
Information Extraction based Approach
for the NTCIR-9 1CLICK Task

ABSTRACT
We describe a framework incorporating several information
extraction methods for the NTCIR-9 One Click Access Task. Our
framework first classifies a given query into pre-defined query
classes, then extracts information from several Web resources by
using a method suitable for the query type, and finally aggregates
pieces of information into a short text.

Keywords
Information extraction, diversification, query classification

Team Name: KUIDL
Language: Japanese
External Resources Used: Yahoo! Japan Web search, Yahoo!
Chiebukuro, and Japanese Wikipedia

1. INTRODUCTION
Kyoto University, Department of Informatics, Digital Library
laboratory (KUIDL) participated in the NTCIR-9 One Click
Access (1CLICK) task. 1CLICK refers to a task that aims to
satisfy the user with a single textual output, immediately after the
user clicks on the SEARCH button [1]. In this task, the system is
expected to present important pieces of information first, which
are different for different types of queries. To tackle these
problems, we incorporated different information extraction (IE)
techniques for each type of queries. We propose a general
framework for the 1CLICK task, which first classifies a given
query into pre-defined query classes, then extracts information
from several Web resources by using a method suitable for the
query type, and finally aggregates pieces of information into a
short text.

2. FRAMEWORK
In this section, we describe our framework that consists of query
classifier, information extractor, and information summarizer.
The implementation of a query classifier and information
summarizer is then introduced right after the description of our
framework, and that of information extractors is described in the
following sections.
Our framework is depicted in Figure 1. A query classifier first
classifies a given query into pre-defined four query types, i.e.
CELEBRITY, LOCATION, DEFINITION and QA. The classified
query is processed by an information extractor that is suitable for
the query type. The information extractor retrieves pieces of
information from an appropriate data resource, and computes the
importance score of each piece. The system then passes those
pieces to an information summarizer for ranking them by
considering the redundancy of information. Finally, the
framework outputs ranked information pieces, which are
shortened to fit either DESKTOP run (500 characters) or

MOBILE run (140 characters). Note that we used the same
algorithms for generating our DESKTOP and MOBILE runs.

2.1 Query Classifier
First of all, we classified a query into four types by using a multi-
class support vector machine, where we incorporated 8 types of
features shown in Table 1.
� Has Wikipedia article: It is a binary feature that indicates

whether an article about the query exists in Wikipedia1.
This feature takes 0 or 1.

� Frequency of parts-of-speech: This feature represents the
frequency of parts-of-speech (POS) in a query, for instance,
noun, verb, adverb, and etc. We performed a morphological
analysis for a given query, and computed the frequency of
each POS in the query. The feature value of each POS was
normalized by the number of morphs that appear in the
query. We used MeCab 2 for Japanese morphological
analysis.

� Query unigram: This feature indicates what characters are
included in a query. We empirically selected 85 single
characters that were expected to be included especially in
the name of CEREBRITY and LOCATION queries. For
example, when a query includes a character such as “o
()” or “ko (),” the query is likely to be a personal
name.

1 Wikipedia, http://ja.wikipedia.org/
2 MeCab, http:// mecab.sourceforge.net/ 2 MeCab, http:// mecab.sourceforge.net/

ABSTRACT
We describe a framework incorporating several information

Makoto P. Kato, Meng Zhao, Kosetsu Tsukuda, Yoshiyuki Shoji,
Takehiro Yamamoto, Hiroaki Ohshima, Katsumi Tanaka

Department of Social Informatics, Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo, Kyoto 606-8501, Japan

{kato, zhao, tsukuda, shoji, tyamamot, ohshima, tanaka}@dl.kuis.kyoto-u.ac.jp

Figure 1. Our framework.

Proceedings of NTCIR-9 Workshop Meeting, December 6-9, 2011, Tokyo, Japan

― 202 ―

� Sentence pattern: In this feature category, there are two
binary features: one is a feature indicating whether a
sentence ends with terms such as “ka (),” “ha (),” or
“?,” while another is a feature indicating if the query
includes an interrogative such as “who (),” “why (

),” “when (),” and “where ().” These feature
values are set to 1 if the query matches those patterns.

