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Abstract

The feature quantity, a quantitative representation of speci-
ficity introduced in this paper, is based on an informa-
tion theoretic perspective of co-occurrence events between
terms and documents. Mathematically, the feature quan-
tity is defined as a product of probability and information,
and maintains a good correspondence with the tfidf-
like measures popularly used in today’s IR systems. In
this paper, we present a formal description of the feature
quantity, as well as some illustrative examples of applying
such a quantity to different types of information retrieval
tasks: representative term selection and text categoriza-
tion.

1 Introduction

This paper presents the mathematical definition and ap-
plications of the feature quantity, a measure of specificity
of terms or documents in a given document set. To in-
troduce the basic idea, we first revisit the classical, but
nevertheless important question of ’what is the mathe-
matical implication of tfidf?’ in an information theoretic
framework.

First of all, it is assumed that a document is given as
an unordered set of terms. Let D = {d1 · · · dN} be a set
of documents and W = {w1 · · ·wM} be a set of distinct
terms contained in D. The parameters N and M are the
total numbers of documents and terms, respectively. In
our adaptation of a probabilistic view, we also use the
notion of dj for an event of selecting a document from
D. Similarly, wi is used for an event of selecting a term
from W . Now, let D and W be random variables defined
over the events {d1 · · · dN} and {w1 · · ·wM}, respectively.
Our objective here is to calculate the expected mutual
information between D and W (Figure 1).

Assuming all the documents are equally likely at the
initial stage, P (dj) = 1/N for all dj ∈ D. Then, the
amount of information calculated for each document is
identically given by −log(1/N). It follows that the self
entropy of random variable D, which is defined as the
expected amount of information, is:

H(D) =−
∑

dj∈D

P (dj)logP (dj)

† This manuscript appeared in Proc. of ACM SIGIR
2000, p.104-111.
(c) 2000 ACM 1-58113-226-3/00/0007

wi

d j

P(w )i

terms

probability
distribution
of query 
terms
submitted to
the system

documents

jP(d  | w )ijiP(w  , d  ) jP(d  | w )i= P(w )i

 d  N1d .....
1

w
M

w.....

co−occurrences of
documents and terms

Then, the 
system selects 
a document
using the term. 

probability
distribution
that represents
the system’s
knowledge on the
stored documents

First, a user 
submits a query 
term to the
system.

Figure 1: An illustrative situation assumed in the calcu-
lation of the expected mutual information.

=−N · 1
N
log

1

N
= −log 1

N
. (1)

Next, consider a situation where a subset of specified doc-
uments that contain wi (∈ W ) are known. Let Ni be
the number of documents in the subset. Assuming that
the Ni documents are equally likely, the amount of in-
formation calculated for each document in the subset is
−log(1/Ni). In this case, the self entropy of D given wi

becomes:

H(D|wi) =−
∑

dj∈D

P (dj|wi)logP (dj|wi)

=−Ni · 1
Ni
log

1

Ni
= −log 1

Ni
. (2)

Since documents without wi occur with probability zero,
there is no contribution from these documents, i.e., the
factor (N −Ni) does not appear in the above equation.

Now, let us assume that a term wi is randomly picked
from the whole document set. Denoting the frequency of
wi within dj as fij , the frequency of wi in the whole doc-
ument set as fwi , and the total frequency of all terms ap-
pearing in the whole document set as F , the probability

that wi is selected is
∑

j

fij

F
=

fwi
F
. Then, the expect-

ed information gain of the event, also referred to as the
posterior entropy or the expected mutual information, is
calculated as:

I(D;W) =H(D)−H(D|W)

=
∑

wi∈W

P (wi) (H(D)−H(D|wi))



=
∑

wi∈W

fwi

F

(
−log 1

N
+ log

1

Ni

)

=
∑

wi∈W

fwi

F
log

N

Ni

=
∑

wi∈W

∑
dj∈D

fij

F
log

N

Ni
. (3)

Equation (3) equals the sum of the product of the term
frequency (tf), either in the form of fij or fwi , and the
inverse document frequency (idf) divided by a constant
factor F . Hence, we conclude that from an information
theoretic point of view, tfidf can be interpreted as the
quantity needed for the calculation of the expected mu-
tual information given by Eq. (3). When tf refers to fij ,
the tfidf values represent weights of terms within each
document and are summed up for all the combination of
terms and documents. When tf refers to fwi , the tfidf
values represent the significance of corresponding terms
in a whole document set and are summed up for all the
words.

