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Abstract

This paper presents a method for
incorporating natural language pro-
cessing into existing text catego-
rization procedures. Three aspects
are considered in the investigation:
(i) a method for weighting terms
based on the concept of a probability
weighted amount of information, (ii)
estimation of term occurrence prob-
abilities using a probabilistic lan-
guage model, and (iii) automatic ex-
traction of terms based on POS tags
automatically generated by a mor-
phological analyzer. The effects of
these considerations are examined
in the experiments using Reuters-
21578 and NTCIR-J1 standard test
collections.

1 Introduction

The success of machine learning algorithms
in automatic text categorization has recently
become of interest to researchers in both ma-
chine learning and information retrieval fields
(Lewis and Singer, 2000; Nagata and Taira,
2001). Many methods have been applied, in-
cluding Support Vector Machines (Joachims,
1998), RIPPER and sleeping experts (Co-
hen and Singer, 1999), and stochastic deci-
sion lists (Li and Yamanishi, 1999). There
are also comparative studies that compare the
performance of different categorization strate-
gies (Yang and Liu, 1999).

Generally speaking, machine learning algo-
rithms work with mathematically well-defined
feature spaces. Their objective is to find the

best discriminators, sometimes in non-linear
form, to separate points originating from dif-
ferent classes. In order to initiate a good
feature space to work on, the algorithms re-
quire careful pre-processing of raw data spe-
cific to each application domain. In the case
of text categorization, the features usually
correspond to terms, and the pre-processing
includes: (i) automatically extracting terms
from text, (ii) assigning appropriate weights
to terms in each category or document, and
(iii) reducing the dimensions of the feature
space by selecting significant terms.

Despite advances in linguistic processing
techniques, most existing studies only ap-
ply simple procedures in their pre-processing.
For example, (i) term extraction by standard
stemming and stop words removal procedures,
(ii) term weighting by conventional schemes
such as tf-idf, and (iii) term selection by cut-
ting out all the low frequency terms. This
motivated us to examine whether the perfor-
mance of existing text categorization methods
can be improved using linguistic techniques
such as morphological analysis or probabilis-
tic language modeling. We expect that such
improvements will become more crucial as the
size of training data increases; when the size
becomes very large, useful clues may be em-
bedded in millions of feature terms and thus
be hard to find if not appropriately prepared.

In section 2, we formulate a text catego-
rization problem and examine the statistical
nature of terms using actual corpus statis-
tics. In section 3, a term weighting scheme,
which we call the probability weighted in-

formation (PWI) is introduced. Also de-
scribed in section 3 are a discounting tech-



nique to compensate the observed term occur-
rence probabilities, and a simple rule-based
approach to extract compound words. In sec-
tion 4, some illustrative experimental results
are shown where two distinctive categoriza-
tion methods, the vector space oriented and
machine learning-based method, are applied
to Reuters-21578 and NTCIR-J1 test collec-
tions. Section 5 is the conclusion.

2 Text Categorization Problems

2.1 Description of the Problems

Our text categorization problem is formalized
as follows: Let C = {c1, · · · , ck} be a spec-
ified set of k categories. Assume that a set
of training documents with known categories
is given. The objective of the categorization
task is to identify a category or categories of
some given unknown documents.

There exist two different types of catego-
rization tasks, depending on whether a doc-
ument belongs to (a) multiple categories or
(b) a uniquely determined category. The for-
mer case is usually formulated as the k num-
ber of 2-class classification problems, where
the two classes represent cj (∈ C) and cj

(= {ci|ci ∈ C, i 6= j}). On the other hand,
the later case can be directly formulated as a
single k-class classification problem, although
the previous 2-class formulation is also appli-
cable.

The two test collections we use in our ex-
periments correspond respectively to these
cases: Reuters-21578 with Apte split 1 to
(a), and NTCIR-J1 2 to (b). Reuters-21578
is composed of newswire articles with man-
ually assigned topic categories. With Apte
split, totals of 9,603 training documents and
3,299 test documents are provided with 90
categories being effective. The average num-
ber of categories assigned to each document
is 1.2. NTCIR-J1 is composed of abstracts
of academic conference papers presented at
national conferences organized by Japanese
academic societies. By considering the 24
largest academic societies, we have extracted

1http://www.research.att.com/∼ lewis/
reuters21578.html

2http://research.nii.ac.jp/ntcadm/

309,999 training documents and 10,000 dif-
ferent test documents. The number of cat-
egories assigned to each document equals 1.
With both test collections, the size distribu-
tion of the categories is considerably skewed,
as is commonly observed in any text catego-
rization problem.