� Number of documents containing expanded query: This
feature is included for distinguishing CELEBRITY and
DEFINITION, and is approximated in practice by a hit
count of Web search results obtained for an expanded
query. We prepared 15 prefixes such as “san (),” “shi
(),” and “towa ().” The classifier modified the query
by using the prefixes such as “query-san (query),”
“query-sama (query),” and “query-senshu (query

)” and got the number of Web search results obtained by
the Yahoo! Japan Web search API3. If the ratio of hit counts
of the modified queries to that of the original query is high,
the query might be the name of CELEBRITY.

� Has travel service: It is a binary feature that indicates
whether the top 50 search results of a query contain the pre-
defined travel sites.

� Number of search results: If the number of search results
is more than 10, this value is 1; otherwise 0.

� Terms in search results: We heuristically selected 39
terms that may characteristically appear in search results in
response to CEREBRITY and LOCATION queries.
Examples of such terms are “born at,” “proper name” and
“profile.” If these terms appear in a Web page, the page
may contain information about a celebrity. Other examples
are “access,” “minute walk away” and “chome ().”
These terms may be helpful to classify the query into the
LOCATION class or other classes. We used Yahoo! Japan
Web search API and counted terms in the returned snippets.
The value was normalized by the total number of search
results.

Training data was created manually including sample queries
distributed to participants. The number of queries was 400, in
which each class contained 100 queries.

2.2 Information Summarizer
Through information extraction, several sentences that describe a
given query are obtained. The final output is made by

3 Yahoo! Japan Web search API, http://developer.yahoo.co.jp/

summarizing the sentences. Out method is based on Maximal
Marginal Relevance (MMR), which is a document summarization
method proposed by Carbonell and Goldstein [2]. The summarizer
needs to consider both relevance of each output sentence and
diversity of the whole output. That is, the output should not
contain similar sentences even if they are relevant, since the
output length is strictly limited.
The relevance of a candidate sentence is computed differently
according to the query type. Therefore, the input for the
summarizer is a set of pairs of a sentence and its relevance score.
An output sentence is decided by the following formula:

Where is a given sentence collection, is a score of a
sentence , is a subset of sentences in that are selected as the
output, is a subset of sentences in that have not yet
selected as the output, and gives the similarity
between sentence and . is a controlling parameter.

This formula selects a sentence for the output. The selected
sentence is added to , and the formula is calculated again to
select the next sentence to be included. If has enough sentences
for the output, the method stops.
The similarity between two sentences is defined by a cosine value
of their feature vectors. A feature vector is generated for each
sentence. First, morphological analysis is performed to a sentence.
All nouns, verbs, and adjectives are extracted from the sentence.
TF weighting or TF-IDF weighting is used to make a feature
vector. When a sentence does not have any noun, verb, or
adjective, the vector of the sentence is a zero vector. In this case,
we define the similarity between the sentence and any other
sentence as zero.
Some information extraction methods for CEREBRITY and
LOCATION give sentences where each of the sentences consists
of an attribute and its value. For example, a tuple (“Phone”, “075-
753-5385”) is given as a sentence. In this case, words that appear
in the attribute and ones in the value are treated differently. It
means that even if the same word appears in both of them, they
are treated as different dimensions in a generated feature vector.

3. IE METHODS
We propose four types of IE methods, which are designed so that
required information for each query type can be extracted
effectively.

3.1 IE for CELEBRITY Query
For the CELEBRITY type of queries, required information
indicated in a document of NTCIR-9 1CLICK nugget creation
policy4 includes date/place of birth, real name, blood type, height,
and etc. Those kinds of information can be represented as an
attribute name and attribute value pair, though some of them are
difficult to represent in such a form (e.g. personal history). Thus,
we propose a method to extract pairs of attribute name and its
value, and predict the importance of those pairs. On another front,
it is difficult to precisely extract pairs of an attribute name and its
value from unstructured text. For robustly extracting important
pieces of information from the Web, we also introduce a method
that extracts important sentences from the text by using a machine
learning technique.

4 http://research.microsoft.com/en-us/people/tesakai/1click.aspx

Table 1. Features used in query classification.

