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Abstract

Record linkage refers to techniques for identify-
ing records associated with the same real-world enti-
ties. Record linkage is not only crucial in integrating
multi-source databases that have been generated inde-
pendently, but is also considered to be one of the key
issues in integrating heterogeneous Web resources. How-
ever, when targeting large-scale data, the cost of enu-
merating all the possible linkages often becomes im-
practicably high. Based on this background, this paper
proposes a fast and efficient method for linkage detec-
tion. The features of the proposed approach are: first, it
exploits a suffix array structure that enables linkage de-
tection using variable lengthn-grams. Second, it dynam-
ically generates blocks of possibly associated records
using ‘blocking keys’ extracted from already known reli-
able linkages. The results from our preliminary experiments
where the proposed method was applied to the integra-
tion of four bibliographic databases, which scale up to
more than 10 million records, are also reported in the pa-
per.

1. Introduction

Record linkageis a problem of identifying a group of
records from different sources that refer to the same real-
world entity. The term ‘record linkage’ was used as early
as the 1940s by Dunn [7] and Marshall [20], followed by
the pioneering work by Newcombe et al. in 1959 [26]. Re-
cently, the explosive growth of database resources, partic-
ularly the increase of legacy databases on the World Wide
Web, has made the problem one of the central issues in data
warehousing and data quality management.

Many recent studies, such as [3], have pointed out that
similar types of problem have been described differently in
different research fields, for example,duplicate detection

[24, 2] or deduplication[27], which emphasizes the elimi-
nation of duplications in a database;record matching[31] or
approximate string join[10], which is an operation to inte-
grate two separate tables;entity-name clustering and match-
ing [4], object consolidation[23] or proper noun corefer-
ence analysis[22], which concerns the coreference determi-
nation problem in text processing; andentity identification
[18], object identification[30], entity matching[5] or entity
reconciliation[6], which concerns heterogeneous data inte-
gration.

Table 1 illustrates the case where two bibliographic
records refer to the same article, but with different at-
tribute values. As shown in this example, real-world
records usually contain ‘noise’, caused by such fac-
tors as notational variations, human input errors, or differ-
ences in editing policies. Therefore, constructing a prac-
tical linkage system often means the implementation of
domain-specific knowledge to normalize the attribute val-
ues, or to evaluate the degree of match between the two
records. In addition, the cost often becomes impractica-
bly high, particularly for large databases that have been
generated independently.

1. TAGUCHI Isao
Observation of Nonlinear Conduction in (NbSe4) 3I : II. LOW
TEMPERATURE PROPERTIES OF SOLIDS : Charge Density
Waves
Japanese Journal of applied physics. Supplement
vol. 26(3.pt1), pp.619-620 (1987)

2. TAGUCHI I
Observation of nonlinear conduction in (NbSe4)3I.
Jpn J Appl Phys Suppl
no.26-3 Pt.1, pp.619-620 (1987)

Table 1. Two bibliographic records that refer
to the same article.

There has been remarkable progress in recent years in
approaches from the information retrieval (IR) and machine



learning (ML) fields [14]. Examples include the use of bi-
grams or Q-grams for possible linkage detection [3, 12, 11],
ranking and scoring using thetf-idf similarity measure [4],
applying learnable edit distance in matching score calcu-
lation [2], and the active learning adaptation to improve
iteratively the performance of the linkage system [27]. It
has been reported that these techniques enable less domain-
dependent linkages while maintaining performance.

Our research was originally motivated by our ex-
perience with CiNii (Citation Information provided by
National Institute of Informatics, http://ci.nii.ac.jp/index-
e.html), where several bibliographic databases are in-
tegrated into a unified nationwide service for academic
papers and their citations. Although the current imple-
mentation of CiNii employs the most modern techniques,
including bigram-based search and support vector ma-
chines (SVMs), what has been learned in previous opera-
tions is that the system still requires considerable human
review to maintain the quality of linkages. We seek a qual-
ity of: (i) less than 0.1% false matches and (ii) 1% missing
linkages for databases with105 − 107 records.

