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ABSTRACT
Microsoft Research Asia participated in the 1CLICK task
at NTCIR-9 using two different techniques: a statistical
ranking approach and the utilization of semi-structured web
knowledge sources. The evaluation results show the effec-
tiveness of our approach: we found a 50% increase in S-
measure relative to the baseline. We present a module-by-
module error analysis, showing directions for future work.
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1. INTRODUCTION
Web search engines have long responded to users’ infor-

mation needs by simply returning a flat, ranked list of doc-
uments. While document retrieval has become the de facto
standard in many search engines, several insufficiencies exist
from the users’ standpoint. One of the problems with cur-
rent document retrieval is that users are not provided with
direct answers to their information needs, but are provided
with surrogate documents that have the possibility of con-
tainining answers to their needs. Thus, users are at times
forced into a lengthy process in which they must first scan
the ranked list of documents, then click on one or more pages
that might answer his/her information needs, and finally lo-
cate text segments that actually answer these needs. This
problem is especially prominent in the mobile environment,
where the display size is limited and communication speed
is yet slow. When the user intent is clear, in some cases it
would be ideal if search systems could provide direct answers
to his or her information need.
Recently, many search engines have started to display

relevant content directly on the search result page, which
Chilton and Teevan refer to as Answers [2]. For example, if
a user searches for the query ‘beijing weather’, most search
engines now show weather forecast information on the top
of the result page.
In this paper, we describe Microsoft Research Asia’s at-

tempt to build a search system that directly satisfies the
user’s information need with a single textual output. We

∗This work was done when the first author was an intern at
Microsoft Research Asia.

use a combination of statistical methods and utilization of
semi-structured knowledge sources on the web. We present
the effectiveness of our approach, as seen in the NTCIR-9
1CLICK task [13].

The remainder of this paper is organized as follows. Sec-
tion 2 briefly outlines the NTCIR-9 1CLICK task, and Sec-
tion 3 discusses the architecture of our system. In Section
4, we describe the evaluation results and present a module-
by-module error analysis. We conclude our work in Section
5.

2. NTCIR-9 1CLICK TASK
The NTCIR-9 1CLICK task attemps to promote research

in creating and evaluating systems that directly answers
users’ information needs. Formally, given a query, a sys-
tem must return a single textual output of character length
X or less, referred to as the X-string, that directly satis-
fies the user’s information need. The query types are closed
domain, with four types: celebrity (CE), local (LO), defi-
nition (DE), and question answering (QA). The evaluation
is based on nuggets, where a nugget is defined as ‘a short
factual statement such that an assessor can judge whether
a given text shows or clearly implies that statement to be
true.’1 Evaluation is done by manually matching parts of the
X-string with gold-standard nuggets where they are seman-
tically equivalent. Systems are awarded higher scores for
presenting important pieces of information first and mini-
mizing the amount of text the user has to read. For more
detail on the NTCIR-9 1CLICK task, we refer the reader to
[8] and [13].

3. SYSTEM ARCHITECTURE
Our system takes a pipeline approach to the task, con-

sisting of 5 modules: Query Type Classifier, Document Re-
triever, Candidate Generator, Candidate Ranker, and Sum-
marizer. The input to the system is processed by the mod-
ules in the order listed above.

The user’s input query is first sent to the Query Type
Classifier, which labels the query to one of the four given
categories. The Document Retriever then finds relevant
documents given the type-labeled query. Next, the Candi-
date Generator takes the retrieved documents and extracts
candidate answers. The Candidate Ranker then ranks the
candidates according to estimated relevance. Finally, the
Summarizer combines the ranked candidates to generate the

1http://research.microsoft.com/en-us/people/
tesakai/nuggetpolicy.pdf
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Figure 1: System overview

X-string that is presented to the user. We represent an
overview of our system in Figure 1.
In the following subsections, we describe in detail each

module of the system.

3.1 Query Type Classifier
The Query Type Classifier categorizes the input query

into one of the four given types (CE, LO, DE, and QA). We
took a statistical approach to this problem, using a multi-
class SVM classifier. Next, we outline the features employed
by the classifier.

