
Utilization of Suffix Array for Quick STD
and Its Evaluation on the NTCIR-9 SpokenDoc Task

Kouichi Katsurada
Toyohashi Univ. of Tech.

1-1 Hibarigaoka, Tempaku-cho
Toyohashi 441-8580, JAPAN

+81-532-44-6884

katsurada@cs.tut.ac.jp

Yurie Iribe
Toyohashi Univ. of Tech.

1-1 Hibarigaoka, Tempaku-cho
Toyohashi 441-8580, JAPAN

+81-532-44-6638

iribe@imc.tut.ac.jp

Koudai Katsuura
Toyohashi Univ. of Tech.

1-1 Hibarigaoka, Tempaku-cho
Toyohashi 441-8580, JAPAN

+81-532-44-6884

katsuura@vox.cs.tut.ac.jp

Tsuneo Nitta
Toyohashi Univ. of Tech.

1-1 Hibarigaoka, Tempaku-cho
Toyohashi 441-8580, JAPAN

+81-532-44-6890

nitta@cs.tut.ac.jp

ABSTRACT
We propose a technique for detecting keywords quickly from a
very large speech database without using a large-sized memory.
For acceleration of search and saving the use of memory, we
employed a suffix array as a data structure and applied phoneme-
based DP-matching to it. To avoid exponential explosion of
process time with the length of a keyword, a long keyword is
divided into short sub-keywords. Moreover, iterative lengthening
search algorithm is used for outputting the accurate search results
fast.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process.

General Terms
Experimentation.

Keywords
Spoken term detection, large scale speech document, suffix array,
keyword division, iterative lengthening search.

Team Name
NKI-lab.

Subtasks
Spoken Term Detection.

1. INTRODUCTION
Fast spoken term detection is essential in effectively utilizing
large-scale speech documents. A considerable number of studies
have been conducted on this topic, and reasonable performances
have been achieved in detecting keywords from a speech database
[1][2]. Recently, some studies have focused on search speed
[3][4][5] because quickness is important when a search is
executed on very large speech/video databases such as the digital
archives of TV/radio programs or video sites on the internet.

However, most existing methods are not fast enough on very large
speech database.
For this situation, we propose a fast spoken term detection for
large-scale speech documents [6][7]. In our approach, suffix array
is employed as a data structure for quick search and phoneme-
based DP-matching is used to deal with OOV words and
recognition errors. Even though suffix array enables quick search,
DP-matching-based similarity search brings about exponential
explosion of process time with length of a keyword. To avoid the
problem, we split a long keyword into short sub-keywords when
searching a keyword. Moreover, iterative lengthening search
algorithm is introduced to output accurate results fast. These
techniques make it possible to show search results quickly to a
user.

2. KEYOWRD DETECTION USING A
SUFFIX ARRAY
2.1 Structure of the suffix array
A suffix array [8] is a data structure that is used for quickly
searching for a keyword in a text database. We employ it for
phoneme-based keyword detection. It holds sorted indexes of all
suffixes of the phoneme string in a database. Figure 1 shows a
sample of a suffix array constructed from the character string1
"abracadabra." Indexes in the figure represent the position at
which the suffixes start in the string. Because the indexes are
sorted by the dictionary order of suffixes, we can use a binary
search to detect a keyword. Moreover, large memory space is not
required because the array holds only the indexes.

2.2 Similarity search on a suffix array
In the case of speech data, we are unable to ignore recognition
errors. Since the original suffix array is intended to search for an
exact string, we need to introduce a technique for a similarity
search together with the suffix array. For this purpose, a search

1 In this example, we use a character string instead of a phoneme string for

simplicity of explanation.

― 271 ―

Proceedings of NTCIR-9 Workshop Meeting, December 6-9, 2011, Tokyo, Japan

algorithm using DP-matching (or Dynamic Time Warping
(DTW)) on the suffix array is proposed [9]. This algorithm
regards a suffix array as a tree, and DP-matching is applied to all
paths from the root of the tree. If the distance between a keyword
and a path is not more than a threshold value, the path is output as
a search result, but if the distance is more than a threshold at some
node, the search is terminated at the node.
Figure 2 shows an example in which the keyword "bra" is
detected from the character string "abracadabra." In this example,
the threshold is assumed to be 1.0 and the distance between
different characters is defined as 1.0. In the example, the
descendant nodes of the paths "ac" and "ad" are cut off because
their distances are greater than the threshold. As a result, "bra,"
"abra," and some other strings are detected within the threshold.
Finally, indexes 8, 1, 7, 0, etc., are output as results by referring to
the suffix array shown in Figure 1.

