RMIT and Gunma University at NTCIR-9 GeoTime Task

Michiko Yasukawa* J Shane Culpepper † Falk Scholer † Matthias Petri †

> *Gunma University, Japan † RMIT University, Australia

Table of Contents

Background

Experimental Framework

Results

Conclusions

Background

- Inverted indexes
 - A classical solution for search problems.
 - A vocabulary of <u>terms</u> mapped to <u>documents</u>.
 - ▶ Terms (words or n-grams) are defined at indexing time, and not changed at query time. ☺
- Self-indexes
 - A new viable alternative to inverted indexes.
 - A data structure for character level <u>pattern matching</u>.
 - ▶ Word boundaries are flexibly changed at query time. ☺
 - > Search terms are arbitrary patterns of characters.

Ranked Self-Indexing

Prior work

- Frequency counting for a single phrase.
- Search effectiveness has not been evaluated.
- A new search engine, NeWT [Culpepper, et al. 2010]
 - Efficient term frequency counting.
 - two wavelet trees
 - BWT (Burrows-Wheeler Transform)
 - Anything can be a term at query time.
 - Ranked search for multiple <u>phrases</u>, <u>words</u>, <u>morphemes</u>, and/or any <u>character sequences</u>.

Ranking metrics in NeWT

(1) raw term frequency:

 $RAW = \sum_{t \in q} f_{t,d}$ RAW : the aggregate of the term frequency, $f_{t,d}$. $f_{t,d}$: term frequency counts per document.

(2) BM25 variant: BM25= $\sum_{t \in a} \log(\frac{N - f_t + 0.5}{f_t + 0.5}) \cdot \text{TF}_{BM25}$ $TF_{BM25} = \frac{f_{t,d} \cdot (k_1 + 1)}{f_{t,d} + k_1 \cdot ((1 - b) + (b \cdot l_d / l_{ava}))}$

N : the number of documents in the collection.

 f_t : the number of distinct documents appearances of t.

 l_d : the number of UTF8 symbols in the documents.

 l_{avg} : the average of l_d over the collection. $k_1 = 1.2, b = 0.75$

5

Our Goal for NTCIR-9 GeoTime Task

Compare the search effectiveness:

Indri \rightarrow classical		NeWT \rightarrow innovative			
✓ Inverted index	VS.	✓ Self-index			
(Terms are static.)		(Terms are flexible.)			
 ✓ Multilingual support 		✓ Language independent			

[Step1] Search in English with Indri.

ГГ

- [Step2] Experiment in English with <u>NeWT</u>.
- Step3] Search in Japanese with Indri.
- [Step4] Experiment in Japanese with <u>NeWT</u>.
- Step5] Query Expansion in Japanese with NeWT.

Experimental Framework (for English)

- Step1: English search with Indri
- Step2: English search with NeWT

Experimental Framework (for Japanese)

- Step3: Japanese search with Indri
- Step4: Japanese search with NeWT \rightarrow Substring Mismatch
- Step5: Step4 + *n*-suffix query expansion

Query Expansion in Japanese

- Boolean search to gather initial documents.
 - All topic terms appear in each document. (AND)
 - Synonyms from Japanese WordNet and Wikipedia. (OR)
- > Later documents likely contain "when and where".
 - Reverse chronological order of time stamp. (ORDER BY)

Query Expansion in Japanese (Cont.)

- Regular Expression in PostgreSQL
 - <u>n-suffixes</u> from the gathered documents.
 (<u>n-character suffixes</u> at the tail of the query term)
- For the experiment:
 - 100 n-suffixes per topic.
 - *n*-suffixes using n=2, 3, 4.

Results in English

- NeWT run EN-01 shows higher performance. (nDCG@10)
- But, more poorly on other effectiveness measures.
- Overall, no statistically significant difference.

Run	System	Ranking	Preprocess	Expansion	MAP	Q	nDCG@10	@100
EN-01	Newt	BM25	None	None	0.2477	0.2524	0.4282	0.3691
EN-02	Indri	Dirichlet LM	Krovetz	None	0.2830	0.3057	0.3531	0.3763
JA-01	Indri	Dirichlet LM	ChaSen	None	0.3779	0.4119	0.4769	0.5109
JA-02	Newt	BM25	None	None	0.3084^{+}	0.3239^{\dagger}	0.3510^{+}	0.3936‡
JA-03	Newt	BM25	None	2-suffixes	0.3282	0.3349	0.4768	0.4653
JA-04	Newt	BM25	None	3-suffixes	0.3671	0.3714	0.5230	0.5211
JA-05	Newt	BM25	None	4-suffixes	0.3376	0.3398	0.4988	0.4841

⁺ and [‡] indicate statistical signicance relative to the baseline run at the 0.05 and 0.001 levels respectively, based on a paired t-test.

Results in Japanese

- The NeWT run JA-02 performed worse than the Indri run JA-01.
- The <u>3- and 4-suffix query expansion</u> runs were effective. (nDCG@10)
- > But, the differences were not statistically significant.

Run	System	Ranking	Preprocess	Expansion	MAP	\mathbf{Q}	nDCG@10	@100
EN-01	Newt	BM25	None	None	0.2477	0.2524	0.4282	0.3691
EN-02	Indri	Dirichlet LM	Krovetz	None	0.2830	0.3057	0.3531	0.3763
JA-01	Indri	Dirichlet LM	ChaSen	None	0.3779	0.4119	0.4769	0.5109
JA-02	Newt	BM25	None	None	0.3084^{+}	0.3239^{+}	0.3510^{+}	0.3936
JA-03	Newt	BM25	None	2-suffixes	0.3282	0.3349	0.4768	0.4653
JA-04	Newt	BM25	None	3-suffixes	0.3671	0.3714	0.5230	0.5211
JA-05	Newt	BM25	None	4-suffixes	0.3376	0.3398	0.4988	0.4841

[†] and [‡] indicate statistical signicance relative to the baseline run at the 0.05 and 0.001 levels respectively, based on a paired t-test.

Conclusions

• A new self-indexing search engine, NeWT

- > Experimented on the multilingual task.
 - \blacktriangleright Language processing at query time, not at indexing time. \bigcirc
 - \blacktriangleright Multiple languages can be incorporated into a single index. $\textcircled{\sc op}$
- Search effectiveness was examined.
 - Efficient document ranking with self-indexes. \odot
 - \blacktriangleright For GeoTime topics, no significant effectiveness . \circledast
- Future work:
 - Efficiently determine IDF (Inverse Document Frequency).
 - Explore the substring mismatch problem.

Thank you very much for your kind attention.

Michiko Yasukawa michi@cs.gunma-u.ac.jp