Based on this background, this paper aims to establish
a methodology to use and exploit recent IR and ML tech-
niques for large-scale linkage problems with human review.
Although our final goal is the linkage of general Web re-
sources, for experimental purposes our focus in this paper
is primarily on the linkage of legacy databases. In the fu-
ture, we plan to combine the proposed method with exist-
ing text segmentation techniques, such as [29] and deal with
a broader range of data resources.

The remainder of the paper is organized as follows: In
section 2, a general procedure for record linkage is intro-
duced and, focusing on the preselection process (referred
to as ‘blocking’ in this paper), a brief overview of exist-
ing methods is given. In section 3, we propose a new block-
ing scheme that is characterized as follows. First, it exploits
a suffix array structure to enumerate possible linkage can-
didates rapidly using variable length n-grams. Second, it
dynamically generates blocks of records that are possibly
linked to each other using ‘blocking keys’ extracted from
the already known reliable linkages. Section 4 presents the
results from our preliminary experimental studies, where
the proposed method was applied to the integration of four
bibliographic databases that scale up to more than 10 mil-
lion entries. Section 5 presents our conclusions.

2. Background Issues

2.1. General Procedure for Record Linkage

The ‘records’ in this paper are the entries in databases
with known, but not necessarily common, attributes. The
two general requirements for record linkage systems are: (i)

efficiency and scalability to deal with large-scale data, and
(ii) accuracy to maintain the high quality of the data. How-
ever, these two requirements are contradictory and cannot
be satisfied easily using a single-path method. It follows that
record linkage systems in general employ multi-stage pro-
cessing that includes (i) selection of possible linkages, (ii)
comparison and judgment, and (iii) human review (Figure
1). Each is briefly explained below.

(1) Selection
Given a target dataset, record pairs that possibly re-

fer to the same entities are enumerated first. This stage
is also calledblockingin this paper.

(2) Comparison and judgment
All the selected candidate pairs are labeled either as

‘match,’ ‘ possible match,’ or ‘non-match’ based on the
matching score calculated using a predefined matching
function. Here, ‘match’ and ‘non-match’ are the deci-
sions with high confidence, and ‘possible match’ indi-
cates that the classifier is uncertain whether they rep-
resent correct linkages.

(3) Human review
Record pairs that are labeled as ‘possible match’ are

examined by human reviewers.

After stage (3), the detected duplicates are either the pairs
that are automatically labeled as ‘match’ at stage (2) or the
pairs that are identified as positive by human reviewers at
stage (3).

Selection Human reviewComparison & judgement

Figure 1. General record linkage procedure.

Throughout the process, the most time-consuming stage
is the human review, stage (3). For example, in our system,
a decision requires 10–20 seconds for a trained reviewer
whether the result is positive or negative. It follows that the
previous stages should be carefully designed so that they
can significantly reduce the number of human judgments.
For stage (2), to determine the optimal decision boundaries
application of conventional machine learning techniques,
such as SVM, is straightforward. Then, the critical issue be-
comes reducing the number of candidate linkages at stage
(1) while maintaining as many positives as possible. Note
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that applying the classifier to all the possible combinations
of records is obviously not feasible. For example, record
linkage between two databases each with106 records yields
106×106 = 1012 times comparisons of record pairs. Based
on this, we specifically focus on the selection strategy at
stage (1).

2.2. Overview of Existing Selection Methods

The basic strategy for candidate selection is to divide the
target records into small blocks so that only pairs in the
same block are considered at the later stages. The existing
selection methods can be categorized into two: (a) sorting
methods and (b) ranking methods. Each is briefly reviewed
below.

Sorting methods Sorting methods are the traditional
blocking schemes where the sorted list of records is first
generated and then decomposed into different blocks (Fig-
ure 2-(a)). The simplest isstandard blocking[17] where
records are first sorted using a user-specified key (for ex-
ample, ‘the top four characters of one’s family name’),
and then, records with the same key value are grouped
into a single block for further consideration.Multiple pass
blocking [17] is where multiple keys are used for sort-
ing. SNM (sorted neighborhood method) is a method
that slides a fixed size window on the sorted list as-
suming that neighbors on the sorted list are also simi-
lar [15][16]. SNM has variations such asclustering SNM
or multi-pass SNM. Other sorting methods includepri-

ority queue method[25], k-way sorting method[9], or
adaptive filtering method[13].