We should note here that in the derivation of Eq. (3),

the condition P (dj) =
∑

W (dj )

fwi
F

· 1
Ni

= 1
N
is implic-

itly assumed for consistency, where W (dj) is the set of
distinct terms contained in dj . In our view, the specific
assumption itself represents the heuristic that tfidf em-
ploys. Then, is there a possibility of extending the defi-
nition of tfidf into a more general form by applying the
same information theoretic view?

Bearing this question in mind, the principal idea of
this paper is that given a component of textual data such
as a document or a term, the significance of the compo-
nent is expressed as a product of the probability that it
occurs and the amount of information it represents, i.e.,

(feature) = (probability) × (information).

Although conventional information theory does not ex-
plicitly deal with such a quantity (but uses the one in the
calculation of entropy since entropy is generally defined as
the expected amount of information), we have postulat-
ed that what the current popularity of the tfidf measure
tells us is the usefulness of such a quantity as a measure
of significance.

Another important implication of the above formula-
tion is that the two probability distributions, P (wi) and
P (dj |wi) as shown in Figure 1, can be determined inde-
pendently. In the figure, P (wi) represents the probability
distribution of the query terms submitted to the system,
while P (dj |wi) is the conditional probability distribution
of documents, given the query term. In other words,
P (wi) serves as a model of the user, and P (dj |wi) as a
model of the retrieved documents. Such a formulation not
only is closely connected to the previous theoretical de-
velopment such as [1] [4] but also allows us to extend the
classical definition of tfidf in more flexible ways, includ-
ing the nonlinear scaling of term frequency, which is com-
monly practised in today’s IR systems. Also, by adopting
different term distribution models for the same document
set, we can successfully connect the vector-space oriented
view of the original tfidf to the probabilistic ones, as is
shown in our text categorization application.

This paper reports some of the preliminary results
of our attempt to expand such ideas. The subsequent
sections are organized as follows. Section 2 presents the
mathematical definition of the feature quantity. Section
3 deals with the problem of selecting representative terms
where the feature quantity is used as a measure for the
specificity of a term. Section 4 examines the text cate-
gorization problem where the feature quantity is used to
identify the category best characterized by a given set of
terms. Section 5 is the conclusion.

2 Mathematical Formulation

2.1 Notations and Basic Formulae of Informa-
tion Theory

As before, let D and W be a set of documents and of
terms, respectively, and D and W be random variables
corresponding to D and W . Assume a joint probability
distribution P (wi, dj) is given for dj ∈ D and wi ∈ W .
Here, P (wi, dj) provides a fundamental view of the prob-
lem. Naturally, a number of strategies are available to
determine P (wi, dj). For example, P (wi, dj) can be deter-
mined directly from occurrences of terms in documents.
In this case, standard techniques in probabilistic language
modelling can be applied, including the simplest way of
assigning probabilities proportional to the observed oc-
currences, or more computationally intensive ways, such
as frequency discounting of n-gram statistics or the max-
imum entropy method. It is also possible to choose oth-
er distributions for P (wi) while still estimating P (dj|wi)
using the standard techniques. In this case, P (wi, dj) is
uniquely determined by the general probability formula
P (wi, dj) = P (dj |wi)P (wi).

Given P (wi, dj), it immediately follows that

P (wi) =
∑

dj∈D

P (wi, dj), (4)

and
P (dj) =

∑
wi∈W

P (wi, dj). (5)

By general definition of information theory, mutual infor-
mation between wi and dj is given by

M(wi, dj) = log
P (wi, dj)

P (wi)P (dj)
. (6)

The expected mutual information between D and W is:

I(D;W) =
∑

wi∈W

∑
dj∈D

P (wi, dj)M(wi, dj) (7)

=
∑

wi∈W

∑
dj∈D

P (wi, dj) log
P (wi, dj)

P (wi)P (dj)
.

I(D;W) can be viewed as the entropy of the co-occurrences
of documents and terms. Note that by definition, I(D;W) =
I(W;D) and Eq. (7) maintain duality regarding docu-
ments and terms.

