries by combining the domain and 
query, as well as some pre-defined words such as “access”, 
“address” and “inquiry.” For example, when the query is 
“Kanazawa University”, the domain of the top search result would 
be “www.kanazawa-u.ac.jp”. Then, the method creates queries 
like “site:www.kanazawa-u.ac.jp AND Kanazawa University 
AND access”, and obtains top ranked Web pages by issuing the 
query. In this way, we gather Web pages that are likely to contain 
nuggets that meet the need of a LOCATION query. 
After obtaining the Web pages, we try to extract attribute name 
and attribute value pairs from these pages, and adopt the following 
three approaches: 
� Regular expression based extraction: Some attributes 

such as postal addresses, phone and fax numbers, email 
addresses tend to be represented as some typical forms. For 
example, phone numbers can be represented as “TEL: ddd-
dddd-dddd” (d means a digit number.) Moreover, these 
attributes are always important independently of the 
queries. Thus, we manually prepared the regular 
expressions to extract those attributes. We use this approach 
for postal addresses, email addresses, phone and fax 
numbers. 

� Sentence based extraction:  Information on how to access 
the facility is represented as a sentence. Those kinds of 
information contain some typical words such as station 
names, distances, times. We define an important word list 
for access information in advance. Therefore, we create the 
classifier that classifies whether a sentence is access 
information by using the support vector machine to extract 
access information. We prepared the important words like 
“km”, “minutes”, “go straight”, “taxi”, “buss” and “JR” 

                                                                 
5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

and some features such as the length of a sentence to 
classify each sentence in the Web pages. 

� Table based extraction: Some attributes such as an 
opening hour of library and check-in and check-out time of 
a hotel are query dependent, thus we cannot prepare regular 
expressions or important words for extracting those 
attributes in advance. On the other hand, those attributes are 
likely to be described in a tabular form in the Web pages. In 
this approach, we find tables in the Web pages by analyzing 
their DOM structures and extract attribute names and their 
values from the tables. 

Finally, we aggregate the obtained attributes. To assign scores to 
the attributes, we heuristically set weights for each attribute. After 
assigning scores to the attributes, the method passed them to the 
information summarizer and obtains summarized X-strings from 
it.  

3.3 IE for DEFINITION Query 
There are various ways to detect the definition of a term: 
searching for dictionaries available on the Web, summarizing a 
Wikipedia article about the term. In this paper, we focus on the 
phrase of “towa ( )” in Japanese. In Japanese, most sentences 
that have a form of “x  …” contain the definition of term x.  

In this method, we first receive a query x and search with a new 
query “x ”. We then obtain the top 200 Web search results for 
each query through Yahoo! Japan Web search API. From each 
Web page in the search results, we extract sentences that include a 
phrase of “x ”.  We denote Sx = {s1, s2, …, sn} as a set of 
extracted sentences (n means the number of extracted sentences 
from the all Web pages in the search results). To calculate the 
importance of each sentence, we apply the LexRank [3] algorithm 
to the set of sentences Sx . Letting p = (p1, p2, …, pn) T be a vector 
that represents the importance of each sentence in Sx, the LexRank 
algorithm detects the importance of each sentence by the 
following recursive calculation like the PageRank algorithm: 

p = [dU + (1-d)B]Tp 
where U is a  square matrix whose elements are 1/n, B is a 
adjacency matrix of the cosine similarity between two sentences, 
and d is damping factor. Intuitively, the LexRank algorithm 
assigns a high score to a sentence that is similar to many other 
sentences. Therefore, sentences that are likely to be written in 
many Web pages obtain higher scores. 
After applying the LexRank algorithm, we obtain a set of 
sentence-value pairs: 

Tx={(s1,p1),(s2,p2),…,(sn,pn)} 
where pi is the ith value of p. When we output some sentences, it is 
better to have high diversity in the output. In the sentence-value 
pairs Tx, sentences with high values are similar to each other, thus 
it is inappropriate to select sentences in order of the value. Finally, 
we passed the set Tx to the information summarizer and 
summarized the sentences by using the MMR algorithm.  