Ranking methods Ranking methods consider the records
as plain text and generate clusters of similar records by ap-
plying conventional information retrieval techniques (Fig-
ure 2-(b)).TI-similarity [28] first calculates the number of
common characters for each attribute and then uses the
summed value as a similarity measure.Bigram indexing
[3] converts the key value into a set of character-based bi-
grams and then uses the permutations of subsets as keys
for generating blocks. The lower bound of the subset size
is determined by a specified threshold value. Positionalq-
gram [10, 12, 11] enables fast approximate string joins be-
tween records with a specified edit distance threshold value.
Canopy clustering[4, 21] randomly selects a new record
and generates a cluster of similar records using thetf-idf
distance measure, widely used in IR. The generated clus-
ters are calledcanopiesand constitute blocks for further ex-
amination.

2.3. Observations

The sorting methods require domain-dependent knowl-
edge to select appropriate keys and, forSNM, the optimal
window size. Alternatively, the ranking methods do not re-
quire specific domain knowledge because they treat all the
key attribute values as text. Nevertheless, the performance
of the sorting methods are not necessarily better than the
ranking methods because neighbors on the sorted list do
not usually cover all the similar records even when multi-
ple pass sorting is applied. A previous study [1] compared
the performance ofstandard blocking, SNM, bigram index-
ing, andcanopy clustering. It reported that the latter two, to-
day’s representative ranking methods, significantly outper-
form the former, the traditional sorting methods.

The computational cost for the sorting methods is simply
that of sorting all the target records. Moreover, the sorting
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operation is applied only once for the entire set of records.
On the other hand, the cost for the ranking methods is the
cost of indexing, retrieving, and ranking the records. The re-
trieval operation must be applied iteratively for all the pos-
sible blocks, the number of which is approximately in pro-
portion to the total number of records. Therefore, even with
today’s search engine techniques, the cost for ranking meth-
ods becomes significant for large-scale data, due to the ex-
ponential property of frequencies known as Zipf’s Law.

Another important issue is the cost of human review.
As an illustrative example, Figure 3 shows the histogram
of the matching scores obtained from the actual data used
in our experiments. Assume that we chooseTµ andTλ as
boundaries for three decision regions, ‘non-match’, ‘ pos-
sible match’, and ‘match.’ As has been already described,
the candidates labeled as ‘possible match’ require human
review, and the left- and right-side colored regions repre-
sent different types of linkage errors, i.e., ‘false non-match’
and ‘false match,’ respectively. From the figure, it becomes
clear that the best performance we can expect from a classi-
fier is determined a priori by the score distribution after the
selection. Obviously, the total number of human judgments
is most sensitive to the number of less-promising negative
candidates (note that the vertical axis of Figure 3 is log-
scaled and the majority of the samples are negative). How-
ever, neither conventional sorting nor ranking methods ex-
plicitly considers the elimination of these negative candi-
dates.

3. The Proposed Method

3.1. Basic Idea

To summarize the above observations, the advantages
and disadvantages of the existing methods are as follows.

• The sorting methods are scalable to the data size, but
the ranking methods perform better in terms of the

quality of the detection.

• For both methods, the cost of human review cannot be
significantly reduced using conventional classifiers.

Based on this, we propose a new selection method that com-
bines two newly developed blocking schemes:suffix array-
based blockingandkey-based blocking(Figure 2.2).

• Suffix array-based blockingprovides a fast and
domain-independent selection function by exploit-
ing variable length n-grams on a suffix array represen-
tation. This enables us to identify, quickly though not
exhaustively, linkage candidate pairs. Then, the de-
tected pairs are evaluated using a specified scoring
function to identify reliable positive pairs.