2.2 Statistical Analysis of Terms in
the Text

In text categorization problems, documents
are usually represented as weighted vectors
of terms. Probabilistic approaches assume
that the documents are sets of independent
samples from some unknown distributions of
terms, and try to estimate the probabilities of
the originating distributions.

It is well known that terms in text roughly
follow the Zipfian distribution. But what is
the implication of Zipf’s law when these terms
are used for text categorization? Figure 1
shows some statistics collected from NTCIR-
J1. Figure 1-(a) is the relation between n,
the frequency of a term, and N(n), the num-
ber of distinct terms with their frequencies
being equal to n. The plot becomes almost
linear, indicating Zipf’s law does hold with
this corpus. Figure 1-(b) is the relation be-
tween n and n ·N(n)/T , the probability that
terms with n is observed in text where T
(=

∑
nN(n)) is the total frequency of terms.

Intuitively, a large number of low frequency
terms and a small number of very high fre-
quency terms are frequently observed in text.

Figure 1-(c) shows the relation between n
and the amount of ’information’ of terms with
n calculated as follows: Let W and C be
random variables corresponding to terms and
categories respectively, and P (C|wi) be a con-
ditional probability that the given document
contains term wi. Then, the mutual informa-
tion between W and C are given as:

I(W,C) =
∑

wi

∑

cj

P (wi, cj)log
P (wi, cj)

P (wi)P (cj)
. (1)

Considering the contribution of wi in the
above calculation, we obtain:



δI(wi, C) =
∑

cj

P (wi, cj)log
P (wi, cj)

P (wi)P (cj)
. (2)

In Figure 1-(c), the value is accumu-
lated for all the terms with the same
frequencies, and then normalized (i.e.,∑

f(wi)=n δI(wi, C)/I(W,C) where f(wi) is
the frequency of wi). It can be seen that
the contribution is greater for low frequency
terms.
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Figure 1: Statistical analysis of terms in the
text using NTCIR-J1.

2.3 Our Approach

These figures suggest that even though the
contribution of each low frequency terms is
small, the accumulated effect may not be ne-
glected since there exist an exponential num-
ber of such terms. Thus a possible strategy
for text categorization is to use as many terms
as possible, including all the low frequency
terms.

However, such a strategy often leads to a
huge feature space that is beyond the capacity
of most existing machine learning methods.
Consequently, the existing methods often dis-
card low frequency terms automatically, and
further apply feature subset selection. Note
here that the selection strategy, as well as the
number of features to be selected, is basically
chosen empirically.

With this background, we address the issue
of how to improve the performance of scalable
methods that can manipulate all the terms
contained in the target corpus. Instead of ap-
plying heuristic selection strategies, we exam-
ine the possibility of using more elaborate lan-
guage processing for weighting and extracting
terms.

3 The Proposed Method

3.1 Weighting Terms

We first introduce an extended notion of tf-

idf, a commonly used term weighting scheme
in information retrieval. Denoting the fre-
quency of term wi as f(wi), the number of
documents with wi as D(wi), and the total
number of documents as D, the classical defi-
nition of tf-idf is given as f(wi)log(D/D(wi)),
i.e., a product of term frequency (tf) and
the inverse of log-scaled document frequency
(idf).

Here, we can consider the tf factor, if nor-
malized by the total frequency, as the estima-
tion of the occurrence probability of a term,
and the idf factor as the amount of informa-
tion relating to the occurrence of the term
(Aizawa, 2000). Then, from an information-
theoretic perspective, tf-idf can be interpreted
as the quantity required for the calculation of
the expected mutual information given by Eq.



(1). Based on this interpretation, we define
the extended notion of tf-idf as follows:

δI(wi, cj) = P (wi, cj)log
P (wi, cj)

P (wi)P (cj)

= P (wi)P (cj |wi)log
P (cj |wi)

P (cj)
. (3)

Since the above definition is similar to the
weighted mutual information by Fung and
McKeown (1996), we refer to such a quantity
as the probability weighted information (PWI)
in this paper.

Now, we define a criterion for text catego-
rization using the PWI. Let C = {c1, · · · , ck}
be a specified set of categories, wt1 , · · · , wtn

be a sequence of n terms extracted from a
document to be categorized. The strategy for
text categorization is to identify cj ∈ C that
maximizes the PWI value given wt1 , · · · , wtn :

argmax
j

∑

wi=wt1
···wtn

δI(wi, cj)|P (wi)=1

= argmax
j

∑

wi=wt1
···wtn

P (cj |wi)log
P (cj |wi)

P (cj)
.(4)

Since Eq. (4) can be expressed as a sum-
mation of a normalized product of within cat-
egory frequency and the frequency in a target
document of wi, the formula naturally pro-
vides a weighting scheme for vector-space ori-
ented representations.