3.4 IE for QA Query 
We opted to use Yahoo! Japan Chiebukuro 6  as a main data 
resource for the QA type of queries, as this Q&A service contains 
over 70 million questions asked in Japanese, and might be able to 
cover various kinds of questions. A basic idea is that important 

                                                                 
6 http://chiebukuro.yahoo.co.jp/ 
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information for a QA type query is a set of answers for the query, 
which were posted for questions most similar to the query. We 
used Yahoo! Japan Chiebukuro Web API to access the Q&A data, 
retrieved QA pairs relevant to a given query, and extracted 
answers as important information from those pairs. To avoid 
confusion, we shall refer to a given query as original query, and a 
query generated to retrieve Q&A data as search query in this 
subsection. 
Our IE method for the QA query type first generates search 
queries from an original query for retrieving QA pairs. Our 
method is to extract nouns, adjectives and adverbs from an 
original query. The method is quite simple but it works well 
because the dictionary is powerful. Our dictionary contains all of 
the Japanese Wikipedia entries and nouns, adjectives and adverbs 
from IPAdic legacy dictionary7. The number of terms is more than 
1.3 million. Term extraction is performed according to the 
longest-match principle. In addition to nouns, adjectives and 
adverbs that might be effective for QA pair retrieval, we also 
extracted words specific to the question, which include “what,” 
“where,” and “who” (“nani ( ),” “doko ( ),” and “dare (

)” in Japanese). Having extracted terms for QA pair retrieval, 
we generated a set of search queries by taking power sets of those 
terms.  
QA pairs were exhaustively retrieved by using search queries 
generated from the original query, and scored based on the 
similarity between their questions and the original query. As we 
wanted to take into account sentence relevance rather than bag-of-
words relevance, we extracted unigrams as well as bigrams and 
trigrams from all the retrieved questions, and computed the 
question similarity between an original query q and question qi as 
follows: 

),(Sim),(Sim
1

ik

N

k
ki qqwqq �

�

�  

where N was set to 3, and wk is the weight for k-gram similarity. 
Simk was defined as follows: 

qk

qkqk
ik W

WW
qq i

,

,,),(Sim
�

�  

where Wk,q and Wk,qi are sets of k-grams that are included in the 
original query q and a question qi, respectively. Thus, the question 
similarity indicates the overlap between two questions in terms of 
unigram, bigram, and trigram. 
Yahoo! Japan Chiebukuro provides an opportunity that a question 
asker can select one of the posted answers as the best answer. We 
leveraged this feedback system to identify the most relevant 
answer to a question, and basically output the best answer for the 
most similar question to an original query. However, this method 
includes a risk that the most similar question to an original query 
is not always relevant to the query. Thus, we extracted best 
answers to the most similar n questions to reduce the risk, and 
concatenated the first m words of those answers to produce X-
string. In case that there is no best answer provided, we computed 
the k-gram similarity between an original query and answers, and 
then selected the most similar answer to the query as a pseudo 
best answer. 

                                                                 
7 http://sourceforge.jp/projects/ipadic/ 

4. EVALUATION RESULT 
We describe the setting for formal run, and our evaluation results 
in this section.  
Four formal runs were submitted: two runs for DESKTOP run, 
and two runs for MOBILE run. We utilized two different methods 
for CELEBLITY queries, which are described in Section 3.1.1 and 
3.1.2, respectively. For the other queries, run results were 
produced using exactly the same method across four runs. 
Obtaining output text for each query, we just shortened the text so 
that the length of the output meets the requirement for each run, 
i.e. 500 characters for DESKTOP run, and 140 characters for 
MOBILE run. (Note that we did not use any methods specific to 
types of runs.) Overall, we submitted the following four formal 
runs: 1) KUIDL-D-OPEN-1 (DESKTOP run using the method 
described in Section 3.1.1 for CELEBLITY queries), 2) KUIDL-
D-OPEN-2 (DESKTOP run using the method in Section 3.1.2), 3) 
KUIDL-M-OPEN-1 (MOBILE run using the method in Section 
3.1.1), and 4) KUIDL-M-OPEN-2 (MOBILE run using the 
method in Section 3.1.2). 
We first introduce the accuracy of our query classifier described in 
Section 2.1. Sixty queries were distributed to participants for the 
formal run, and were manually labeled as CELEBLITY, 
LOCATION, DEFINITION, or QA for this evaluation. The result 
of query classification is shown in Table 2.  
The accuracy is 0.93, which is defined as the total number of true 
positive queries divided by the total number of queries. The four 
false positive queries (“GACKT,” “Shinsuke Shimada,” 
“Kanazawa University” and “the three national duties in Japan”) 
were incorrectly classified into the DEFINITION type. The query 
“GACKT” was misclassified probably because our training data 
contained typical Japanese person names for the CELEBLITY 
type, but do not include plenty of special names such as English 
names and stage names, which are sometimes used especially for 
celebrities. We manually classified the query “the three national 
duties in Japan” into the QA type, while this query can also be 
considered as a DEFINITION type query.  Thus, this 
misclassification might not negatively affect the overall 
performance. On the whole, our query classifier achieved quite 
high accuracy for the four query types. 
Table 3 shows an overall result of our formal runs, where 
parenthetical value indicates score computed based on the union 
between two assessors’ nugget matches, while non-parenthetical 
value indicates score based on the intersection (cf. [1]). Results 
for four runs are sorted by their S-measure score. As the runs 
KUIDL-D-OPEN-1 and KUIDL-D-OPEN-2 are different only in 
terms of a method for CELEBLITY queries, this result suggests 
that a method based on extraction of attribute name and value 
pairs slightly outperformed one based on extraction of sentences 
in the DESKTOP run. On the other hand, in the MOBILE run, the 
method based on sentence extraction achieved as high weighted 
recall and S-measure as that based on attribute name and value 
pair extraction. The difference between the two types of runs may 
indicate that the first 140 characters achieved almost the same 