• Key-based blockingprovides a way to resample the
candidates using matching patterns, called ‘blocking
keys’, obtained from the reliable pairs. Records that
match the same blocking key are grouped into the same
block for further comparison and judgment.

In the proposed method, suffix array-based blocking is used
to extract domain-specific transformation rules for the key-
based blocking, and key-based blocking is used to reactivate
candidate pairs that were overlooked by the suffix array-
based blocking. By this combination, the majority of the
negative candidates shown in Figure 2.2 can be eliminated.
Each blocking scheme is explained in the following.

3.2. Suffix Array-Based Blocking

A suffix array is a sorted list of all the subsequences of
tokens that appear in the text (Figure 3.1). Given a set of
records for linkage, the corresponding suffix array structure
is generated as follows.

(1) Tokenize all the key attribute values. Tokens are either
characters or terms, depending on the types of the at-
tributes and/or languages.



Suffix array

structure Unigram Bigram Trigram ... n-gram

The list

of sorted

pointers

A block of records that contain

the sequence

"adaptive duplicate detection"

Filtering

The longest match

The total match count

Number of records in the block

Figure 5. Suffix array-based blocking.

(2) Represent each record as a single token sequence.
Here, the key attributes are arranged in a specified or-
der with delimiters between them. Start and stop sym-
bols are added at the beginning and the end of the se-
quence.

(3) Sort all the pointers of the tokens in alphabetical order
of the token sequences.

Let (t1, · · · , tn) be a token sequence of lengthn (i.e.,
n-gram). Then, all the records that contain(t1, · · · , tn) are
expressed as adjacent members of the suffix array. Con-
versely, the adjacent members of the suffix array who have
the same topn tokens(t1, · · · , tn) catalog all the records in
the database that contain(t1, · · · , tn). It follows that we can
exhaustively check arbitrary length token sequences sim-
ply by iteratively scanning the suffix array structure. With
the proposedsuffix array-based blocking(SAB), such ad-
jacent members of the suffix array are considered ‘blocks.’
We select only such blocks that satisfy the following condi-
tions.

(1) The size of the block is betweenαl andαu.

(2) The length of the longest common token sequence is
not less thanβ.

(3) The total number of common tokens is not less thanγ.

Here, (3) is calculated by applying pairwise DP matching
to the members of the block. The parametersαl, αu, β,
andγ were determined heuristically in later experiments.
The computation time of the proposed SAB is basically that
needed for the sort operation to generate the suffix array
structure. That is, with the built-in standard quick sort func-
tion, O(n log(n)), for text withn tokens.

There are several features of SAB. First, unlike exist-
ing ranking methods, which require an index search for ev-
ery block generation, SAB collectively generates the entire

blocks simultaneously. Next, unlike existing sorting meth-
ods that use predetermined sorting keys, SAB can dynami-
cally select keys as arbitrary lengthn-grams that satisfy the
conditions above. These features are particularly advanta-
geous when dealing with large-scale data.

3.3. Key-Based Blocking

Key-based blocking (KB) collects neighbors of the reli-
able linkages using ‘blocking keys’ that represent correspon-
dence between specific attribute values. Given a list of key
attributes, those blocking keys are automatically extracted
from the pairs detected by SAB (Figure 4).

The KB method can be considered to be a variation of
knowledge-based methods [15, 16, 19] that employ equiva-
lence rules between the corresponding attribute values. The
difference is that KB automatically extracts the blocking
keys, whereas most of the knowledge-based methods use
equivalence rules given by human experts. Because each
blocking key is connected to a distinctive block, they can be
justified easily and evaluated based on the matching scores
of the supporting record pairs, or verified by human review-
ers. The framework of KB is also similar to that of the active
learning proposed in [27]. The difference is that KB utilizes
highly reliable positive examples, whereas active learning
investigates neutral examples so that the boundary of the
classifier can be refined further.