Feature # of features
Has Wikipedia article 1
Frequency of Parts-of-speech 44
Query unigram 85
Sentence pattern 2
Number of documents
containing expanded query 15

Has Travel services 1
Number of search results 1
Terms in search results 39
Total 185

Proceedings of NTCIR-9 Workshop Meeting, December 6-9, 2011, Tokyo, Japan

― 203 ―

3.1.1 Attribute Name and Value Pair Extraction
In this method, we hypothesize that important information about
the celebrity can be represented by a pair of an attribute and its
value. For example, a sentence of “His birth date is April 15.” is
represented as (birth date, April 15), and “Tennis is his hobby.” as
(hobby, tennis). However, it is not so easy to correctly extract
attributes and their values from documents, even from a sentence.
Therefore, we need to detect sources that include as little noise as
possible. As such a source, we leverage Infobox in Wikipedia. In
Infobox of a celebrity, attributes and their values are written in a
well-structured table with a HTML <table> tag. We extract pairs
of attributes and their values by means of regular expression from
the table. We then obtain a list of pairs of attributes and their
values for a celebrity x as following:

Lx = [(a1, v1), (a2, v2),…,(ak, vk)]
where ai is an attribute, vi is the value, and k is the number of pairs
for the celebrity. We regard an attribute and its value written in
upper rows in Infobox as more important information than those
in lower rows. That is, the order of pairs in the list is that in
Infobox.
We also use sentences in an article of a celebrity x in Wikipedia
because the amount of information from Infobox is not enough for
some of celebrities. However, it is difficult to extract attributes
and values from sentences as discussed earlier. To avoid false
detection, we use sentences as they are. First, we retrieve all the
sentences from the article. Then we apply LexRank algorithm to
the sentences. We explain the details of the LexRank algorithm in
Section 3.3. The LexRank algorithm returns a set of sentence-
importance pairs. Finally, we apply the MMR algorithm to the
resultant set and obtain a set of sentence-ranking pairs.

Rx = {(s1,r1),(s2,r2),…,(sn,rn)}
We join the sentences for the output of our system based on Lx and
Rx. From Lx, we make an sentence of “a1 is v1, a2 is v2, …, and ak
is vk”. Then we append each sentence in Rx in order of ri to the end
of the sentence generated from Lx.

3.1.2 Important Sentence Extraction
In this method, we extract important sentences from Wikipedia
articles as we believe those articles contain sufficient information
that meet the need of a celebrity query. We extract twelve features
from each sentence, and apply a machine learning method to
predict the importance of those sentences. Before extracting each
feature from sentences, we divide the whole article into several
sections according to the list of contents.
� RelativePosition: The position of a sentence in a document

implies the importance of the sentence in the document. For
example, a sentence that appears at the very beginning of a
document may be the most important sentence in the
document. Thus, we utilize the position of a sentence in a
section as a feature, which is defined as follows:

where is the length of a sentence , n is the total
number of sentences in each section.

� ContainsQuery: We include a feature indicating whether
the current sentence contains the query or not.

� ContainsInfobox: As we described in 3.1.1, we have
already extracted pairs of attributes and their values from
Infobox. Here we use a binary feature that indicates whether
a sentence contains any attribute or value word.

� MaxCos, MinCos, MaxInnerProd, MinInnerProd,
AvgCos, AvgInnerProd: In these six methods, we first
search by a given query through Yahoo! Japan Web search
API to retrieve the top n (n = 20) search results. Then we
calculate the cosine, and inner-product between each
sentence from Wikipedia and each snippet from the search
results. The maximum, minimum, and average of cosine and
inner-product values are found for each sentence from
Wikipedia. We apply normalization after calculating scores
of all the sentences in a section.

� ProperNounNum: For each sentence in each section, we
perform morphological analysis to count how many proper
nouns are included, and finally apply normalization to get a
score between 0 and 1.

� NumberNum: This feature indicates how many numbers
are included in a sentence, as we think number information
such as year information is important for some kinds of
query.

� ImportantWordNum: We constructed an important word
list in advance. Those words include “first”, “hometown”,
“debut”, “get a prize”, “nickname”, “like” and “hate”. Then
we count how many times those important words appear in
each sentence and finally apply normalization to get a score
between 0 and 1.

