NTCIR-9 GeoTime: Geo-temporal Information Retrieval Based on Semantic Role Labeling and Rank Aggregation

Yoonjae Jeong, Gwan Jang, Kyung-min Kim and Sung-Hyon Myaeng Korea Advanced Institute of Science and Technology (KAIST)

December 7, 2011

IR & NLP Lab, KAIST

Contents		
	Introduction	
	The Proposed Method	 Document Representation Topic Representation Information Retrieval Models Rank Aggregation
	Evaluation	 Tests in NTCIR-8 Corpus Description of Runs in NTCIR-9 Results from NTCIR-9
	Conclusion	

Introduction (1/2)

- **NTCIR-9** GeoTime Task
 - It is about geographic and temporal search in news articles.
 - We participated in the English sub-task only.
- 50 Topics asks for geographic- and temporal-based information.
 - A topic asks for information on where and when a particular event occurred or what event happened at a specific time and location.
 - o "<u>where</u>, <u>when</u>, and <u>what</u> did <<u>entities</u>> <<u>action</u>>?"
- ⁵⁰ The proposed geo-temporal information retrieval model
 - Our basic idea is to add locational and temporal aspects to terms in a document using Semantic Role Labeling (SRL).

Introduction (2/2)

∞ Semantic Roles

- A semantic role is the underlying relationship that a participant (linguistic constituent) has with the main verb in a clause.
- In the form, the elements of topic are reflected in following semantic roles.

Торіс	Semantic Role
where	AM-LOC
when	AM-TMP
<entity></entity>	A0-5 (e.g., Agent, Patient,)
<action></action>	verb

The Proposed Method

Overview of the proposed geo-temporal information retrieval

The Proposed Method Document Representations

- Documents are represented as sets of words for semantic roles.
 - An example of SRL for a document

[A-1 Astrid Lindgren, the Swedish writer whose rollicking, anarchic books about Pippi Longstocking horrified a generation of parents and captivated millions of children around the globe], <u>died</u> in her sleep [AM-TMP Monday] [AM-LOC at her home in Stockholm, Sweden.]

Attribute	Description	
τ _v	A set of verb in document e.g., <i>di</i> e	
T _A	A set of terms with numbered argument roles (A0-5) in document e.g., Astrid, Lindgren, , children, globe	
T _{AM-LOC}	A set of terms with location (AM-LOC) roles in document e.g., <i>home</i> , <i>Stockholm</i> , <i>Sweden</i>	
Т _{ам-тмр}	A set of terms with temporal role (AM-TMP) in document e.g., <i>Monda</i> y	

The Proposed Method Topic Representations (1/2)

	Attribute	Description
Question types	Q-LOC	Whether a question is about location or not? e.g., When and <u>where</u> did Astrid Lindgren die?
	Q-TMP	Whether a question is about time or not ? e.g., <u>When</u> and where did Hurricane Katrina make landfall in the United States?
	Q-AGT	Whether is a question about agent or not? e.g., <u>What Portuguese colony</u> was transferred to China and when?
	Q-MSC	The others e.g., How old was Max Schmeling when he died, and where did he die?
Set of vocabularies	V _v	A set of vocabularies in verb role in topic
	V _A	A set of vocabularies in numbered argument (A0-5) roles in topic
	V _{AM-LOC}	A set of vocabularies in locational role (AM-LOC) in topic
	V _{AM-TMP}	A set of vocabularies in temporal role (AM-TMP) in topic

The Proposed Method Topic Representations (2/2)

- 50 To determine the question types, we devised some heuristic rules based on syntactic parser results.
 - A parse-tree example for question type identification

```
Topic: When and where did Astrid Lindgren die?
Parsing Tree:
(ROOT
 (SBARQ
 (WHADVP (WRB When)
      (CC and)
      (WRB where))
  (SQ (VBD did)
      (NP (NNP Astrid) (NNP Lindgren))
      (VP (VB die)))
  (. ?)))
```

The Proposed Method Information Retrieval Models (1/4)

- Basic Document Language Model (BDLM)
 - Basic Language Model for a topic q and document d.