3. KEYWORD DETECTION FROM A
SPEECH DATABASE
3.1 Distinctive phonetic features
Before starting the keyword search, a speech database is
transformed into a phoneme sequence by means of Large
Vocabulary Continuous Speech Recognition (LVCSR) or some
other methods. To apply DP-matching to the phoneme sequence,
distinctive phonetic feature-based distance is introduced. The
distinctive phonetic features represent a phoneme using fifteen
articulatory features such as plosive and affricative. Figure 3
shows a fragment of the relationship between phonemes and
articulatory features. We used the hamming distance of these
features to calculate the distance between two strings of phonemes.

The definition of distance used in DP-matching is given by the
following equation.

�
�

�
�

�

�
�
�

�

�

��

�

IP
badP

DP
P

ji

jiji

ji

ji

1,

1,1

,1

,),(min (1)

In this equation, ai is a phoneme in a keyword a1a2 ... aK; bj is a
phoneme in a speech database; Pi, j is the distance between a1a2 ...
ai and b1b2 ... bj; D and I are the deletion and insertion penalties;
and d(ai, bj) is the hamming distance calculated from the
articulatory features of ai and bj.

3.2 Keyword division
According to the algorithm described in Section 2.2, all paths
within the threshold are temporarily stored in the memory while
DP-matching is applied. Therefore, if the threshold is large,
process time will increase exponentially according to the depth of
the tree. Because the threshold increases in proportion to the
length of the keyword, an exponential increase in process time
will result if the keyword is long. To avoid this problem, a long
keyword is divided into short sub-keywords, which are then
searched for on the array instead of the original keyword. Of
course, the results obtained by using sub-keywords, hereinafter
called the candidates, may not actually match the results when the
original keyword is used. Thus, to confirm the validity of the
candidates, DP-matching process is repeated.
Even though the above division reduces the process time, a large
number of candidates can be detected. To reduce the candidates,
we proposed to try detecting at least two adjacent candidates of
different sub-keywords on the phoneme sequence in paper [6].
Figure 4 illustrates the outline of a keyword search. The search
algorithm is summarized as follows.

(I) Divide the keyword into sub-keywords.

(II) Search for the sub-keywords in the suffix array and find
candidates.

Text a b r a c a d a b r a
Index 0 1 2 3 4 5 6 7 8 9 10

Suffix Index
a 10
a b r a 7
a b r a c a d a b r a 0
a c a d a b r a 3
a d a b r a 5
b r a 8
b r a c a d a b r a 1
c a d a b r a 4
d a b r a 6
r a 9
r a c a d a b r a 2

Figure 1: An example suffix array.

Suffix array

a b

number :
distance from “bra”

1.0

1.0

1.0

2.0 2.0

0.0

0.0

0.0
output

root

b c d r

r a

a b

number :
distance from “bra”

1.0

1.0

1.0

2.0 2.0

0.0

0.0

0.0
output

root

b c d r

r a

Figure 2: Similarity search on a suffix array

 a i u e o k s ...
low - + + - - - -
high + - - - - + -

plosive - - - - - + -
affricative - - - - - - -

:

Figure 3: Table of distinctive phonetic features.

t o y o h a S iKeyword

t o y o h a S iSub-keywords

Candidates

(I) Division

(II) Search

(III) Filter

Phoneme sequence
(IV) Confirm

Figure 4: Outline of keyword search.

― 272 ―

Proceedings of NTCIR-9 Workshop Meeting, December 6-9, 2011, Tokyo, Japan

(III) Filter the candidates by detecting adjacent candidates.

(IV) Confirm the validity of the candidate by DP-matching.
In paper [7], we generalized this method so as to detect at least m
candidates of n sub-keywords at the same time. For this purpose,
we modify the threshold assigned to each sub-keyword by using
the following equation.