3.1.1 Features from Query String

1. Query length: Different types of queries show different
distributions for their length. For example, while a CE
or LO query is generally short, consisting of two or
three morphemes, a QA query is relatively longer than
others. Based on this, we define a query length feature
as:

if |q| ≤ 5 then return |q|
else return 5

where |q| indicates the number of morphemes in a
query.

2. Appearance of Particles: The appearance of particles
in a query can also be an indicator for its query type.
For example, QA queries usually contain rich amount
of particles, such as “は” or “が”, but CE queries rarely
have even a single particle. While LO or DE queries
can also contain particles, those which appear with
such queries are of limited type. For instance, of the
LO or DE queries with particle(s) in the training set,
most of them have only “の” (of). Based on this obser-
vation, we define a binary feature with an output of 1
if a query has at least one particle which is not “の”,
and 0 otherwise.

3. Appearance of clue words: One of our observations
is that there are some morphemes or characters that
strongly indicate the specific type of a given query. For
instance, a query that ends with the kanji character “
園” (park) or the morpheme “学校” (school) is likely

to be of type LO, and a query containing the mor-
pheme “か” is highly likely to be of type QA. Also, the
kanji character “子” appears more frequently with CE
queries than of other types.To model this, we manually
defined clue word lists for CE, LO, and QA and formu-
lated binary valued features which indicate whether a
query contains a clue word for a given type.

4. Character type combinations: The Japanese language
has three different types of characters, hiragana, katakana,
and kanji, and each type of queries has a unique char-
acteristic of the character combinations. For example,
CE queries tend to be all kanji, while LO tends to
have a mix of katakana and kanji. QA is likely to be a
mix of hiragana, katakana, and kanji. We utilize this
observation by assigning a unique id to each possible
character combination and defining a feature function
returning an id corresponding to a given query.

3.1.2 Features from Web Search Results
Because a query is usually short, a query string often does

not provide sufficient evidences to classify its query type.
However, if we can collect its relevant web pages reasonably
well, additional evidences could be collected from those web
pages, enabling a better classification judgment. Based on
this intuition, we derive several features by regarding the top
10 documents from a commercial search engine as relevant
web pages for a given query2.

1. Content words in the snippets: the intuition here is
that specific words in snippets can hint at the type
of a query. For example, the morpheme “生年月日”
(birthdate) or “趣味” (hobby) strongly implies that a
query is of CE type. Based on this intuition, we count
the number of times a morpheme appears in the top 10
snippets for the training queries, and those morphemes
with frequency greater than N for a query of a given
type are used as binary features. In the experiments,
we empirically set N to 3.

2. URL hosts: similar to above, URL hosts of retrieved
documents also suggest the type of the given query.
Observing a document of host talent.yahoo.co.jp3

in the ranked list suggests that the query is of type
CE, and a document of host chiebukuro.yahoo.co.

jp4 suggests that the query is of type QA. We model
this observation by counting the number of times a
URL host name appears in the top 10 retrieved doc-
uments for the training queries, and those with fre-
quency greater than N for a specific query type are
used as features. Again, N was empirically chosen to
be 3.

3.2 Document Retriever
The Document Retriever is responsible for collecting rele-

vant text from the web in response to a type-labeled query.
We simply use the Bing API to retrieve the top 10 web doc-
uments when given a query. As an option, the Document

2We utilized the Bing API (http://msdn.microsoft.com/
en-us/library/dd251056.aspx) to retrieve the top 10
pages in the experiments.
3A celebrity dictionary service ran by Yahoo! Japan
4The Japanese version of Yahoo! Answers, a community
Q&A site
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Retriever can also perform query expansion. The query ex-
pansion terms are manually constructed, and are specific for
each query type. For example, if the query type is CE, we
use query expansion terms such as “birth date” and “home-
town.” If the query type is LO, we use terms such as “ad-
dress” and “telephone.” When query expansion is enabled,
we retrieve the top 1 document for each expansion term, for
a total of 10 + N documents (where N is the number of
query expansion terms for the type of the given query).