4. Experimental Results

4.1. Conditions for the Experiments

In our experiments we used four bibliographic databases
that were provided in our service operation in cooperation



DB1> <key attr1>str(1, 1)</key attr1>
<key attr2>str(1, 2)</key attr2>
<key attr3>str(1, 3)</key attr3>

DB2> <key attr1>str(2, 1)</key attr1>
<key attr2>str(2, 2)</key attr2>
<key attr3>str(2, 3)</key attr3>

Figure 4. Key-based blocking.

with other institutions. The databases contain periodicals
published by Japanese academic societies. Table 2 shows
the total number of records used in the experiments. Be-
cause the four databases come from different sources, a con-
siderable number of records were registered in the multi-
ple databases. The objective of the experiment was to de-
tect those duplicated entries so that the databases can be in-
tegrated with a unified service framework. The linkage pro-
cess follows the general procedure that has been shown in
Figure 1. Namely, the proposed blocking methods were first
applied, and next, the detected candidate pairs were evalu-
ated using a given matching function. Then, the candidate
pairs were automatically labeled as either ‘match’, ‘ possi-
ble match’, or ‘non-match.’ Finally, all the pairs labeled as
‘possible match’ were examined by human reviewers to as-
certain whether they refer to the same article. In the experi-
ments, the linkage was applied to the following six datasets:
{(DB1-DB2), (DB1-DB3), (DB1-DB4), (DB2-DB3), (DB2-
DB4), (DB3-DB4)}. 1

Database ID Number of records
DB1 623,996
DB2 1,345,570
DB3 5,977,839
DB4 15,464,052

Table 2. Target databases.

1 Part of theDB1-DB2dataset (43,618 records) was used for initial
check and tuning and was subtracted from the remaining dataset.

When preparing the data, the attribute values were first
normalized using general substitution rules (for example,
uppercase to lowercase conversion), and then segmented
into tokens, either characters or words, depending on the
attribute types and the description languages (for example,
names written in Japanese characters were segmented into
characters, and the titles were segmented into words). In
our experiments, we selected the following attributes: the
name of the first author, the title of the article, the title of the
journal, the volume and the number of the issue, the pages,
and the year. For the first three, both the English and the
Japanese descriptions were considered. In addition to these
attributes, human reviewers may refer to other information
sources as well, including the electronic or printed distri-
bution of the articles. Also considered in human judgment
were such factors as changes in journal titles, proceedings
of the joint workshops, or reprinted articles. The matching
function used for comparison, as well as the threshold val-
ues of the classifier, was determined heuristically because
the dominant factor for performance in this case was the
quality of the selection rather than the performance of the
classifier.

Because different databases follow different notations
and conventions, the target problem is not an easy task. Tak-
ing a real example, of all the record pairs identified as dupli-
cates by human reviewers, only 10% had their authors and
titles match exactly after normalizing. Conversely, when the
normalized authors and titles were used as keys for sort-
ing, only 30% of the known duplicates were detected and
7% of these were false matches. Considering that our tar-
get performance value is 0.1% false-match errors and 1%
false-non-match errors, we concluded that simple conven-
tional sorting methods were not applicable to the datasets.
In addition, due to the large scale of the problem, apply-
ing conventional ranking methods was not feasible with the
limited computing resources available in our experimental
environment. For these reasons, in this paper we only give
the preliminary results that show the effect of the proposed
SAB and KB. Detailed comparisons have been left for fu-
ture study.

4.2. Selection Methods

In the experiment, we investigated three alterna-
tive methods: Exact&KB, SAB&KB, and SAB-alone
(Figure 5). Each method is described briefly in the follow-
ing.

Exact&KB With this method, all the pairs whose normal-
ized authors and titles exactly match were first identified.
Then, corresponding blocking keys were extracted. As the
key attributes for KB, ‘the journal title’ and ‘volumes and
numbers of the issue’ were used. Because only limited pairs
were identified byExact, we applied a simple and ad hoc



generalization to the extracted keys; that is, to substitute the
volumes and numbers by variables. Using this generaliza-
tion, theExactmethod could compensate for the scarceness
of the samples.