The information increase of D after the event of ob-
serving wi can be expressed using Kullback-Leibler infor-
mation, which is a measure of the difference between two
probability distributions. Kullback-Leibler information
between P (D|wi) and P (D) is calculated as:

K(P (D|wi), P (D)) =
∑

dj∈D

P (dj |wi)log
P (dj |wi)

P (dj)
. (8)
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Similarly, the information increase of W after the event
of observing dj is given by Kullback-Leibler information
between P (W|dj) and P (W):

K(P (W|dj), P (W)) =
∑

wi∈W

P (wi|dj)log
P (wi|dj)

P (wi)
. (9)

Applying P (wi, dj) = P (dj |wi)P (wi) = P (wi|dj)P (dj)
to Eqs. (7), (8) and (9), it is straightforward that the
following relationships hold between the expected mutual
information and Kullback-Leibler information:

I(D;W) =
∑

di∈W

P (wi)K(P (D|wi), P (D))

=
∑

dj∈D

P (dj)K(P (W|dj), P (W)). (10)

2.2 Quantitative Representation of Features

Quantitative representation of the feature as formulated
in this section is defined as the contribution of a specif-
ic co-occurrence event to the overall entropy calculation
given by Eq.(7). The feature quantity of the occurrence
of wi and dj is defined as:

F(wi, dj) = P (wi, dj)M(wi, dj). (11)

Similarly, the feature quantity of the occurrence of wi is
defined as:

F(wi;D) = P (wi)K(P (D|wi), P (D)), (12)

and the feature quantity of the occurrence of dj as:

F(dj ;W) = P (dj)K(P (W|dj), P (W)). (13)

In all cases, the feature quantity is expressed as a prod-
uct of probability and information, the latter being either
mutual information, in Eq. (11), or Kullback-Leibler in-
formation, in Eqs. (12) and (13).

Equation (12) can further be rewritten as:

F(wi;D) =
∑

dj∈D

P (wi)P (dj |wi) log
P (dj |wi)

P (dj)

=
∑

dj∈D

F(wi, dj), (14)

and Eq. (13) as:

F(dj ;W) =
∑

wi∈W

P (wi|dj)P (dj) log
P (wi|dj)

P (wi)

=
∑

wi∈W

F(wi, dj). (15)

Then, it follows that the entropy of all co-occurrences is
simply expressed as the summation of feature quantity
values of each case:

I(D;W) =
∑

wi∈W

∑
dj∈D

F(wi, dj)

=
∑

wi∈W

F(wi;D)

=
∑

dj∈D

F(dj ;W). (16)

It is also important to note that the above definition is
applicable, not only to document-to-term co-occurrences,
but also to term-to-term, category-to-term, or document-
to-descriptor co-occurrences. We will partly see in later
sections how the definition is applied and extended for
these different types of co-occurrence data.

3 Feature Quantity in Representative Terms S-
election

3.1 Definition of tfkli Measure

Relevant to the representative terms selection problem
are: (i) automatic term extraction in computational ter-
minology, and (ii) feature subset selection in machine
learning. Approaches from computational terminology
mainly concern the problem of determining the specifici-
ty of a term within a given document set, the result of
which is used, for example, for information visualization
in IR systems. On the other hand, approaches from the
machine learning side mainly concern the problem of re-
ducing the dimension of the features of the documents
so that succeeding learning algorithms can effectively be
applied, sometimes avoiding the over-fitting problem. In
both cases, terms are characterized either by documents
in which they occur, or by terms with which they co-
occur.

Commonly used statistical measures in term extrac-
tion include term frequency, tfidf , document frequency,
mutual information, log-likelihood ratio, signal-noise ra-
tio, and Kullback-Leibler information [3] [14]. In machine
learning, such statistical measures as mutual information,
information gain, odds ratio, and expected cross entropy
are used [16] [8]. Among these, the expected cross entropy
[7] has exactly the same definition as our feature quanti-
ty. We would like to point out here that although there
exist numbers of comparative studies in both fields, the
expected cross entropy in the machine learning field has
never been examined in the term extraction field as far as
we know. Nor has it ever been pointed out that tfidf and
the expected cross entropy follow the same mathematical
structure; that is, to express the significance of a term by
the product of probability and information. This moti-
vated us to compare these two measures in more detail
using an actual data set.

As before, let fij be the number of occurrences of wi

within dj , fwi be the total occurrences of wi in all the
documents, fdj be the total occurrences of all terms in
dj , and F be the total occurrences of all terms in all the
documents, i.e., F =

∑
wi∈W

∑
dj∈D

fij =
∑

dj∈D
fdj =∑

wi∈W
fwi . The strategy to choose representative terms

is to select ones with greater feature values. For simplic-
ity, we assume here that the joint distribution P (wi, dj)
is simply determined by the observed occurrences, such
that

P (wi, dj) =
fij

F
. (17)

From Eqs. (12) and (17), the feature quantity of a term
for the whole document set is calculated as:

F(wi;D) = fwi

F

∑
dj∈D

fij

fwi

log

fij

fwi

fdj

F

. (18)

Since the selection criterion in the above equations is ex-
pressed as the product of term frequency and Kullback-
Leibler information, we refer to such a measure as tfkli
in the following.