In addition, we extract link information, such as the URLs of each
celebrity’s twitter, blog, official personal page, and so on.
To predict the importance of each sentence, we built a support
vector machine regressor. Training data were constructed by test
queries that were distributed to participants before the formal run.
We extracted sentences for the test queries and features of those
sentences. Two assessors evaluated the importance of nuggets for
each query at 3 scales, and simply used the sum of the two
assessors’ scores as the importance score of each nugget. We then
estimated the importance of sentences based on the scored
nuggets. To automatically estimate the importance score of
sentences, we proposed a method to estimate the relevance of a
sentence to a nugget. It is difficult to automatically estimate the
relevance of text to a nugget, and the difficulty is caused by
several factors. Nuggets are typically very short, can take different
forms for the same meaning, and sometimes contain digits and
symbols, e.g. phone number, date, and address. Thus, we
estimated the nugget relevance as not binary value but probability
of the relevance. Moreover, character matching was used instead
of word matching to calculate the nugget relevance. We defined
the relevance of a sentence s to a nugget n as follows:

n

sn

C
CC

sn
�

�),(Rel

where Cn and Cs is a set of characters contained in the nugget n
and sentence s, respectively. The nugget relevance occasionally
achieves score to some extent when a given sentence is long, even
if the sentence is not relevant to a nugget. Therefore, we set a
threshold to exclude low nugget relevance, which is usually noise.
Based on the nugget relevance, we computed the importance of
each sentence as follows:

Proceedings of NTCIR-9 Workshop Meeting, December 6-9, 2011, Tokyo, Japan

― 204 ―

�
�

�
Nn

snns),(Rel)(Score)(Score

where Score(n) is the sum of the two assessors’ evaluation scores,
and N is a set of nuggets for a query.
Finally, we trained a support vector machine regressor with the
training data to predict the importance score. We opted to use
LIVSVM5 with a default parameter setting for this regression. To
avoid the redundancy of information, we applied the information
summarizer to sentences with the importance score, and obtained
ranked sentences. The output of a celebrity query was obtained by
concatenating top-ranked sentences up to the limit length.

3.2 IE for LOCATION Query
For the LOCATION query, the system needs to return information
that enables the user to physically visit or contact a facility. Thus,
the system should return facts such as postal and email addresses,
phone and fax numbers, opening hours, how to access the facility
by train/bus/car, nearest stations, time required for the travel,
whether the facility has a car park, its opening hours, and etc.,
according to the NTCIR-9 1CLICK nugget creation policy.
In this method, we first search for Web pages that may contain
those kinds of required information. We assume that required
information for the LOCATION query is described in the official
Web pages of the facility. For example, when the query is
“Kanazawa University”, required information is usually described
in the homepage of Kanazawa University. To find these official
Web pages, we first use the Yahoo! Japan Web search API, and
obtain the domain of the top search result in response to the given
query. We then create new queries by combining the domain and
query, as well as some pre-defined words such as “access”,
“address” and “inquiry.” For example, when the query is
“Kanazawa University”, the domain of the top search result would
be “www.kanazawa-u.ac.jp”. Then, the method creates queries
like “site:www.kanazawa-u.ac.jp AND Kanazawa University
AND access”, and obtains top ranked Web pages by issuing the
query. In this way, we gather Web pages that are likely to contain
nuggets that meet the need of a LOCATION query.
After obtaining the Web pages, we try to extract attribute name
and attribute value pairs from these pages, and adopt the following
three approaches:
� Regular expression based extraction: Some attributes

such as postal addresses, phone and fax numbers, email
addresses tend to be represented as some typical forms. For
example, phone numbers can be represented as “TEL: ddd-
dddd-dddd” (d means a digit number.) Moreover, these
attributes are always important independently of the
queries. Thus, we manually prepared the regular
expressions to extract those attributes. We use this approach
for postal addresses, email addresses, phone and fax
numbers.

� Sentence based extraction: Information on how to access
the facility is represented as a sentence. Those kinds of
information contain some typical words such as station
names, distances, times. We define an important word list
for access information in advance. Therefore, we create the
classifier that classifies whether a sentence is access
information by using the support vector machine to extract
access information. We prepared the important words like
“km”, “minutes”, “go straight”, “taxi”, “buss” and “JR”

5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

and some features such as the length of a sentence to
classify each sentence in the Web pages.