Using NTCIR-J1, we have calculated the tf-

idf and the PWI values of each term. The cor-
relation coefficient equals 1.00 when consid-
ering individual documents as categories, and
0.58 when considering academic societies as
categories. These figures indicate that tf-idf

provides a good estimation of the PWI with
document vectors but not so much with cat-
egory vectors due to the skewed distribution
of category sizes.

3.2 Estimating Probabilities

The simplest way to estimate the probabili-
ties used in Eq. (4) is to assign values pro-
portional to the observed frequency in the
training data. Denoting the frequency of wi

within category cj as f(wi, cj), and the total

frequency of all the terms as F , the allocation
policy is expressed as:

P (wi) =
f(wi)

F
, P (cj |wi) =

f(wi, cj)

f(wi)
. (5)

However, Eq. (5) generally overestimates
the probability of low frequency terms while
assigning zero probability for unobserved
terms. We therefore use the following ab-
solute discounting in probabilistic language
modeling studies (Kita, 1999):

P (wi) =
f(wi) − δ

F
, (6)

where δ is a discounting coefficient common
for all the terms. The value of δ is determined
either as (i)δ = N(1)

|W | or (ii) δ = N(1)
N(1)+2N(2)

with N(i) being the number of terms that
appear exactly i times in the training cor-
pus, and |W | being the total number of dis-
tinct terms. Using the equation, the prob-
ability of unobserved term is calculated as
δ|W |

F
. The estimated and observed probabili-

ties of unobserved terms in the actual corpora
are: 0.016 (estimated) and 0.029 (observed)
for Reuters-21578, and 0.012 (estimated) and
0.014 (observed) for NTCIR-J1. Therefore,
we can conclude that the model agrees rea-
sonably well with our target corpora.

The estimation of P (wi) given by Eq. (6)
cannot be directly applied to Eq. (4). In-
stead, we assume the following mixture dis-
tribution for the estimation:

P ∗(cj |wi) = r(wi)
f(wi, cj)

f(wi)
+ (1 − r(wi))P (cj). (7)

Denoting the total frequency of terms in cat-
egory cj as f(cj), P (cj) is given by P (cj) =
f(cj)/F . The mixture ratio is determined us-
ing the discounting coefficient, δ, as:

r(wi) =
f(wi) − δ

f(wi)
. (8)

Measuring the distance between two proba-
bility distributions by Kullback-Leibler diver-
gence (D), we obtain D(P ∗(C|wi)||P (C)) ≤
D(P (C|wi)||P (C)) from the convex property
of divergence. More generally, P ∗(C|wi) be-
comes closer to P (C) for smaller r(wi), and



therefore the discounting effect works more ef-
fectively for low frequency terms. Note that
the expected contribution of the second term
of Eq. (7) equals δ|W |

F
, the probability origi-

nally assigned to unobserved terms.

3.3 Extracting Compound Words

Existing text categorization approaches, in-
cluding ours, are mostly based on the so-
called ’bag-of-words’ assumption that views
a document as a collection of independent
words. However, we can expect that com-
pound words such as <text categorization>
serve as better features than separately
considered unit words such as <text> or
<categorization>. Some machine learning al-
gorithms such as RIPPER (Cohen and Singer,
1999) or a stochastic decision tree (Li and Ya-
manishi, 2000) are capable of extracting de-
pendencies between these words. But gen-
eral speaking, such an analysis requires much
computation time. In addition, from a lexical
point of view the extracted associations may
be neither exhaustive nor of good quality.

As an alternative, we use standard morpho-
logical analyzers at the pre-processing stage
and extract compound words using simple
matching rules, defined as patterns of POS
tags. In the matching, not only the longest
but also all the sub-sequences of words that
match the patterns are extracted. After-
wards, stemming and stop word removal pro-
cedures are applied in the case of English.
For example, from “a supplementary bud-
get” in the original text, <supplementari
budget>, <supplementari>, and <budget>
are obtained. After the pre-processing, all the
extracted terms are considered to be indepen-
dent of each other.

The morphological analyzer currently used
in our implementation is Brill Tagger for En-
glish (Brill, 1994), and ChaSen for Japanese
(Matsumoto et al., 1999). At present, the
matching patterns are given heuristically.