3.3 Candidate Generator
This module is responsible for generating candidate text

fragments from the documents collected by the Document
Retriever. The documents are first segmented by NLP-
Win [10, 14]. Next, the module takes a sliding window n-
gram approach and lists all possible n-grams (in all of our
runs, n was empirically chosen to be 4). N-grams with sen-
tence boundary markers within the intermediate elements
are discarded.
During the above process, we record the absolute position

of each n-gram. By “absolute”, we mean that an n-gram’s
position is taken with respect to the total set of documents.
For example, if we suppose that the last n-gram for the
first document is at position 100, the first n-gram for the
second document will be at position 101. The position of
each n-gram will play a role when we need to combine and
summarize the n-grams in section 3.5.

3.4 Candidate Ranker
This module collects the n-grams from the Candidate Gen-

erator and ranks them according to estimated relevance. We
take a machine learning approach, specifically SVMRank [4],
which has shown its effectiveness in many literature.
As with any supervised learning method, one needs to first

train a model, specifically, in this case, a ranking model. In
1CLICK, we are provided with gold-standard nuggets for 44
queries. On first thought, one might try to use these gold-
standard nuggets directly as training data for constructing
the ranking model. However, with supervised learning, the
training data and test data should have the same “format”:
using coherent, manually-crafted nuggets as training data
and using (at times) incoherent, automatically-generated n-
gram candidates as test data will most probably not rank the
candidates successfully during test phase. In addition, there
exists a practical problem where all of the gold-standard
nuggets are “relevant” for a given query. Thus, if we were to
use these gold-standard nuggets as training data, we would
only have positive training data and have no negative train-
ing data at all. 5

During testing phase, we are given candidate n-grams as
input and would like to rank them in order of relevance.
Thus, our training data should consist of pairs of an n-
gram and its (estimated) relevance. We create this pseudo
training data by a method similar to that used to automate
document-summarization evaluations [3]: first, for each of
the 44 queries, we perform document retrieval and candi-
date generation. Next, we automatically match each n-gram
candidate against the list of gold-standard nuggets. N-grams

5Note that the word “training” used here refers to the train-
ing of the candidate ranking model. We need to keep this
distinct from the word “training” used for the 44 training
queries. To avoid confusion, unless otherwise specified, the
word “training” used in this subsection refers to the former.

that match a gold-standard nugget will be deemed relevant
(positive) and n-grams without a successful match will be
deemed non-relevant (negative). These pairs of n-grams and
corresponding relevance information will comprise the train-
ing set for our ranking model. We note that distinct ranking
models are constructed for each of the four query types.

The criteria for a match in the above process is as follows:

if a candidate n-gram contains a morpheme sequence
of any relevant vital nugget for the given query, the
candidate will be regarded as relevant
else if the candidate n-gram contains all of morphemes
in any relevant nugget, it will be also regarded as rel-
evant
else the candidate n-gram will be regarded as non-
relevant

We next explain features used by SVM Rank.

3.4.1 URL-based Weighting Score
The URL of a given web document can hint at the quality

of the information contained within the document for a given
query type. For example, documents from talent.yahoo.

co.jp can be more likely to be relevant to a CE type query
than documents from other sites. Also, a part of a URL
string can also hint at the content of page itself. For exam-
ple, the token ‘access’ is often used by organizations to spec-
ify that a web page contains geographical information such
as address, map, transportation, or direction: http://www.
osakatoin.ed.jp/access/index.html lists the map and di-
rection information of Osaka-Toin Middle School. Based on
this idea, we define a URL-based weighting score and use it
as one of features for ranking candidate n-grams as follows:

Given query q and candidate n-gram n that is extracted
from a document with a URL consisting of m URL tokens
t1 · · · tm, the URL-based weighting score of n is defined as:

SURL(n) = max(w(t1), · · · , w(tm)) (1)

In the equation, w(t) is a weighting function for a URL
token, which is an averaged likelihood of a candidate with t
as its URL token to be relevant for the type T of query q:

w(t) =
1

C(q′; fT (q′) = T )

∑

n∈Nt

P (R|n ∈ Nt, q
′) (2)

where q′ is a query in the labeled training data, Nt indicates
a set of candidate n-grams containing URL token t, C() is a
count function, R is a random variable indicating relevance,
and fT is a function that returns the query type given a
query.