� Table based extraction: Some attributes such as an
opening hour of library and check-in and check-out time of
a hotel are query dependent, thus we cannot prepare regular
expressions or important words for extracting those
attributes in advance. On the other hand, those attributes are
likely to be described in a tabular form in the Web pages. In
this approach, we find tables in the Web pages by analyzing
their DOM structures and extract attribute names and their
values from the tables.

Finally, we aggregate the obtained attributes. To assign scores to
the attributes, we heuristically set weights for each attribute. After
assigning scores to the attributes, the method passed them to the
information summarizer and obtains summarized X-strings from
it.

3.3 IE for DEFINITION Query
There are various ways to detect the definition of a term:
searching for dictionaries available on the Web, summarizing a
Wikipedia article about the term. In this paper, we focus on the
phrase of “towa ()” in Japanese. In Japanese, most sentences
that have a form of “x …” contain the definition of term x.

In this method, we first receive a query x and search with a new
query “x ”. We then obtain the top 200 Web search results for
each query through Yahoo! Japan Web search API. From each
Web page in the search results, we extract sentences that include a
phrase of “x ”. We denote Sx = {s1, s2, …, sn} as a set of
extracted sentences (n means the number of extracted sentences
from the all Web pages in the search results). To calculate the
importance of each sentence, we apply the LexRank [3] algorithm
to the set of sentences Sx . Letting p = (p1, p2, …, pn) T be a vector
that represents the importance of each sentence in Sx, the LexRank
algorithm detects the importance of each sentence by the
following recursive calculation like the PageRank algorithm:

p = [dU + (1-d)B]Tp
where U is a square matrix whose elements are 1/n, B is a
adjacency matrix of the cosine similarity between two sentences,
and d is damping factor. Intuitively, the LexRank algorithm
assigns a high score to a sentence that is similar to many other
sentences. Therefore, sentences that are likely to be written in
many Web pages obtain higher scores.
After applying the LexRank algorithm, we obtain a set of
sentence-value pairs:

Tx={(s1,p1),(s2,p2),…,(sn,pn)}
where pi is the ith value of p. When we output some sentences, it is
better to have high diversity in the output. In the sentence-value
pairs Tx, sentences with high values are similar to each other, thus
it is inappropriate to select sentences in order of the value. Finally,
we passed the set Tx to the information summarizer and
summarized the sentences by using the MMR algorithm.

3.4 IE for QA Query
We opted to use Yahoo! Japan Chiebukuro 6 as a main data
resource for the QA type of queries, as this Q&A service contains
over 70 million questions asked in Japanese, and might be able to
cover various kinds of questions. A basic idea is that important

6 http://chiebukuro.yahoo.co.jp/

Proceedings of NTCIR-9 Workshop Meeting, December 6-9, 2011, Tokyo, Japan

― 205 ―

information for a QA type query is a set of answers for the query,
which were posted for questions most similar to the query. We
used Yahoo! Japan Chiebukuro Web API to access the Q&A data,
retrieved QA pairs relevant to a given query, and extracted
answers as important information from those pairs. To avoid
confusion, we shall refer to a given query as original query, and a
query generated to retrieve Q&A data as search query in this
subsection.
Our IE method for the QA query type first generates search
queries from an original query for retrieving QA pairs. Our
method is to extract nouns, adjectives and adverbs from an
original query. The method is quite simple but it works well
because the dictionary is powerful. Our dictionary contains all of
the Japanese Wikipedia entries and nouns, adjectives and adverbs
from IPAdic legacy dictionary7. The number of terms is more than
1.3 million. Term extraction is performed according to the
longest-match principle. In addition to nouns, adjectives and
adverbs that might be effective for QA pair retrieval, we also
extracted words specific to the question, which include “what,”
“where,” and “who” (“nani (),” “doko (),” and “dare (

)” in Japanese). Having extracted terms for QA pair retrieval,
we generated a set of search queries by taking power sets of those
terms.
QA pairs were exhaustively retrieved by using search queries
generated from the original query, and scored based on the
similarity between their questions and the original query. As we
wanted to take into account sentence relevance rather than bag-of-
words relevance, we extracted unigrams as well as bigrams and
trigrams from all the retrieved questions, and computed the
question similarity between an original query q and question qi as
follows:

),(Sim),(Sim
1

ik

N

k
ki qqwqq �

�

�

where N was set to 3, and wk is the weight for k-gram similarity.
Simk was defined as follows:

qk

qkqk
ik W

WW
qq i

,

,,),(Sim
�

�

where Wk,q and Wk,qi are sets of k-grams that are included in the
original query q and a question qi, respectively. Thus, the question
similarity indicates the overlap between two questions in terms of
unigram, bigram, and trigram.
Yahoo! Japan Chiebukuro provides an opportunity that a question
asker can select one of the posted answers as the best answer. We
leveraged this feedback system to identify the most relevant
answer to a question, and basically output the best answer for the
most similar question to an original query. However, this method
includes a risk that the most similar question to an original query
is not always relevant to the query. Thus, we extracted best
answers to the most similar n questions to reduce the risk, and
concatenated the first m words of those answers to produce X-
string. In case that there is no best answer provided, we computed
the k-gram similarity between an original query and answers, and
then selected the most similar answer to the query as a pseudo
best answer.

7 http://sourceforge.jp/projects/ipadic/

4. EVALUATION RESULT
We describe the setting for formal run, and our evaluation results
in this section.
Four formal runs were submitted: two runs for DESKTOP run,
and two runs for MOBILE run. We utilized two different methods
for CELEBLITY queries, which are described in Section 3.1.1 and
3.1.2, respectively. For the other queries, run results were
produced using exactly the same method across four runs.
Obtaining output text for each query, we just shortened the text so
that the length of the output meets the requirement for each run,
i.e. 500 characters for DESKTOP run, and 140 characters for
MOBILE run. (Note that we did not use any methods specific to
types of runs.) Overall, we submitted the following four formal
runs: 1) KUIDL-D-OPEN-1 (DESKTOP run using the method
described in Section 3.1.1 for CELEBLITY queries), 2) KUIDL-
D-OPEN-2 (DESKTOP run using the method in Section 3.1.2), 3)
KUIDL-M-OPEN-1 (MOBILE run using the method in Section
3.1.1), and 4) KUIDL-M-OPEN-2 (MOBILE run using the
method in Section 3.1.2).
We first introduce the accuracy of our query classifier described in
Section 2.1. Sixty queries were distributed to participants for the
formal run, and were manually labeled as CELEBLITY,
LOCATION, DEFINITION, or QA for this evaluation. The result
of query classification is shown in Table 2.
The accuracy is 0.93, which is defined as the total number of true
positive queries divided by the total number of queries. The four
false positive queries (“GACKT,” “Shinsuke Shimada,”
“Kanazawa University” and “the three national duties in Japan”)
were incorrectly classified into the DEFINITION type. The query
“GACKT” was misclassified probably because our training data
contained typical Japanese person names for the CELEBLITY
type, but do not include plenty of special names such as English
names and stage names, which are sometimes used especially for
celebrities. We manually classified the query “the three national
duties in Japan” into the QA type, while this query can also be
considered as a DEFINITION type query. Thus, this
misclassification might not negatively affect the overall
performance. On the whole, our query classifier achieved quite
high accuracy for the four query types.
Table 3 shows an overall result of our formal runs, where
parenthetical value indicates score computed based on the union
between two assessors’ nugget matches, while non-parenthetical
value indicates score based on the intersection (cf. [1]). Results
for four runs are sorted by their S-measure score. As the runs
KUIDL-D-OPEN-1 and KUIDL-D-OPEN-2 are different only in
terms of a method for CELEBLITY queries, this result suggests
that a method based on extraction of attribute name and value
pairs slightly outperformed one based on extraction of sentences
in the DESKTOP run. On the other hand, in the MOBILE run, the
method based on sentence extraction achieved as high weighted
recall and S-measure as that based on attribute name and value
pair extraction. The difference between the two types of runs may
indicate that the first 140 characters achieved almost the same

Table 2. Result of query classification.