4 Experimental Results

4.1 Reuters-21578

Since a single document is possibly associ-
ated with multiple categories, with Reuters-

21578 the categorization task is formulated
as the 90 numbers of 2-class problems, each
corresponding to the 90 categories of the cor-
pus. The overall performance is measured
by the “micro-average precision-recall break-
even point,” following the convention of past
studies using Reuters-21578.

The objective of the experiments is to in-
vestigate the effect of the following factors on
the categorization performance.

(1) the effect of categorization methods

Two different types of categorization
method are used in the experiments: The
first, referred to as PWI, considers a cate-
gory as a single distribution of terms and di-
rectly calculates the PWI value of each cate-
gory using Eq. (4). The calculated PWI val-
ues are used to rank the categories for each
tested document. This method does not re-
quire complex parameter tuning in its calcu-
lation and is less time consuming.

The second method, referred to as SVM,
considers documents as independent points
on the feature space, and calculates the op-
timal decision boundary of the positive and
negative points using Support Vector Ma-
chines. Tf-idf weighting is used to calculate
document vectors. We use Support Vector
Machines, which work especially well with
high-dimensional feature spaces and also per-
formed best in the past studies using Reuters-
21578. SV M light V.3.50 3 with linear kernel
option is used in the experiments.

(2) the effect of probability estimations

Two probability estimation methods are
compared in the experiments: The first, re-
ferred to as freq, is given by Eq. (5) and sim-
ply uses the observed sample distribution as
the estimation of the ’true’ probability. The
second, referred to as mixture, is given by Eq.
(7) and takes the discounting effect into ac-
count in the estimation.

(3) the effect of compound terms

Two sets of documents are prepared for
comparison: For the first, words are extracted

3http://ais.gmd.de/∼thorsten/svm light/



using simple stemming and stop-words re-
moval procedures, the resulting 20,507 ba-
sic words being used as feature terms. For
the second, the documents are first morpho-
logically analyzed using Brill Tagger V.1.14.
Then, compound words are extracted us-
ing a set of pre-determined matching pat-
terns. After applying the same stemming and
stop-words removal procedures, the resulting
99,000 words are all used as feature terms.
The extraction methods are referred to as ba-

sic words and compound words, respectively.
Table 1 summarizes the results. It shows

that the performance is consistently better
with compound words cases than with basis

words cases; and also with mixture estimation
than with freq estimation. Also, comparing
the performance of PWI and SVM, the advan-
tage of the latter is obvious. Since both meth-
ods employ similar formulae that are based on
the inner product of term vectors, the differ-
ence may be attributed to the fine parame-
ter adjustment of SVM. While PWI simply
averages all the documents in the same cate-
gory, SVM carefully calculates the total errors
of training documents in the margin region.
The computational costs of these two meth-
ods are compared in our next experiments us-
ing NTCIR-J1.

Table 1: Results with Reuters-21578.
term probability categorization

extraction estimation methods
methods methods PWI SVM

basic freq 0.782 0.871
words mixture 0.794 0.873

compound freq 0.806 0.873
words mixture 0.814 0.875

The performance values reported in the
past studies are: 0.776 for Rocchio 4, 0.820
for Ripper, and 0.827 for sleeping experts
(Cohen and Singer, 1999); 0.773 for naive
Bayes method and 0.820 for the stochastic
decision tree with ESC (Li and Yamanishi,
2000). Also, with slightly different but rather
advantageous conditions, 0.799 for Rocchio
and 0.864 for SVM (Joachims, 1998); 0.796
for naive Bayes and 0.860 for SVM (Yang and

4tf-idf-based method with relevance feedback.

Liu, 1999). Based on these figures, we can
confirm that the performance of SVM in our
experiments is consistent with the past stud-
ies, and also that the proposed PWI-based
naive method performs better than the tradi-
tional naive Bayes or Rocchio methods, and
is quite good as a method without learning.

4.2 NTCIR-J1

With NTCIR-J1, each document belongs to
the one and only category. Then, we formu-
late the categorization task as a single 24-class
problem for PWI, and the 24 numbers of 2-
class problems for SVM. For PWI, a category
with the highest PWI value is selected. For
SVM, the values of the decision function for
the 24 2-class problems are compared, and
the category with the highest score is selected.
The performance is measured by the ratio of
correct judgments, i.e., the number of docu-
ments classified into the class that they orig-
inally belong to, divided by the number of
tested documents. ChaSen Version 2.02 is
used as the Japanese morphological analyzer.
Other conditions are the same as in the pre-
vious experiments.