3.4.2 Positive and Negative Words
There are certain key phrases that hint at the relevance of

a given n-gram. For example, for a CE query, we can expect
that an n-gram that contains the words “birthday” or “birth
town” is probably relevant, while n-grams that contain the
words “log in” or “terms of service” is probably not relevant.
We name the former as positive words and the latter as nega-
tive words. Similar to the above URL-based weighting score,
we calculate the strength of positive and negative words by
using an average likelihood of a morpheme m to be relevant
(or irrelevant) for a specific query type,

wpos(m) =
1

C(q′; fT (q′) = T )

∑

n∈Nt

P (R|n ∈ Nm, q′) (3)
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Figure 2: Examples of text chunks (shaded areas) on
the official homepage of Kobe City West Municipal
Office

wneg(m) =
1

C(q′; fT (q′) = T )

∑

n∈Nt

P (R|n ∈ Nm, q′) (4)

We then take the weight of the strongest positive or negative
word and use them as two real-valued features.

3.4.3 Content similarity
The web is plagued with countless spam pages about “en-

largement” and “free investment”, and non-content phrases
such as “copyright” and“privacy policy.” In order to prevent
n-grams that contain spam and/or non-content phrases from
being ranked high on the list, we look at the content simi-
larity of a given n-gram and the retrieved documents. More
specifically, we treat the retrieved 10 documents (or 10+N
documents in the case with query expansion enabled) as one
large single document and calculate the cosine similarity be-
tween this document and a particular n-gram. Assuming
that the Document Retriever did a good job in collecting
non-spam pages, spam or non-content n-grams should have
a fairly low similarity with respect to the rest of the docu-
ments.

3.5 Summarizer
This module merges the ranked n-grams given from the

Candidate Ranker and generates the final textual system
output that is presented to the user. The following heuristic
is encoded during the merging process: we observed that
what we deem as 1CLICK’s answer often appeared in web
documents in “chunks”, with each chunk containing multi-
ple nuggets that match with gold-standard nuggets. These
chunks are often discrete, with a page usually containing
from one up to four or five chunks. The merging algorithm
exploits this observation and tries to reconstruct chunks
from the ranked n-grams. An example of a web page with
its corresponding chunks is shown in Figure 2. The psue-
docode for this process is shown in Algorithm 1. Chunks
are represented as a set of sets of n-grams.
As previously mentioned, in 1CLICK, systems are awarded

for minimizing the amount of text the user has to read. How-

Algorithm 1 Merge ranked n-grams into list of chunks

1: Input: ranked n-grams N = {n1, ..., n|N|}
2: Output: list of chunks C
3: C ← {{n1}}
4: N ← N \ n1

5: for n ∈ N do
6: if n is adjacent to chunk c ∈ C and length(c) < L

then
7: merge n into c
8: else if n is not similar with c ∈ C then
9: create new chunk cnew = {n}
10: C ← C ∪ cnew

11: end if
12: end for
13: return C

ever, it is highly probable for the n-grams given from the
Candidate Ranker to contain duplicate information. Thus,
in line 8, we check to see if an n-gram is similar to any of
the selected text chunks and remove redundant n-grams. In
addition, we prevent a text chunk from becoming too long
by checking its length in line 6. In all of our runs, we em-
pirically set the cut-off threshold L to 100. A given n-gram
n is adjacent to a chunk c if the n is adjacent to any of the
n-grams contained within c. The similarity measure in line 8
is a combination of cosine similarity and word overlap. We
concatenate the list of chunks C to produce the system’s
final output.