It is also possible to use joint distributions other than
Eq. (17). For example, taking the influence of unob-
served terms into account, the first term of Eqs. (19) and
(18) can be substituted with (fwi − δ)/F , where δ is the
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coefficient of absolute discounting [11]. When calculating
a term’s significance with respect to a specific documen-
t, the feature quantity is expressed as follows from Eqs.
(11) and (17):

F(wi; dj) =
fij

F
log

fij

fwi

fdj

F

. (19)

3.2 Experiments to Compare tfidf and tfkliMea-
sures

Comparing Eqs. (18) and (19) with the traditional defi-
nition of tfidf(wi) (= (fwi/F )× log(N/Ni)), it becomes
clear that with our information theoretic formulation, idf
and Kullback-Leibler information play similar roles. Specif-
ically, these two quantities match when the following con-
ditions are satisfied:

(C1) fdj/F ≈ 1/N
(C2) fij/fwi ≈ 1/Ni

Here, C1 means all the documents have almost equal
sizes, while C2 indicates that the occurrence of a term
does not differ much across the documents. For exam-
ple, these conditions naturally hold when the document
set under consideration is a collection of relatively short
articles. Also, C2 is automatically satisfied when fij is
given as a Boolean value, i.e., either 1 (occurs) or 0 (does
not occur).

In the following experiments, we have actually cal-
culated and compared the values of tfidf and tfkli for
each term. The objective is to investigate the appropri-
ateness of interpreting tfidf as a variation of our feature
quantity. Two different types of data sets are used in the
experiments:

(D1) 2,106 abstracts of academic conference papers
registered by the Japanese Society of Artificial
Intelligence, and

(D2) 24 groups of abstracts of academic conference
papers, in total 327,880, each group of which
corresponds to a different academic society.

Each abstract is downloaded from the NACSIS Academ-
ic Conference Paper Database, also used in the NTCIR
Workshop [10], and then is processed by a Japanese mor-
phological analyser to extract nouns and also compound
nouns. Although the language used in the corpus is Japa-
nese, the result is language-independent since we only use
the co-occurrence statistics for the numerical comparison
of the two measures.

For data set D1, we assume that each abstract corre-
sponds to a single document. The average size of a docu-
ment is 93.4 words with the standard deviation being 33.0
words, figures which indicate conditions C1 and C2 are
satisfied in this case. For data setD2, a group of abstracts
presented at the same academic society is considered to be
a single document. In this case, the size variation between
documents is extremely large: while the largest documen-
t contains about 25% of the total 31,450,032 terms, the
smallest one contains only 0.6% of the total. This implies
the similarity conditions C1 and C2 no longer hold.

Figure 2 shows the results where tfidf and tfkli val-
ues are calculated for all the different terms using Eq.
(18), and then summed up for the terms with the same

frequency (fwi). The horizontal axis represents the fre-
quency of the term and the vertical axis represents the
averaged (for (a), (b), (d) and (e)) or the totalized (for
(c) and (f)) feature values. For example, with D2, the
tfidf values for all the terms with frequency 1 is log24
and thus the point (1, log24) is plotted on the graph (d).

From these results, we can confirm our expectation
that the values of tfidf and tfkli are almost identical for
D1, but differ greatly for D2. Although only averaged
values are shown in the figure, we have also examined the
correlation between tfidf and tfkli on an individual ter-
m basis. The correlation coefficient for middle frequency
terms is about 0.9 ∼ 1.0 for D1, and 0.6 ∼ 0.7 for D2. It
is also important to note that on comparing the amount
of information totalized for each frequency, low frequen-
cy terms contain a considerable amount of information,
while the amount of information contributed by each ter-
m is small. Because of the exponential nature of term
frequency distribution, known as Zipf’s Law, this tenden-
cy remains unchanged even when considering the effect of
unobserved terms.

3.3 Expanding the notion of tfidf

The theoretical development and experimental results
show that tfidf and tfkli values are highly correlated for
a relatively homogeneous document set, in which case,
idf provides a simple but robust estimate of the infor-
mation. It has also been observed that tfidf and tfkli
values differ much for the data set composed of hetero-
geneous documents. Then, the next question is: which
works better under which conditions?