The large scale of NTCIR-J1 allows us to
examine the performance under variable sizes
of training data. The sizes are: size =
1,000, 2,000, 5,000, 10,000, 20,000, 50,000,
and 309,999 (the maximum). For each of
1,000 ∼ 50,000 sizes, 10 different sets are ran-
domly picked from the whole training data.
The smallest size 1,000 is determined so that
at least five documents are sampled for each
category. The average number of extracted
terms for each size is shown in Figure 2. It can
be seen that the number of distinct terms is
almost proportional to the size of the training
data, with the maximum value being nearly
four million terms. Obviously, we need a
scalable method to manipulate low frequency
terms in such large-size data.

Table 2 illustrates the effect of low fre-
quency terms on the categorization tasks.
It shows the performance of PWI with full
size training data, where only terms such as
f(w) > K are used as features. The perfor-
mance increases monotonically as the value of
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Figure 2: The number of distinct terms.

K becomes greater, showing the advantage of
utilizing low frequency terms. Although not
shown here, we have also tested the case when
information gain is used for selecting terms,
but the tendency remains the same. Also,
comparing the performance of compound and
basic words, it becomes clear that the former
shows better performance for approximately
the same number of feature terms.

Table 2: Effect of low frequency terms.

terms basic words compound words
used as number perfor- number perfor-
features of terms mance of terms mance
f(w) > 0 377,603 0.7596 3,754,779 0.8149
f(w) > 1 166,958 0.7557 1,236,856 0.8093
f(w) > 2 114,506 0.7537 722,014 0.8034
f(w) > 3 89,811 0.7524 514,167 0.8007
f(w) > 4 75,101 0.7518 398,858 0.7958
f(w) > 5 65,188 0.7505 327,553 0.7926
f(w) > 10 42,291 0.7473 175,229 0.7830
f(w) > 15 32,971 0.7462 121,567 0.7785
f(w) > 20 27,712 0.7439 93,695 0.7737

Figure 3 compares the performance for dif-
ferent training sizes where the mixture model
is used for the estimation. We can confirm
that significant improvement is obtained by
considering compound words instead of basic

words: Looking at the results in more detail,
compound words outperforms basic words in
all the 61 runs for PWI. The same is also
true for SVM with size ≥ 5000, although the
difference is not clear for SVM with size =
1000,2000. The performance of SVM is bet-
ter than the performance of PWI, showing the
advantage of machine learning approaches in

text categorization problems. Unlike the case
with Reuters-21578, the difference between
the freq and the mixture estimation methods
was not so obvious with NTCIR-J1.
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Figure 3: Comparison of the performance.

Figure 4 compares the average execution
time using Pentium III 696MHz (Linux).
Note that the execution time is plotted us-
ing log-scale. Despite the good scalability of
SVM compared with other dedicated learn-
ing methods, the computational cost of SVM

is still much greater than of PWI. For exam-
ple, the execution time for the largest dataset
is 135 seconds for PWI and 80,131 seconds
(about one day) for SVM.

In addition to the computation time shown
in Figure 4, PWI and SVM commonly require
about 35 minutes for morphological analysis
and term extraction, 18 minutes for indexing
the whole data set. Also, SVM requires an-
other 18 minutes for calculating normalized
weights for the largest data set. Note that (i)
as a language with no explicit word bound-
aries, such pre-processing is quite common in
Japanese, and also (ii) the computational cost
of standard NLP is usually proportional to
the text size, and consequently the relative
cost for learning becomes dominant when the
size of the training data becomes large.

Figure 5 compares the performance aver-
aged over 24 classes, assuming the test data
contains equal numbers of documents from
each class. Compound words are used as fea-
tures. It can be seen that the mixture es-
timation is better than the freq estimation,



10

100

1000

10000

100000

1000 10000 100000

ex
ec

ut
io

n 
tim

e 
(s

ec
)

number of training data

basic words/pwi
compound words/pwi

basic words/svm
compound words/svm

Figure 4: Comparison of the execution time.

and also that PWI is better than SVM in
terms of macro averaging. The results sug-
gest that there is more than a simple trade-off
of ’the computational cost’ and ’the perfor-
mance’ between SVM and PWI: While SVM

exploits the class size distribution in its op-
eration, PWI treats all the classes equally,
regardless of the distribution in the training
data.
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averaged performance.

5 Discussion

In this paper, we have first analyzed the sta-
tistical nature of terms in text and proposed
a naive text categorization criterion to ex-
ploit information carried by low frequency
terms. We have also investigated the advan-
tage of considering morphological information
and probabilistic language modeling at the

pre-processing of text categorization.
At present, we consider all the possible

compound words as features. Future issues
include application of more dedicated meth-
ods of term extraction, and use of different
sampling and feature selection strategies that
can reduce the execution cost of SVM.
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