Table 2. Result of query classification. 

 CELEBLITY LOCATION DEFINITION QA 

True 15 15 15 15 
True positive 13 14 15 14 
False positive 0 0 4 0 
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quality in terms of weighted recall and S-measure, while the rest 
of output text by the method based on attribute name and value 
pair extraction was superior to that based on sentence extraction. 
(Recall that the first 140 characters of our DESKTOP and 
MOBILE runs contained exactly the same output text.) 
Table 4 shows evaluation results of KUIDL-D-OPEN-1 for each 
query type. Overall, DEFINITION and QA types of queries 
obtained higher weighted recall and S-measure than CELEBLITY 
and LOCATION types. In general, DEFINITION and QA types of 
queries had much fewer nuggets than CELEBLITY and 
LOCATION types, and this probably made DEFINITION and QA 
queries easy to achieve high performance. The QA type of queries 
obtained the best result among the four types. Using a domain-
specific corpus (i.e. Yahoo! Japan Chiebukuro) might lead to the 
reasonable performance. 
To further investigate our evaluation result, we show S-measure of 
the KUIDL-D-OPEN-1 result for each query in Figure 2. Overall, 
our method achieved quite high S-measure for some 
DEFINITION and QA queries (e.g. queries “Guguru,” and 

“Which is taller, Tsutenkaku or Utsunomiya Tower?” indicated in 
Figure 2), while it failed to output any relevant information for 
some LOCATION and QA queries (e.g. queries “Kanazawa 
University,” and “Where is Yumura-onsen” indicated in Figure 2). 
A possible explanation for high S-measure for some QA queries is 
that we utilized a domain-specific site (i.e. a community QA site) 
to extract information, where in fact some queries were asked in 
the site, and were answered with most of the nuggets for those 
queries. On the other hand, methods for LOCATION and QA 
queries might sometimes fail to obtain any relevant information 
probably because a site used as a data source did not contain any 
required nuggets. (Recall that we focused mainly on official Web 
pages to extract information for LOCATION queries.) In our 
failure analysis on LOCATION queries, we found that some 
queries referred to multiple locations, and our method failed to 
identify one intended to be retrieved. Such an object identification 
problem was not observed for most of the CELEBLITY queries, 
and our method stably output relevant information to some extent. 
Our method for DEFINITION queries also achieved stable results 
for most of the queries, and quite high S-measure for some 
queries. 

5. CONCLUSION 
In this paper, we proposed a general framework for the 1CLICK 
task, which first classifies a given query into pre-defined query 
classes, then extracts information from several Web resources by 
using a method suitable for the query type, and finally aggregates 
pieces of information into a short text. We utilized difference 
types of IE methods for CELEBLITY, LOCATION, 
DEFINITION, and QA queries within our framework.  
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Figure 2. S-measure of a KUIDL-D-OPEN-1 result for each query. 

Table 3. Overall result of our formal runs. 

 Weighted recall S-measure 

KUIDL-D-OPEN-1 0.346 (0.423) 0.313 (0.381) 

KUIDL-D-OPEN-2 0.341 (0.407) 0.290 (0.346) 

KUIDL-M-OPEN-2 0.214 (0.262) 0.221 (0.273) 

KUIDL-M-OPEN-1 0.204 (0.264) 0.219 (0.283) 
 

Table 4. Evaluation results of KUIDL-D-OPEN-1 for each 
query type. 

 Weighted recall S-measure 

CELEBLIYY 0.159 (0.191) 0.226 (0.273) 

LOCATIOIN 0.151 (0.177) 0.261 (0.292) 

DEFINITION 0.406 (0.460) 0.321 (0.354) 

QA 0.644 (0.750) 0.552 (0.635) 
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