 CELEBLITY LOCATION DEFINITION QA

True 15 15 15 15
True positive 13 14 15 14
False positive 0 0 4 0

Proceedings of NTCIR-9 Workshop Meeting, December 6-9, 2011, Tokyo, Japan

― 206 ―

quality in terms of weighted recall and S-measure, while the rest
of output text by the method based on attribute name and value
pair extraction was superior to that based on sentence extraction.
(Recall that the first 140 characters of our DESKTOP and
MOBILE runs contained exactly the same output text.)
Table 4 shows evaluation results of KUIDL-D-OPEN-1 for each
query type. Overall, DEFINITION and QA types of queries
obtained higher weighted recall and S-measure than CELEBLITY
and LOCATION types. In general, DEFINITION and QA types of
queries had much fewer nuggets than CELEBLITY and
LOCATION types, and this probably made DEFINITION and QA
queries easy to achieve high performance. The QA type of queries
obtained the best result among the four types. Using a domain-
specific corpus (i.e. Yahoo! Japan Chiebukuro) might lead to the
reasonable performance.
To further investigate our evaluation result, we show S-measure of
the KUIDL-D-OPEN-1 result for each query in Figure 2. Overall,
our method achieved quite high S-measure for some
DEFINITION and QA queries (e.g. queries “Guguru,” and

“Which is taller, Tsutenkaku or Utsunomiya Tower?” indicated in
Figure 2), while it failed to output any relevant information for
some LOCATION and QA queries (e.g. queries “Kanazawa
University,” and “Where is Yumura-onsen” indicated in Figure 2).
A possible explanation for high S-measure for some QA queries is
that we utilized a domain-specific site (i.e. a community QA site)
to extract information, where in fact some queries were asked in
the site, and were answered with most of the nuggets for those
queries. On the other hand, methods for LOCATION and QA
queries might sometimes fail to obtain any relevant information
probably because a site used as a data source did not contain any
required nuggets. (Recall that we focused mainly on official Web
pages to extract information for LOCATION queries.) In our
failure analysis on LOCATION queries, we found that some
queries referred to multiple locations, and our method failed to
identify one intended to be retrieved. Such an object identification
problem was not observed for most of the CELEBLITY queries,
and our method stably output relevant information to some extent.
Our method for DEFINITION queries also achieved stable results
for most of the queries, and quite high S-measure for some
queries.

5. CONCLUSION
In this paper, we proposed a general framework for the 1CLICK
task, which first classifies a given query into pre-defined query
classes, then extracts information from several Web resources by
using a method suitable for the query type, and finally aggregates
pieces of information into a short text. We utilized difference
types of IE methods for CELEBLITY, LOCATION,
DEFINITION, and QA queries within our framework.

6. REFERENCES
[1] T. Sakai, M. P. Kato and Y.-I. Song. Overview of NTCIR-9

1CLICK. NTCIR-9 Proceedings, 2011.
[2] J. Carbonell and J. Goldstein. The use of MMR, Diversity-

based Reranking for Reordering Documents and Producing
Summaries. In Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 335-336, 1998.

[3] G. Erkan and R.D. Radev. LexRank: Graph-based lexical
centrality as salience in text summarization. Journal of
Artificial Intelligence Research, 22(1), pages 457-479, 2004.

Figure 2. S-measure of a KUIDL-D-OPEN-1 result for each query.

Table 3. Overall result of our formal runs.

 Weighted recall S-measure

KUIDL-D-OPEN-1 0.346 (0.423) 0.313 (0.381)

KUIDL-D-OPEN-2 0.341 (0.407) 0.290 (0.346)

KUIDL-M-OPEN-2 0.214 (0.262) 0.221 (0.273)

KUIDL-M-OPEN-1 0.204 (0.264) 0.219 (0.283)

Table 4. Evaluation results of KUIDL-D-OPEN-1 for each
query type.

 Weighted recall S-measure

CELEBLIYY 0.159 (0.191) 0.226 (0.273)

LOCATIOIN 0.151 (0.177) 0.261 (0.292)

DEFINITION 0.406 (0.460) 0.321 (0.354)

QA 0.644 (0.750) 0.552 (0.635)

Proceedings of NTCIR-9 Workshop Meeting, December 6-9, 2011, Tokyo, Japan

― 207 ―

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages false
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages false
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Japan Color 2001 Coated)
 /PDFXOutputConditionIdentifier (JC200103)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF005b0027005000440046002d003100320030003000270020306b57fa3065304f005d0020005b0027005000440046002d003100320030003000270020306b57fa3065304f005d002030d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Japan Color 2001 Coated)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