We do not examine this issue in the present paper,
however, for the following reason. Remember that tfidf
assumes equal probability for all the documents with wi.
In the information theoretic framework, such a strategy
maximizes the entropy of D under the restriction that on-
ly the Ni documents with wi have nonzero probabilities.
On the other hand, tfkli simply uses the observed fre-
quency as the estimate of the real probability of wi with-
out considering the effect of finite sampling. The optimal
allocation, if any, should be somewhere in the middle.
However, the issue is related to the selection of a proba-
bilistic model rather than the definition of a significance
measure, and is beyond the scope of the paper. Instead
of further comparing the behaviour of tfidf and tfkli,
we show in the following how the notion of tfidf can be
expanded using the information theoretic framework.

In the conventional studies, it is repeatedly pointed
out that simple term frequency places too much emphasis
on high frequency terms, while mutual and other infor-
mation criteria allocate too much weight to low frequen-
cy terms. It is also widely recognized that the classical
definition of tfidf , with its linear scaling in term frequen-
cy, again lays too much stress on high frequency terms.
The difficulty is in establishing a good balance between
frequency and information. This problem can easily be
reformulated using the probabilistic framework shown in
Figure 1. Namely, the ”term frequency” of tfidf actually
refers to the probability of terms submitted to the system,
and can be determined independently from the frequency
of terms in the target documents. Therefore, the tf fac-
tor may be proportional to the square root of the term
frequency, logged, or equally weighted, depending on the
system’s expectation about the query terms.
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Figure 2: Comparison of tfidf and tfkli values.

In particular, the rough but simplified assumption
of tfidf allows us the following simple extension. Let
us consider k independent trials, in each of which a s-
ingle term is picked randomly from W with probability
P (wi) = fwi/F . Let Wk

i be an event that wi appears
at least once in the selected k terms. It immediately fol-
lows that the probability of Wk

i equals the probability
that wi is not selected at all subtracted from 1; that is,

P (Wk
i ) = 1−

(
1− fwi

F

)k

. Since tfidf employs the rule-

of-thumb assumption that all the documents are equally
likely at the initial stage and also that all the documents
that contain wi are equally likely given wi, the informa-
tion obtained by Wk

i does not depend on the number of
times wi is observed. Then, the feature quantity using
idf can be simply expressed as

tfidfk(wi) =

(
1−

(
1− fwi

F

)k
)

log
N

Ni
. (20)

If we let k = 1, Eq. (20) equals the definition of tfidf .
On the other hand, if we let k = ∞, Eq. (20) equals the
definition of idf . However, in general situations where
conditions C1 and C2 do not hold, the calculation be-
comes more complex.

Although the above extension seems trivial, the im-
portant implication is that the specificity of terms can
be defined so that it changes depending on the hypoth-
esized situation, i.e., the distribution of terms submitted
to the system. Eq. (20) provides a flexible way of trad-
ing off frequency and information ranging from tfidf to
idf . Accordingly, the abstract level of the selected terms
is changed from general to concrete. Table 1 illustrates
how the top 10 ranked terms of Reuters-21578 acq topic
category change for values k = 1, 103, 105, where fij is
used instead of fwi in calculating Eq. (20). The figures
on the left side indicate the frequencies of the correspond-

ing terms in the acq topic category. It can be seen that
the terms become more specific as the k values increase.

Table 1: Example of effect of changing k with tfidfk

measure with Reuters-21578 acq category.

tfidf tfidf1000 tfidf100000

5140 share
696 merger
977 acquir
934 sharehold
313 usair
847 stake
221 cyclop
215 twa
268 gencorp

4060 inc

696 merger
313 usair
977 acquir
934 sharehold
221 cyclop
847 stake
215 twa
268 gencorp

5140 share
901 acquisit

221 cyclop
215 twa
154 purol
102 chemlawn
77 cyacq
60 emeri
54 comdata
50 pesch
47 norstar
44 conrac

4 Feature Quantity in Text Categorization

4.1 Equations for fq-σ and fq-π Measures

Let C = {c1, · · · , cN} be a specified set of categories. Al-
so, let w∗ = wi1 , · · · , wik be a sequence of k terms repre-
senting a document to be categorized. The strategy for
text categorization is to identify cj ∈ C that maximizes
the feature quantity value, given w∗ (Figure 3). Here, a
category is viewed as a single collection of terms rather
than a collection of independent documents and thus, E-
q. (11), used for the calculation of the feature quantity
across terms and documents, is also applicable for the
calculation of the feature quantity across terms and cat-
egories. For notational simplicity, we denote the set of
different terms in w∗ as w+, and the number of times wi

(∈ w+) occurs in w∗ as hi in the following.
Concerning the selection of w∗, two different formu-

lations are considered.

