NTT-UT SMT System for NTCIR-9 PatentMT

Katsuhito Sudoh, Kevin Duh, Hajime Tsukada, Masaaki Nagata
NTT Communication Science Laboratories
Kyoto, Japan

Xianchao Wu, Takuya Matsuzaki, Jun’ichi Tsujii
The University of Tokyo
Tokyo, Japan
Overview

<table>
<thead>
<tr>
<th>task</th>
<th>English-Japanese</th>
<th>Japanese-English</th>
<th>Chinese-English</th>
</tr>
</thead>
</table>
| single system features | • Pre-ordering
• Big LM
• WFST decode | • Pre-ordering | • WA Adaptation |
| rank | 1st | 5th | 9th |

English-Japanese
- Pre-ordering
- Big LM
- WFST decode

Japanese-English
- Pre-ordering

Chinese-English
- WA Adaptation
Overview

<table>
<thead>
<tr>
<th>task</th>
<th>English-Japanese</th>
<th>Japanese-English</th>
<th>Chinese-English</th>
</tr>
</thead>
<tbody>
<tr>
<td>single system features</td>
<td>• Pre-ordering</td>
<td>• Pre-ordering</td>
<td>• WA Adaptation</td>
</tr>
<tr>
<td></td>
<td>• Big LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• WFST decode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>additional feature</td>
<td>Sys. Comb. + U-Tokyo forest-to-tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rank</td>
<td>1st</td>
<td>5th</td>
<td>9th</td>
</tr>
</tbody>
</table>

Better than RBMT even in Subjective Evaluation!!!
Overview

<table>
<thead>
<tr>
<th>task</th>
<th>English-Japanese</th>
<th>Japanese-English</th>
<th>Chinese-English</th>
</tr>
</thead>
</table>
| single system features | • Pre-ordering
• Big LM
• WFST decode | • Pre-ordering
• WA Adaptation | |
| additional feature | Sys. Comb.
+ U-Tokyo forest-to-tree | | Sys. Comb.
+ U-Tokyo BMIT |
| rank | 1st | 5th | 9th |

Better than RBMT even in Subjective Evaluation!!!

Today’s Focus!
Head Finalization for En-Ja pre-ordering
Head Finalization for En-Ja pre-ordering

- Isozaki et al. (WMT 2010)
Head Finalization for En-Ja pre-ordering

- Isozaki et al. (WMT 2010)
- Moving heads to rhs on HPSG tree
 - English HPSG Parser “Enju” (U-Tokyo)
Head Finalization for En-Ja pre-ordering

• Isozaki et al. (WMT 2010)
• Moving heads to rhs on HPSG tree
 • English HPSG Parser “Enju” (U-Tokyo)
• Pseudo-word insertion for Ja particles
 • Predicate-argument structure by Enju
Head Finalization for En-Ja pre-ordering

- Isozaki et al. (WMT 2010)
- Moving heads to rhs on HPSG tree
 - English HPSG Parser “Enju” (U-Tokyo)
- Pseudo-word insertion for Ja particles
- Predicate-argument structure by Enju
- Determiner (a/an/the) deletion
I lost my wallet in the airport yesterday.
Head Finalization Example

I lost my wallet in the airport yesterday
I lost my wallet in the airport yesterday.
Head Finalization Example

I yesterday the airport in my wallet lost

• Move Heads
Head Finalization Example

I yesterday the airport in my wallet lost

- Move Heads
- Remove a, an, the
I lost my wallet in the airport yesterday.

- Move Heads
- Remove a, an, the
- Insert pseudo-particles for subjects & objects
I lost my wallet in the airport yesterday.
I _va0 yesterday airport in my wallet _va2 lost

私は 昨日 空港 で 私の 財布 をなくした
Head Finalization Example

I lost my wallet in airport yesterday.

Monotone Translation !!
Japanese Big LM

- Word 5-gram LM from 300M Ja sentences
WFST-based Monotone Decoding
WFST-based Monotone Decoding

- MT becomes monotone by pre-ordering
WFST-based Monotone Decoding

• MT becomes monotone by pre-ordering

• Efficient decoding by WFST
WFST-based Monotone Decoding

- MT becomes monotone by pre-ordering
- Efficient decoding by WFST
- phrase segmentation > phrase translation > word segmentation > LM
WFST-based Monotone Decoding

- MT becomes monotone by pre-ordering
- Efficient decoding by WFST
 - phrase segmentation > phrase translation
 > word segmentation > LM
- Efficient on-the-fly composition
WFST-based Monotone Decoding