3.6 Knowledge Annotation of Wikipedia and
Yahoo! Chiebukuro

In actuality, the method described in the previous sub-
sections applies only to CE and LO query types in our sys-
tem. For the DE and QA queries, we decided to utilize
semi-structured knowledge sources on the web, a technique
which Lin and Katz refer to as knowledge annotation [6], in
order to enhance our system performance. The basis here is
that user queries obey Zipf’s law, where a small fraction of
frequently asked question account for a significant propor-
tion of all questions. These frequently asked questions could
be easily answered by leveraging Web knowledge sources.
Specifically, we used Wikipedia6 and Yahoo! Chiebukuro7

in this task.
We indexed the Japanese version of Wikipedia and Ya-

hoo! Chiebukuro using Lucene.8 For QA queries, when
given a query we find the most similar question from Yahoo!
Chiebukuro and return a concatenation of its answers. For
DE queries, we do the same as above and in addition, find
the most relevant Wikipedia article and return its abstract.
The retrieval is done using Lucene’s default similarity func-
tion. If no relevant Chiebukuro questions or Wikipedia arti-
cles are found, the system defaults to the statistical method
described in the previous subsections.

4. EXPERIMENTS
In this section, we report on our results in NTCIR 1CLICK.

We submitted two Desktop open runs, one run with query
expansion and another without.

6http://ja.wikipedia.org/
7http://chiebukuro.yahoo.co.jp/
8http://lucene.apache.org/
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4.1 Metrics for Evaluation
In NTCIR-9 1CLICK, systems are evaluated by manually

matching the X-string with gold standard nuggets. During
the matching process, assessors record the positional infor-
mation for each successful match. The S-measure and the
weighted nugget recall are the two evaluation metrics used
for this task. The weighted nugget recall is the ratio of the
sum of the weights of nuggets with successful match against
the sum of the weights of all gold-standard nuggets. The S-
measure [9] is an extension of the weighted nugget recall, in
which the positions of the matches are also taken into con-
sideration. As previously mentioned, systems are awarded
higher scores for presenting important pieces of information
first.
Each X-string is independently assessed by two assessors.

Accordingly, two-versions of S-measure and weighted recall
are used for evaluation:

• I computed based on the intersection between the two
sets of nugget matches.
• U computed based on the union of the nugget matches.

Unless otherwise specified, we shall only consider U scores in
the following subsections. For a disussion on inter-assessor
disagreement, we refer the reader to Section 5.4 of [8].

4.2 Results
Table 1 shows the mean S-measure and weighted nugget

recall values for our two runs and the manual and auto-
matic runs. MSRA1click-1 is our run with query expansion,
and MSRA1click-2 is our run without query expansion. The
Manual run is an ideal run that is manually created using
gold-standard nuggets, and acts as a practical upperbound.
The Automatic run is automatically created by concatenat-
ing snippets retrieved by the Bing API, and can be consid-
ered as the baseline for this task. For more information on
the manual and the automatic runs, we refer the reader to
[9].
Overall, our run shows a general improvement in both S-

measure and weighted recall compared to the baseline. On
average, the S-measure and weighted recall improve from
0.203 to 0.327-0.329 and from 0.222 to 0.336-0.339, respec-
tively, which is roughly a 50% increase in scores9. Scores
drastically improve for QA queries, with S-measure and weighted
recall improving from 0.182 to 0.540-0.575 and from 0.218 to
0.559-0.596, respectively. However, for the DE queries, the
S-measure and weighted recall drops from 0.338 to 0.367-
0.371 and from 0.423 to 0.409-0.413.
Contrary to our prior expectations, query expansion did

not significantly improve the scores. The S-measure and
nugget recall for MSRA1click-1 (with query expansion) are
0.329 and 0.336, respectively, while scores for MSRA1click-2
(without query expansion) are 0.327 and 0.339. This dif-
ference is not significant according to the Wilcoxon signed-
ranked test with p = 0.05. If we consider only CE and LO
queries, where effects of query expansion are expected to be
most salient 10, we find that query expansion actually hurts
the scores, with S-measure dropping from 0.189 to 0.167 for

9The baseline, or the Automatic run, was evaluated by a
single assessor, and can be considered as of type U.