(F1) In the first case, it is assumed that the k terms
are selected from some unknown distribution.
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Figure 3: An illustrative situation assumed in the text
categorization task.

(F2) In the second case, it is assumed that the k terms
are selected from one of the categories in C.

The difference between F1 and F2 roughly corresponds
to the difference between the existing vector and prob-
abilistic IR models. In case F1, the target document is
generated independently of the existing categories. Then,
the objective of the categorization task is to find a cate-
gory closest to the target document. In case F2, on the
other hand, the target document comes from one of the
existing categories. This time, the objective of the cat-
egorization task is to identify the category from which
the document is most likely to have come. Of course in
actual applications, these two formulations cannot explic-
itly be distinguished. Nevertheless, they require different
mathematical treatments.

In case F1, the selection of the k terms is independent
of the distribution of the terms in the existing N cate-
gories. Assuming P (wi); the distribution of the observed
k terms, and P (cj |wi), the probability of each category
conditioned by wi, are given; P (cj) is determined by

P (cj) =
∑

wi∈W

P (wi)P (cj |wi). (21)

Since terms in w∗ are mutually independent, P (w∗, cj)
= P (cj)

∏
wi∈w+ P (wi|cj)hi . Then, from the additivity

property of the amount of information for independent
events, the feature quantity of cj and w

∗ can be expressed
simply as the summation of the feature quantity of cj and
each wi ∈ w∗:

F(w∗, cj) =
∑

wi∈w+

hi F(wi, cj)

=
∑

wi∈w+

hiP (wi, cj)log
P (wi, cj)

P (wi)P (cj)

=
∑

wi∈w+

hi P (wi)P (cj |wi)log
P (cj |wi)

P (cj)
.(22)

On the other hand, in case F2, the k terms are se-
lected from the same existing category cj ∈ C. Assuming
that P (cj), the probability that cj is selected as the o-
rigin of the k terms, and P (wi|cj), the probability of wi

conditioned by cj , are given, P (w
∗, cj) is calculated as:

P (w∗, cj) = P (cj)
∏

wi∈w+

P (wi|cj)hi . (23)

From P (w∗) =
∑

cj∈C
P (w∗, cj), P (w∗) is given by:

P (w∗) =
∑
cj∈C

P (cj)
∏

wi∈w+

P (wi|cj)hi . (24)

Then, the feature quantity is calculated as:

F(w∗, cj)

= P (w∗, cj) log
P (w∗, cj)
P (w∗)P (cj)

= P (cj)
∏

wi∈w+

P (wi|cj)hi log

∏
wi∈w+

P (wi|cj)hi

P (w∗)
.(25)

Unlike the case in Eq. (22), the k terms are not inde-
pendent of each other, and Eq. (25) cannot be simplified
further.

Noting the different treatments of the conditional prob-
abilities in Eqs. (22) and (25), we refer to these equations
as fq-σ and fq-π, respectively.

4.2 Incorporating Different Probability Models

The interpretations of the classification tasks by F1 and
F2 are based on different standpoints; that is, F1 uses
P (wi) and P (cj |wi) as primary distributions while F2
assumes P (cj) and P (wi|cj) are given. However, if P (wi)
and P (cj |wi) are known, P (cj) and P (wi|cj) are uniquely
determined by Eq.(21) and from Bayes Theorem. The
reverse is also true. This enables the comparison of F1
and F2 under the same probabilistic assumptions. In
our experiments, the following three models are used for
comparison.

The first model is chosen for F1 and referred to as
freq. Since F1 assumes that the target document origi-
nated from some unknown distribution, P (wi) is set equal
for all the terms, i.e., P (wi) = 1/M (∀wi ∈W ), where M
is the total number of distinct terms. P (cj |wi) is simply
determined in proportion to the observed frequency. De-
noting the frequency of wi in category cj as fij , the total
frequency of wi for all the categories as fwi , and freq is
defined as:

P (wi) =
1

M
, P (cj |wi) =

fij

fwi

(26)

The second model is chosen for F2 and referred to
as laplace. With F2, consideration of unobserved events
is crucial in determining the value of P (wi|cj). The al-
location policy of freq does not work at all if w∗ con-
tains only a single unknown term because the probabili-
ty P (w∗, cj) automatically becomes zero for all the cat-
egories. Laplace, given by the following equations, pro-
vides a simple solution to the zero frequency problem:

P (cj) =
fcj

F
, P (wi|cj) = 1 + fij

M + fcj

(27)

where fcj is the total frequency of terms in category cj .
This estimation is known as the Laplace estimator and is
often used in the conventional naive Bayes approaches in
the text categorization field.
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Now, regardless of the convenience of the Laplace esti-
mator, it has been widely recognized in probabilistic lan-
guage model studies that the estimator does not provide a
good fit compared with other dedicated discounting meth-
ods [6]. Recent studies in the text categorization field
have also shown that the performance of naive Bayes cat-
egorization is sensitive to the estimation of P (wi|cj) and
that there exist cases when other event models outper-
form the Laplace estimator [9]. Considering these, we in-
troduce a new probability model that can deal with both
F1 and F2. The third model, referred to as mixture,
is expressed as the mixture distribution of P (cj) in Eq.
(27), and P (cj |wi) in Eq. (26):

P (wi) =
fwi

F
, P (cj |wi) = (1− r)

fcj

F
+ r

fij

fwi

(28)

where the mixture ratio r is determined by analysing ac-
tual corpus statistics. Specifically, we have observed that
such a model provides a good fit with our corpus, but the
details are still under investigation.

4.3 Correspondence with Naive Text Categoriza-
tion Methods

Fq-σ given by Eq. (22) is closely related to the similarity
measure widely used in the present IR systems: the nor-
malized inner product of term vectors weighted by tfidf .
Among many of its variations, an example of the conven-
tional measure, which is referred to as tfidf-cos in this
paper, is expressed as:

tfidf(w∗, cj) =
∑

wi∈w+

hi × fij × log
N

Ni

||w∗|| ||cj || . (29)

The normalization factor is given by ||w∗|| = ∑
wi∈w+ hi

2

and ||cj || =
∑

wi∈W
(fij log

N
Ni
)2, with fij being the fre-

quency of wi within category cj . On the other hand,
the definition of fq-σ with freq probability allocation is
rewritten as:

F(w∗, cj) =
1

M

∑
wi∈w+

hi × fij

fwi

× log

fij

fwi∑
wi∈W

fij

fwi

1

M

(30)

Comparing Eq. (29) with Eq. (30), it becomes clear
that both tfidf-cos and fq-σ entail the same form of the
”summation of hi×fij × log(·)”. The difference is in their
normalization and in their consideration of the amount of
information in the log terms. Based on this, we can expect
that the performance of these two categorization methods
match well when the target document set conforms with
C1 and C2 in the previous section.

Next, fq-π given by Eq. (25) has a clear correspon-
dence with the naive Bayes method popularly used in
conventional text categorization studies. The method,
referred to as n-bayes in this paper, is based on the max-
imum likelihood principle that selects the category with
the largest probability P (cj |w∗). Thus, the classification
strategy can be expressed as:

nbayes(w∗, cj) = P (cj |w∗) =
P (cj , w

∗)
P (w∗)

=

P (cj)
∏

wi∈w+

P (wi|cj)hi

P (w∗)
(31)

where the term P (w∗) can be omitted since it is common
for all the categories.

Comparing Eq. (31) with Eq. (22), it transpires that
the only difference between n-bayes and fq-π is the con-
sideration of the amount of information expressed as the
log term in Eq. (25). The difference is most clearly
demonstrated in the extreme case when k = 0 (w∗ = ∅).
Without any information available, n-bayes selects the
most frequent category as the most plausible, while fq-π
judges all the categories to be equally likely. However,
for larger values of k, the difference between Eq. (25)
and Eq. (31) is negligible and does not have significant
influence on the classification results.

4.4 Text Categorization Experiments

In the following experiments, three different measures for
text categorization are compared: (i) fq-σ, (ii) tfidf-cos,
and (iii) n-bayes/fq-π. The data set used is again ab-
stracts of academic papers extracted from the NACSIS
Academic Conference Paper Database. The categoriza-
tion task is to identify the society, or the class of societies,
of an unknown abstract data. Since the size of each ab-
stract is sufficiently large (the average is about 90 words
per abstract), there exists no meaningful difference be-
tween the n-bayes and fq-π methods.

The training data is the same as data setD2 in section
3.2, which is composed of a total of 327,880 abstracts
from 24 academic societies. Each category corresponds
to either

(P1) one of 24 academic societies, or
(P2) one of the two society classes; information tech-

nology related or not related.

With P1, the sizes of the 24 categories vary greatly, from
a maximum of 7,986,568 terms to a minimum of 187,290
terms per category. With P2, the two society classes are
of almost equal size, with the ratio about 46% to 54%.
Based on these figures, we can expect that tfidf-cos works
more consistently with fq-σ for P1 than for P2.