- MT becomes monotone by pre-ordering
- Efficient decoding by WFST
 - phrase segmentation > phrase translation > word segmentation > LM
- Efficient on-the-fly composition
- ~3x faster than Moses PBMT
Generalized MBR-based System Combination
Generalized MBR-based System Combination

- Duh et al. (IJCNLP 2011)
Generalized MBR-based System Combination

- Duh et al. (IJCNLP 2011)
- Hyp. selection on N-bests on M systems
Generalized MBR-based System Combination

- Duh et al. (IJCNLP 2011)
- Hyp. selection on N-bests on M systems
- Optimization in RIBES+BLEU
Generalized MBR-based System Combination

- Duh et al. (IJCNLP 2011)
- Hyp. selection on N-bests on M systems
- Optimization in RIBES+BLEU
- System-independent “agreement” features
- Sub-components on RIBES & BLEU
Generalized MBR-based System Combination

- Duh et al. (IJCNLP 2011)
- Hyp. selection on N-bests on M systems
- Optimization in RIBES+BLEU
- System-independent “agreement” features
 - Sub-components on RIBES & BLEU
- Ranking SVM-like pairwise training
EJ Auto-Eval Results

- BLEU (%)
- RIBES (%)
EJ Auto-Eval Results

- HPBMT Baseline
- F2S (U-Tokyo)
- PreOrder (WFST)
- PO+BigLM (Moses)
- GMBR Sys. Comb.
EJ Auto-Eval Results

- **HPBMT Baseline**: BLEU 31.66%
- **F2S (U-Tokyo)**: BLEU 27.99%
- **PreOrder (WFST)**: BLEU 36.83%
- **PO+BigLM (Moses)**: BLEU 38.81%
- **GMBR Sys. Comb.**: BLEU 39.48%

Note: The chart shows the BLEU scores for different systems, with higher scores indicating better performance.
EJ Auto-Eval Results

- HPBMT Baseline: BLEU 31.66, RIBES 72%
- F2S (U-Tokyo): BLEU 27.99, RIBES 68.61%
- PreOrder (WFST): BLEU 36.83, RIBES 77.29%
- PO+BigLM (Moses): BLEU 38.81, RIBES 77.82%
- GMBR Sys. Comb.: BLEU 39.48, RIBES 78.13%
EJ Subj.-Eval Results

- Adequacy
- Acceptability (%)
EJ Subj.-Eval Results

<table>
<thead>
<tr>
<th></th>
<th>Adequacy</th>
<th>Acceptability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPBMT Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PreOrder (WFST)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMBR Sys. Comb.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBMT6-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EJ Subj.-Eval Results

<table>
<thead>
<tr>
<th>System</th>
<th>Adequacy</th>
<th>Acceptability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPBMT Baseline</td>
<td>2.60</td>
<td></td>
</tr>
<tr>
<td>PreOrder (WFST)</td>
<td></td>
<td>3.56</td>
</tr>
<tr>
<td>GMBR Sys. Comb.</td>
<td>3.67</td>
<td></td>
</tr>
<tr>
<td>RBMT6-1</td>
<td></td>
<td>3.51</td>
</tr>
</tbody>
</table>
EJ Subj.-Eval Results

- **HPBMT Baseline**
 - Adequacy: 2.60
 - Acceptability (%): 47

- **PreOrder (WFST)**
 - Adequacy: 3.56
 - Acceptability (%): n/a

- **GMBR Sys. Comb.**
 - Adequacy: 3.67
 - Acceptability (%): 69

- **RBMT6-1**
 - Adequacy: 3.51
 - Acceptability (%): 66
What we found...
What we found...

- Head Finalization worked QUITE well!
- Simple but effective way for EJ translation
- Monotone translation is relatively easy?
What we found...

• Head Finalization worked QUITE well!
• Simple but effective way for EJ translation
• Monotone translation is relatively easy?
• Further improved by GMBR Sys. Comb.
• System variance (diversity) is important?
Conclusion
Conclusion

• State-of-the-art EJ translation
• even better than RBMT!
Conclusion

• State-of-the-art EJ translation
 • even better than RBMT!

• ... moderate in JE/CE
 • JE pre-ordering, CE adaptation
That’s It!

Acknowledgments

- PatentMT organizers, for all of this great task!
- Prof. Hideki Isozaki, for Head Finalization
- Dr. Takaaki Hori, Dr. Shinji Watanabe, for WFST decoding