10Most DE and QA queries are handled by the knowledge
annotation method, not by the statistical method, so query
expansion is expected to have no effect.

Table 2: Average number of nugget matches per
query

MSRA1click-1 MSRA1click-2
CE 7.067 7.867
LO 3.800 4.133
DE 3.200 2.877
QA 2.000 1.800

CE queries and from 0.209 to 0.205 for LO queries. We
examine this phenomena by looking at the average num-
ber of nugget matches per query, which is shown in Table
2. Since the number of possible candidates monotonically
increases due to additional documents retrieved by the ex-
panded queries, if we assume that the candidate ranker and
summarizer works ideally, it can be expected that query
expansion should increase the number of nugget matches.
However, as Table 2 shows, for CE queries the average num-
ber of nugget matches per query decreases from 7.867 to
7.067 and for LO queries from 4.133 to 3.800. This implies
that non-relevant candidates added by query expansion are
being ranked higher than pre-existing relevant candidates,
indicating weaknesses in the candidate ranker and summa-
rizer modules.

The per-query run performances for MSRA1click-2, the
Manual run, and the Automatic run is shown in Figue 3. The
general trend of MSRA1click-2 and Automatic runs resemble
that of each other. We observe that average scores and vari-
ance are low for CE and LO queries, while average scores
and variance are high for DE and QA queries. This suggests
that the statistical ranking approach employed for the CE
and LO queries are robust but shallow, while the knowledge
annotation method employed for the DE and QA queries are
effective but brittle and tend to founder depending on the
given query.

4.3 Module-by-module Error Analysis
We represent a module-by-module error analysis in this

subsection. Ideally, we would manually create gold-standard
data (perfect input) for each module in order to evaluate
the modules independently. However, as it is diffiult to de-
fine gold-standard input and gold-standard output for the
candidate generator and candidate ranker, we approximate
by using estimated weighted nugget recall for the candidate
generator and resort to a qualitative evaluation for the can-
didate ranker. The data below all pertain to those without
query expansion.

4.3.1 Query Type Classifier Performance
The confusion matrix for the query classification step is

shown in Table 3. The classifier performed well, correctly
classifying all of the CE and LO queries and all but one of the
QA queries. The classifier had some difficulty with labeling
DE queries. We show the list of misclassifications in Table
4. We can see that one of the misclassifications with the
DE queries was Query 0051 “カラシニコフ” (Kalashnikov),
which can be argued as of type CE (which our classifier
predicts), considering that Kalashnikov is a gun inventor’s
name. Overall, our classifier showed 91.7% accuracy.

4.3.2 Document Retriever Performance
The estimated weighted nugget recall for the document

retriever is shown in the leftmost column of Table 5. This
estimation is done in a similar fashion to the way we matched
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Table 1: Run mean performance. S-measure (in bold) / weighted recall (in italics)
MSRA1click-1 (U) MSRA1click-2(U) Manual Automatic

CELEBRITY .167/.122 .189/.136 .601/.530 .113/.099
LOCAL .205/.214 .208/.254 .859/.861 .130/.150
DEFINITION .367/.413 .371/.409 .865/.907 .388/.423
QA .575/.596 .540/.559 .985/1.000 .182/.218
all .329/.336 .327/.339 .828/.824 .203/.222

Figure 3: Per-query run performances: MSRA1click-2 S-measure/weighted recall (green solid/light green dot-
ted lines); manual run S-measure/weighted recall (red solid/orange dotted lines); automatic run S-measure/
weighted recall (blue solid/light blue dotted lines). The x-axis shows the query IDs

