The *NiuTrans* System for NTCIR-9 PatentMT

Tong Xiao, Qiang Li, Qi Lu, <u>Hao Zhang</u>, Haibo Ding, Shujie Yao, Xiaoming Xu, Xiaoxu Fei, Jingbo Zhu, Feiliang Ren and Huizhen Wang

> Natural Language Processing Lab Northeastern University <u>http://www.nlplab.com</u>

Outline

- Our NiuTrans System
- Improvements for Patent MT
- Evaluation Results
- Future Work

Our Submissions

• Patent MT Tasks

• Chinese-English (2 submissions) • Japanese-English (2 submissions) • English-Japanese (no submission)

NiuTrans

- NiuTrans is an open-source Statistical Machine Translation (SMT) system which is developed by our group NLP Lab at Northeastern University.
 - Publicly released on this July, and so far shared by more than 200+ research groups all over the world.
- Features
 - Written in C++. It is fast, easy to install and use.
 - Multi-thread supported
 - Competitive performance for Chinese-Foreign translation
 - A compact but efficient n-gram language model is embedded.
 - Support multiple SMT models
 - Phrase-based model
 - Hierarchical phrase-based model
 - Syntax-based model (string-to-tree/tree-to-string/tree-to-tree) (coming soon)
- Available at http://www.**nlplab**.com

NiuTrans for NTCIR-9 PatentMT

- All of the SMT models are implemented in the same framework
 - We chose the phrase-based engine for NTCIR-9
- Note that we did not use the syntax-based engine in this task because current parsing accuracy is far from satisfactory on non-news domain technical documents.

NiuTrans.Phrase

• NiuTrans.Phrase system follows the general framework of Inversion Transduction Grammar (ITG)

NiuTrans.Phrase

• Monotone Translation

NiuTrans.Phrase

Improvements for Patent Translation

- Hybrid Reordering Model for Phrasebased SMT
- Large-scale N-gram Language Modeling
- Combining SMT and EBMT

A hybrid reordering model

- Many reordering models are available
 - o competitive translation quality
 - o different strengths and weaknesses
 - ME ordering: characterizes the movement of hierarchical structures by phrase boundary features
 - MSD ordering: powerful in local reordering that is inherent in the phrase translations
- It is natural to explore approaches that use or combine multiple reordering models

Our Solution: jointly use them during decoding

Large-Scale N-gram Language Modeling

• Our LM builder is basically a "sorted" Trie structure (Pauls and Klein, 2011)

- Pruning
 - Vocabulary filtering
 - N-gram filtering
- 57GB raw text → 6.1GB (5-gram) LM file (binary format)

Combining SMT and EBMT

- Combination is a desirable way to achieve higher translation accuracy than any individual approach does.
 - o SMT: NiuTrans.Phrsae
 - o EBMT: a naïve word-based EBMT system
 - Longest Common Subsequences
 - Delete unexpected target words
 - Select EBMT output only when very similar sentences are found
- Problem
 - Noisy data
 - Needs a better combination strategy

Features

• These improvements result in 17 features for our submitted (SMT) system

	Feature	Description	Weight	Weight	
			(ch-en)	(jp-en)	
1	$\Pr(t \mid s)$	Phrase trans-probability	0.089	0.107	
2	$\Pr_{lex}(t \mid s)$	Lexical weight	0.043	0.034	
3	$\Pr(s \mid t)$	Inverted $Pr(t \mid s)$	0.017	0.050	
4	$\Pr_{lex}(s \mid t)$	Inverted $Pr_{lex}(t \mid s)$	0.033	0.039	
5	$\Pr_{LM5}(t)$	5-gram language model	0.157	0.063	
6	Length(<i>t</i>)	# of target words	0.095	0.154	
7	Count(Phr)	# of phrases	0.111	0.104	
8	WD	# of word deletions	-0.006	-0.018	
9	Bi-Lex	# of bi-lex links	0.082	0.051	
10	Count(low-freq)	# of low-frequency rules	-0.040	-0.031	
11	f _{BTG-ME}	ME-based reordering feature	0.193	0.201	
12	f_{M -previous	M orientation (previous)	0.037	0.024	
13	$f_{S-previous}$	S orientation (previous)	0.017	0.014	
14	f_{D -previous	D orientation (previous)	0.018	0.030	
15	$f_{M-following}$	M orientation (following)	0.017	0.031	
16	$f_{S-following}$	S orientation (following)	0.036	0.011	
17	$f_{D-following}$	D orientation (following)	0.002	0.028	

Evaluation (formal run)

- The recourses we used were constrained to those provided for NTCIR-9 PatentMT
 - Chinese-English: 38M/43M words
 - Japanese-English: 116M/110M words
 - English (USPTO): 10,882M words

• Results

Entry	Chinese-English			Japanese-English		
	adequacy	accept	BLEU4	adequacy	accept	BLEU4
NiuTrans.Phrase	3.51	0.543	0.3229	2.37	0.416	0.2440
NiuTrans.Phrase + EBMT	N/A	N/A	0.3273	N/A	N/A	0.2488
Baseline 1 – Moses' hiero	3.29	0.476	0.3072	2.61	0.474	0.2895
Baseline 2 – Moses' phrasal	2.89	N/A	0.2932	2.42	0.447	0.2861
Baseline 3 – A rule-based system	2.27	N/A	0.1075	3.53	0.674	0.1885
Baseline 4 – Google's online translation	2.96	0.42	0.2569	2.27	0.417	0.1873

- NiuTrans.Phrase outperforms all five baselines on CE MT
- EBMT is useful in enhancing SMT output
- Maybe there is something wrong with the use of the open-source Japanese segmentation tool for our task.

Future work: NiuTrans will support more features

string-to-string

Current Version (v0.3.0) •(Hierarchical) Phrase-based models

string-to-tree

tree-to-string

A

tree-to-tree

Standard Version (v1.0.0)
Various syntax-based models
Tree-parsing and parsing-based decoding

Coming soon!

Thank you!

Google *NiuTrans* to find it Welcome