1��
�

mn
TTs

 (2)

In the above equation, T is the threshold assigned to the original
keyword. The keyword is divided into n sub-keywords and at least
m of them are detected. Ts is the modified threshold assigned to a
sub-keyword. Equation (2) is derived as follows: Let K be a
keyword; k1, …, kn, sub-keywords; S, a phoneme sequence in the
speech database; s1, …, sn, sub-sequences; D ≤ T, the distance
between K and S; di, the distance between ki and si. We assume d1,
…, dn is sorted as d1 ≤ … ≤ dn without loss of generality. From the
relation D ≤ T, d1 +…+ dn ≤ T

is derived. This formula is

converted into the following formula: dm ≤ T – (d1 +…+ dm-1) –
(dm+1 +…+ dn). From d1 ≤ … ≤ dn, dm is maximized if d1, …, dm-

1=0, and dm+1, …, dn= dm. In this case, the following formula is
satisfied: (n – m + 1) dm ≤ T. In order to find at least m adjacent
candidates under any condition, Ts should be equal to the
maximum value of dm. Therefore, equation (2) is derived.
This modification and the following validity confirmation process
guarantee that the same results will be detected in any conditions.
Figure 5 shows an example. In this figure, T = 3.0, n = 3, m = 2,
and there is a sequence whose distance from the keyword is 2.99.
The sub-strings corresponding to the sub-keyword have distances
of 0.0, 1.48, and 1.51. In this case Ts becomes 1.5, and two sub-
keywords are detected.

3.3 Iterative lengthening search
If the threshold is set at a large value, recall rate of the search will
increase because a lot of results are output, whereas precision rate
will decrease and search time will exponentially increase. On the
other hand, if the threshold is a small value, precision rate will
increase and search time will be fast. From these characteristics,
we employed iterative lengthening search for keyword detection.
In this search, the threshold is set at a small number initially to
output correct results fast, and during a user is checking the
former results, the threshold is slowly increased and search is
executed iteratively.

4. EVALUATION
4.1 Experimental setup
Experiments were carried out on a PC with a 3.4 GHz Intel Core
i7-2600 processor and 8 GB of main memory. We evaluated our
method on the syllable-based transcription of the reference

automatic transcriptions provided by the NTCIR-9 STD working
group.
In this experiment, we divide a keyword into six-phoneme-sub-
keywords and detect one of them (i.e. m = 1 in equation (2))
because this setting is confirmed to be best for detecting keyword
quickly in paper [7]. Deletion and insertion penalty in equation
(1) is set as 3.0. The score is calculated by the following equation:

 1
1

2/3 �
�

lT
score (3)

where l is the length of keyword. This equation converts the
search threshold into the score between 0.0 and 1.0. We attached
binary decisions “yes” to the results whose score is 0.89 or more.
This score is obtained by the preliminary experiment.

4.2 Experimental results on CORE and ALL
lectures
Index size and memory usage in the CORE experiment were
5.7MB and 33MB, while those in the ALL experiment were
84MB and 455MB. Figures 6 and 7 illustrate the precision-recall
curves of our method on CORE and ALL lectures2. MAP score on
CORE lectures was 0.684, and that on ALL lectures was 0.339.
The result of our method on CORE lectures overtakes the baseline,
while that on ALL lectures was below it [11]. This is unexpected
result because both of them use DP-matching in the searching
process. The difference is caused by the definition of distance
used in the DP-matching process. In the DP-matching process,
our method employs distinctive phonetic features, while the
baseline uses phoneme-based edit distance. It brings about the
difference in performance between two methods.
The notable characteristic of our method is that it can detect the
keywords considerably faster than the other methods. Tables 1
and 2 show the processing time of our method. The F-measure of
the CORE experiment is maximized when the score is 0.886; in

2 We submitted two sets of results of both CORE and ALL experiments.

However, we show only a result of each experiment because the
difference is just the number of search results contained in a set.

Keyword

Sub-keywords

Phoneme
sequence

distance 1.51distance 1.48

T : 3.0

distance 0.0

Ts : 1.5

detected detected

Ts : 1.5 Ts : 1.5

n = 3
m = 2

total distance 2.99

Figure 5: An example of threshold modification.

Figure 6: Precision-recall curve of our method and baseline

on CORE lectures.

― 273 ―

Proceedings of NTCIR-9 Workshop Meeting, December 6-9, 2011, Tokyo, Japan

that case, it takes 0.62ms to get the results. In the ALL experiment,
F-measure is maximized when the score is 0.884, and the results
are obtained in 3.44ms.