$$P_{BDLM}\left(d|q\right) = P\left(q|d\right) \times \frac{P(d)}{P(q)} \approx \prod_{t \in q} P\left(t|d\right) \tag{1}$$

$$P(t|d) = \frac{tf_{t,d} + \mu \times P(t|D)}{|d| + \mu}$$
(2)

$$d: a \text{ document}$$

$$q: a \text{ topic}$$

$$t: a \text{ term in } q$$

$$tf_{t,d}: \text{ the term frequency of term } t \text{ in document } d$$

$$D: \text{ the set of all document in the corpus}$$

$$\mu: \text{ the smoothing parameter (=2500)}$$

The Proposed Method Information Retrieval Models (2/4)

- ⁸⁰ Role-based Document Language Model (RDLM)
 - Based on the document representation, we built the *RBLM* where *R* represents the semantic roles in the document *d*.

$$P_{RDLM}\left(d|q\right) = \prod_{r \in R} \left(P\left(q_r | d_r\right) + \alpha\right)$$

$$\begin{cases} \alpha = 1, \text{ if Q-LOC is true, } r = \text{AM-LOC and } |d_r| > 0. \\ \alpha = 1, \text{ if Q-TMP is true, } r = \text{AM-TMP and } |d_r| > 0. \\ \alpha = 0, \text{ otherwise} \end{cases}$$
(3)

R: the semantic roles in q q_r : the set of terms given the role r in q d_r : the set of terms given the role r in d

The Proposed Method Information Retrieval Models (3/4)

- Basic Sentence Language Model (BSLM)
 - Sometimes the relevant information related to a topic is fully contained in one sentence in document.

$$P_{BSLM}\left(d\left|q\right) = \max_{s \in S} P\left(s\left|q\right) = \max_{s \in S} \prod_{t \in q} P\left(t\left|s\right)\right)$$
(4)

S: a set of sentence in d s: a sentence in S

The Proposed Method Information Retrieval Models (4/4)

- ⁸⁰ Role-based Sentence Language Model (RSLM)
 - RSLM adds semantic roles to BSLM in the same way RDLM was constructed out of BDLM.

$$P_{RSLM} \left(d \left| q \right) = \max_{s \in S} \prod_{r \in R} \left(P\left(q_r \left| s_r \right) + \alpha \right) \right)$$

$$\begin{cases} \alpha = 1, \text{ if Q-LOC is } true, r = \text{AM-LOC and } \left| s_r \right| > 0. \\ \alpha = 1, \text{ if Q-TMP is } true, r = \text{AM-TMP and } \left| s_r \right| > 0. \\ \alpha = 0, \text{ otherwise} \end{cases}$$
(5)

R : the semantic roles in q q_r : the set of terms given the role r in q s_r : the set of terms given the role r in s

The Proposed Method Rank Aggregation (1/4)

Relevant documents and their ranks and normalized scores of each model for Topic GeoTime-0025 in NTCIR-8 corpus

Delevent Desurrent	Rank & Normalized Score			
Relevant Document	BDLM	RDLM	BSLM	RSLM
NYT_ENG_20041226.0096	24	201	251	4
	(8.95E-01)	(1.54E+00)	(3.72E-02)	(2.82E+02)
NYT_ENG_20041229.0208	167	322	33	3
	(1.07E-04)	(1.07E+00)	(9.18E-02)	(2.86E+02)
NYT_ENG_20041230.0186	3	18	298	102
	(2.20E+02)	(4.46E+01)	(3.09E-03)	(7.74E-01)
NYT_ENG_20041230.0204	8	26	302	98
	(8.47E+01)	(3.26E+01)	(3.09E-03)	(7.75E-01)
NYT_ENG_20041230.0245	4	17	299	101
	(1.21E+02)	(4.46E+01)	(3.09E-03)	(7.74E-01)
NYT_ENG_20041230.0256	6	25	303	100
	(1.20E+02)	(3.49E+01)	(3.09E-03)	(7.74E-01)
NYT_ENG_20041231.0009	2	19	300	99
	(2.20E+02)	(4.46E+01)	(3.09E-03)	(7.75E-01)
NYT_ENG_20050328.0205	36	349	88	162
	(4.30E-03)	(1.07E+00)	(9.18E-02)	(7.72E-01)

The Proposed Method Rank Aggregation (2/4)

- 50 The proposed IR models have difference characteristics.
- It can be combined to handle various retrieval cases by devising a <u>rank</u> <u>aggregation method</u>, which is based on Dwork, et al. (2001)'s Markov Chain based approaches (MC1, MC2, MC3, & MC4).
- We adopted <u>MC2</u> because it is arguably <u>the most representative of</u> <u>minority viewpoints</u> of sufficient statistical significance; it protects specialist views.