Table 3: Query Type Classification confusion matrix
System Classification

Gold Standard

CE LO DE QA
CE 15 0 0 0
LO 0 15 0 0
DE 3 0 11 1
QA 0 0 1 14

Table 4: Query Type Classification Errors

Query ID Query String Actual type Predicted Type
0023 カラシニコフ DE CE
0027 日本国民の三大義務 DE QA
0048 一国一城令 DE CE
0049 イカ天 DE CE
0060 ホスピタリティ QA DE

n-gram candidates to the gold-standard nuggets in order to
obtain training data for the ranking model, as described in
section 3.4. Although this estimation is far from perfect, we
believe that it is sufficient to grasp the overall trend of the
modules’ perfomance. We can gauge the precision of this
estimation method by comparing the estimated weighted
nugget recall for the summarizer and its corresponding ac-
tual value, which we show in the rightmost column of Table
5, with the actual value in parentheses. Apart from the mod-
erate divergence in the scores for QA queries, we see that
the estimated weighted nugget recalls generally resemble the
actual scores.
Returning back to the document retriever’s performance,

we observe that while the document retriever has difficulty
in retrieving relevant nuggets for LO queries, other query
types have typically around 90% weighted nugget recall.

4.3.3 Candidate Generator Performance

Table 5: Estimated Weighted Nugget Recall for
Document Retriever, Candidate Generator, and
Summarizer

Document
Retriever

Candidate
Generator

Summarizer
(Actual)

CE 0.897 0.788 0.183 (0.136)
LO 0.584 0.453 0.270 (0.254)
DE 0.919 0.783 0.424 (0.409)
QA 0.898 0.697 0.437 (0.559)

The estimated weighted nugget recall of the candidate
generator is shown in the middle column of Table 5. We can
observe that the sliding-window based segmentation of the
documents into candidates has a reasonably degrading effect
on the integrity of the nuggets, with all of the query types ex-
periencing a 10% to 30% drop in the weighted nugget recall.
This highlights the weakness of a sliding window n-gram ap-
proach, one of which is where the window length might not
be sufficient to fully cover a meaningful nugget.

4.3.4 Candidate Ranker and Summarizer Performance
As briefly touched upon in Section 4.2, the loss of perfor-

mance from query expansion indicates that there are cases
when the candidate ranker and summarizer fail to correctly
rank relevant nuggets above non-relevant nuggets. One il-
lustrative example is CE Query 0051 “田口ランディ” (Randy
Taguchi, an essayist and writer), where the X-string for
MSRA1click-1 (with query expansion) have 7 successful nugget
matches while the X-string for MSRA1click-2 (without query
expansion) have 18. The problem with the former output is
that the candidates from query expansion documents con-
tain multiple mentions of “生年月日” (birthdate) in contexts
that have nothing to do Randy’s birthdate. For example,
the two highest ranking candidates are :
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• “私の友人で、同じ生年月日の... 野沢さんが来てくれま
す” (My friend, Mr.Nozawa, who happens to have the
same birthdate as me,... will come visit us), and
• “お名前・ご希望の日時・生年月日など、...必要事項をご
記入の上お申し込みください” (Apply by filling out your
name, preferred date, birthdate ...)

This over-sensitivity to positive words was observed numer-
ous times during analysis.

5. CONCLUSIONS
Microsoft Research Asia’s participation in NTCIR-9 1CLICK

Task focused on using a statistical ranking method and uti-
lizing semi-structured web knowledge sources. Our analy-
sis of per-module performance shows that the Query Type
Classifier and Document Retriever performed relatively well,
while the Candidate Generator, Candidate Ranker, and Sum-
marizer have room for further improvement. Clearly, there
are several weaknesses with the current system:

• Singularity of the generated candidates: there is an
obvious weakness with the sliding window n-gram ap-
proach to generate candidates. As Zhou points out [12],
a single n-gram window may contain several separate
pieces of information, or may not even contain even
a single piece of information. Developing a method
to segment text by semantic units is critical, as subse-
quent steps heavily rely on the output of the candidate
generator.
• Coherence of the generated sentence: chunks of n-

grams candidates are indiscrimiately combined together.
There is no guarantee that the X-string will be coher-
ent to a human reader.
• Multiple intent queries: our system does not detect or

distinguish multiple intent queries. For example, one
of the formal run queries is “三本松駅” (Sanbonmatsu
station). Because there are two train stations with the
name “Sanbonmatsu” in Japan, it is possible for the
X-string to contain a mix of information of these two
separate locations, which could potentially be of harm
to the user.

We will explore these issues in a future study.
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