5. CONCLUSIONS
This paper evaluated the fast keyword detection technique using a
suffix array on the document provided by NTCIR-9 STD working
group. The results show that a suffix array and keyword division
work well for rapidly detecting the results. This characteristic is
desirable for utilizing large scale speech documents on the
internet, call center, broadcast station and so on. The remaining
study is to combine some conditions to improve precision rate,
and to enlarge the speech database size to 100,000-h scale.

6. ACKNOWLEDGEMENTS
This work was supported by the Grant-in-Aid for Scientific
Research (B) 22300060 2010 from MEXT, Japan.

7. REFERENCES
[1] Fiscus, J., Ajot, J., Garofolo, J. and Doddington, G., “Results

of the 2006 Spoken Term Detection Evaluation”, SIGIR'07
Workshop in Searching Spontaneous Conversational Speech,
2007.

[2] Smidl, L. and Psutka, J.V., “Comparison of Keyword
Spotting Methods for Searching in Speech”,
InterSpeech2006, pp.1894-1897, 2006.

[3] Kanda, N., Sagawa, H., Sumiyoshi, T., and Obuchi, Y.,
“Open-vocabulary keyword detection from super-large scale
speech database”, IEEE MMSP 2008, pp.939-944, 2008.

[4] Pinto, J., Szoke, I, Prasanna, S. R. M. and Hermansky, H.,
“Fast Approximate Spoken Term Detection from Sequence
of Phonemes”, SIGIR ’08 Workshop, pp.28-33, 2008.

[5] Wallace, R., Vogt, R. and Sridharan, S., “Spoken term
detection using fast phonetic decoding”, ICASSP'09,
pp.2135-2138, 2009.

[6] Katsurada, K., Teshima, S. and Nitta, T., “Fast Keyword
Detection Using Suffix Array”, InterSpeech2009, pp.2147-
2150, 2009.

[7] Katsurada, K., Sawada, S., Teshima, S., Iribe, Y. and Nitta,
T., “Evaluation of Fast Keyword Detection Using a Suffix
Array”, InterSpeech2011, pp.909-912, 2011.

[8] Manber, U. and Myers, G., “Suffix arrays: A new method for
on-line string searches”, SIAM J. Computation, vol.22, no.5,
pp.935-948, 1993.

[9] Yamasita, T. and Matsumoto, Y., “Full Text Approximate
String Search using Suffix Arrays”, IPSJ SIG Technical
Reports 1997-NL-121, pp.23-30, 1997. (In Japanese)

[10] Kawahara, T., Lee, A., Takeda, K., Itou, K. and Shikano, K.,
“Recent Progress of Open-Source LVCSR Engine Julius and
Japanese Model Repository”, ICSLP2004, pp.688-691, 2004.

[11] Akiba, T., Nishizaki, H., Aikawa, K., Kawahara, T. and
Matsui, T., “Overview of the IR for Spoken Documents Task
in NTCIR-9 Workshop”, 2011.

Figure 7: Precision-recall curve of our method and baseline

on ALL lectures.

Table 1: Processing time of our method in the CORE experiment.
Score 1.00 0.96 0.92 0.886 0.88 0.84 0.80
Recall 26.5 27.7 33.8 43.0 44.4 53.9 65.6

Precision 88.0 88.4 90.3 84.6 68.8 57.3 24.7
F-measure 40.8 42.1 49.2 57.0 54.0 55.5 35.9
Time [ms] 0.00 0.00 0.00 0.62 0.96 2.18 10.92

Table 2: Processing time of our method in the ALL experiment.
Score 1.00 0.96 0.921 0.884 0.881 0.841 0.799
Recall 12.6 13.8 21.9 29.1 29.9 36.3 43.7

Precision 78.0 79.5 74.5 49.6 40.1 20.8 6.92
F-measure 21.7 23.5 33.9 36.7 34.3 26.5 11.9
Time [ms] 0.32 0.32 1.28 3.44 3.42 15.94 73.98

― 274 ―

Proceedings of NTCIR-9 Workshop Meeting, December 6-9, 2011, Tokyo, Japan

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages false
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages false
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Japan Color 2001 Coated)
 /PDFXOutputConditionIdentifier (JC200103)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF005b0027005000440046002d003100320030003000270020306b57fa3065304f005d0020005b0027005000440046002d003100320030003000270020306b57fa3065304f005d002030d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Japan Color 2001 Coated)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