The Proposed Method Rank Aggregation (3/4)

So The transition matrix of the k^{th} rank list T_k , T_k is

$$T_{k} \triangleq \left(t_{ij}^{(k)}\right)_{n \times n} \tag{6}$$

$$t_{ij}^{(k)} = \begin{cases} \frac{1}{\#\left\{j\left|j>_{\tau_k} i \text{ or } i=i\right\}}, & j>_{\tau_k} i \text{ or } j=i\\ 0, & \text{otherwise} \end{cases}$$
(7)

 $j >_{t_k} i$: document *j* is ranked higher than document *i* in ranking list τ_k .

50 The final transition matrix T is

$$T = \frac{1}{l} \sum_{k=1}^{l} T_k \tag{8}$$

l: the number of ranked lists

The Proposed Method Rank Aggregation (4/4)

- The effective ranks for aggregations of <u>RDLM</u>, <u>BSLM</u>, and <u>RSLM</u> are a small <u>number of top ones</u>.
- So We applied the <u>threshold θ </u> to the elements of transition matrix.

$$t_{ij}^{(k)} = \begin{cases} \frac{1}{\# \left\{ j \left| j >_{\tau_k} i \text{ or } i = i \right\}}, \\ j >_{\tau_k} i \text{ or } j = i \text{ and } z\text{-score}(i) \ge \theta \\ 0, \text{ otherwise} \end{cases}$$
(9)

⁵⁰ The final score is

$$\boldsymbol{x} = \boldsymbol{T}^{T} \boldsymbol{x}_{0}, \quad \boldsymbol{x}_{0} = \begin{bmatrix} 1/|\boldsymbol{D}| \\ \vdots \\ 1/|\boldsymbol{D}| \end{bmatrix}$$
(10)

Evaluation Test in NTCIR-8 Corpus

IR & NLP Lab, KAIST

Evaluation Description of Runs in NTCIR-9

so Summited Runs

RUN	Topic Source	Aggregation	Aggregation Threshold (θ)
IRNLP-EN-EN-I-D	Description only	(BD, RD, BS, & RS) LM	150
IRNLP-EN-EN-2-D	Description only	(BD, RD, BS, & RS) LM	200
IRNLP-EN-EN-3-DN	Description & Narrative	(BD, RD, BS, & RS) LM	200
IRNLP-EN-EN-4-DN	Description & Narrative	(BD, RD, BS, & RS) LM	140
BDLM-D	Description only	BDLM	-
BDLM-DN	Description & Narrative	BDLM	-

Evaluation Results from NTCIR-9 (1/2)

Evaluation Results from NTCIR-9 (2/2)

Topics showing high performances

- Those verbs are related to the activities or states of agents clearly (e.g. "murder", "hijack", "kill", and so on).
- The terms are also not ambiguous because they are proper nouns or very specific number of theme (e.g. "4 people" in GeoTime-0033).

Topics showing low performances

- Many errors in the analysis of topics
- The verbs were related to the existence or occurrence of agent or theme. (e.g., "occur", "happen")
- They sometimes require inference or term expansion.

Conclusion & Future Work

- A new geo-temporal information retrieval method that utilizes semantic role labeling and rank aggregation.
 - It is useful to analyze documents for semantic roles around main predicates of sentences and generate language models after the analysis.
 - While the SRL-based method is not always superior across different topics, they complement the usual language modeling approach
 - It warrant the proposed rank aggregation method.

∞ Future Work

- Term expansion and weighting are necessary.
- It is also needed to find the optimal weight and thresholds in rank aggregation.

Thank you for your attention.