The categorization task is formulated as a multi-class
problem, since each abstract belongs to one and the only
society/society class. In the evaluation, a total of 10,000
abstracts are prepared that are not contained in the train-
ing data, but with the same distribution across categories.
Therefore, if about 25% abstracts of the training data be-
long to society A, then the test data also contains 25%
abstracts from society A. The performance is compared
using the ratio of the correct judgments, i.e., the number
of abstracts classified into the class that they originally
belong to, divided by 10,000. The size of the training data
set is varied as either 1,000, 10,000, or 327,880 for each of
P1 and P2 so that the scalability of different categoriza-
tion strategies can be compared. For all combinations,
three probability models, freq, laplace, and mixture are
tested. The results are summarized in Table 2.

From these results, we can confirm that tfidf-cos per-
forms well with P2. In the cases with P1, the perfor-
mance of tfidf-cos is considerably degraded as the size
of the training data becomes large. In contrast, better
performance is obtained for larger sizes of the training
data for fq-σ and n-bayes. The best performance values
of these two methods are almost equal. Comparing the
probability models, freq is not applicable for n-bayes due
to the zero frequency problem we have already mentioned,
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Table 2: Result of Classification Task
(a) Results for P1 with 24 categories

the size of the training data
Methods P (dj |wi) 327, 880 10, 000 1, 000

tfidf -cos freq 0.6835 0.7128 0.6596
laplace 0.6914 0.5486 0.4657
mixture 0.6840 0.7074 0.6368

fq-σ freq 0.8097 0.7516 0.6523
laplace 0.6537 0.5463 0.5155
mixture 0.8158 0.7558 0.6552

n-bayes freq 0.0000 0.0000 0.0000
(fq-π) laplace 0.7099 0.6055 0.5626

mixture 0.7929 0.7646 0.6603

(b) Results for P2 with two categories
the size of the training data

Methods P (dj |wi) 327, 880 10, 000 1, 000

tfidf -cos freq 0.9709 0.9483 0.9194
laplace 0.9704 0.9475 0.9185
mixture 0.9701 0.9437 0.9108

fq-σ freq 0.9595 0.9459 0.9212
laplace 0.9575 0.9405 0.9116
mixture 0.9625 0.9532 0.9289

n-bayes freq 0.0009 0.0000 0.0000
(fq-π) laplace 0.9658 0.9516 0.9231

mixture 0.9689 0.9579 0.9329

while with tfidf-cos and fq-σ, freq seems to be reason-
ably good. Also, laplace does not work well with P1 for
both fq-σ and n-bayes. Mixture performs consistently
well in all the cases.

Lastly, we have so far only referred to the naive tfidf-
cos and n-bayes text categorization methods. Other ex-
isting methods include Rocchio with Relevance feedback
[2], Prtfidf based on probabilistic analysis [5], and a va-
riety of machine learning methods such as LLSF, C4.5,
k-NN, and Support Vector Machine [12][15]. However,
we have observed that with as many as 2,300,000 feature
terms, the naive methods sometimes outperform other
more complicated methods. For example, the standard
learning algorithms such as C4.5 or kNN can easily be
applied if the feature dimension is reduced to 5,000. An-
other investigation using the same document set showed
that the performance is around 0.7 for P1 [13], which is
smaller than the values 0.75 to 0.80 obtained in our ex-
periments. Of course, the difference may be overturned
by the fine tuning of the learning methods. Nevertheless,
we think the issue needs further investigation since the
data used in our experiments is different from Reuters-
21578, the standard test set for text categorization tasks
today, both in its large scale and also in its specificity to
the academic fields. Such phenomena may partly be ex-
plained by the fact that academic documents are highly
domain specific and a considerable amount of information
is carried by low frequency terms, as has been shown in
Figure 2(c)(f).

5 Remarks

In this paper, we have introduced the feature quantity,
a quantitative representation of specificity of textual da-
ta components. Although our investigation in this paper
mainly concerns the consistency of the proposed feature
quantity with, and not its superiority to, conventional s-
tatistical measures, we believe such an approach is worth

trying since the information theoretic view helps us to
apply the same mathematical framework to different tar-
get problems such as representative term selection, text
categorization, and also automatic identification of collo-
cations and translation pairs. In addition, such a view
enables us to shed light on commonly practised heuristics
such as tfidf or discarding of low frequency data at the
pre-processing stage.
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