Example of a generalized blocking key:
DB2> <journal>JSME international journal. Se-

ries C, Mechanical systems, machine ele-
ments and manufacturing</journal><voln>$X
($Y)</voln>

DB4> <journal>JSME Int Journal. Ser
C. Mech Systems, Mach Elem
Manuf</journal><voln>$X ($Y)</voln>

Later, the instantiated variables of the generalized blocking
keys were checked and inappropriate correspondences were
excluded. The threshold values forKB to decide ‘match’,
‘possible match’, and ‘non-match’ were adjusted so that: (i)
all the ‘match’ cases were correct, and (ii) as many candi-
date pairs as possible were labeled as ‘possible-match’ so
long as they were in the same block.

SAB&KB With this method, the pairs extracted bySAB
were also used to generate blocking keys. The parameters
for SAB wereαl = 2, αu = 4, β = 4, andγ = 12. The fol-
lowing is an example of a blocking key obtained for (DB2-
DB4).

Example of a blocking key:
DB2> <journal>The Journal of Toxicological

Sciences</journal><voln>21 (Supplement
I)</voln>

DB4> <journal>J Toxicol Sci</journal><voln>21
(Suppl 1)</voln>

Note that there exist approximately 100,000 journal titles
in total, and even for a single title, manually encoding all
the correspondence patterns sometimes incurs considerable
costs. For example, the exceptional cases include proceed-
ings of joint workshops, special and seasonal editions, and
supplementary issues. The correspondences between the
journal issues specified by the generated blocking keys were
verified later by human reviewers.

SAB-alone For comparison purpose, we have also exam-
ined the case where the candidate pairs were directly ex-
tracted using SAB. The parameters for SAB were, again,
αl = 2, αu = 4, β = 4, andγ = 12.

In the experiment,SAB&KBwas applied complementar-
ily to Exact&KB, which means only those pairs that were
not detected byExact&KBwere reported for human review.
On the other hand, the results fromSAB-onlycontained so
many negative pairs that human review was not feasible.
Consequently,SAB&KBcovers almost all the known dupli-
cates. As part of the CiNii operation, bigram-based block-
ing using an XML database engine had been separately car-
ried out for the dataset (DB2-DB4), the result of which is
available for comparison.

Figure 5. Methods used in the experiments.

4.3. Results

In our evaluation, we examined: (i) the execution time
for SAB, (ii) the number of blocking keys automatically ex-
tracted by KB, and (iii) the number of pairs that required
human review for each method as well as the errors in the
detection.

Execution time for SAB Table 3 shows the total number of
records, the number of detected candidate record pairs, and
the execution time ofSAB, for the six datasets. The execu-
tion was on-memory using a single CPU of Sun Fire V880
(900MHz, 64GBytes memory). TheQsort function of the
standard C library was used. The relationship between the
execution time and the total number of records is also shown
in Figure 6.

Dataset
name

Total number
of records

Number of
candidate pairs

Time
(min.)

DB1-DB2 1,969,566 1,168,521 72
DB1-DB3 6,601,835 994,272 142
DB1-DB4 16,088,048 311,951 469
DB2-DB3 7,323,409 1,228,011 198
DB2-DB4 16,809,622 2,295,823 576
DB3-DB4 21,441,891 5,086,244 591

Table 3. Execution time for SAB.

As a comparison, it took approximately 0.2 seconds
with (DB3-DB4) dataset for the XML database engine with
bigram index to generate a candidate block given a tar-
get record (using HPC2500 32CPU/128GB cluster PC).
This means that the blocking time totals approximately two
weeks when all the target record is examined. Because the
blocking time of SAB for the same dataset was approxi-
mately 10 hours, we concluded that the computation cost of
SAB was significantly reduced.

Keys extracted by KB Table 4 compares the number of
extracted blocking keys usingExact&KBandSAB&KB, re-



Figure 6. Execution time for SAB for different
dataset sizes.

spectively. The figures in the parentheses forExact&KBare
the numbers of manually defined patterns for the key gen-
eralization. A considerable number of additional keys were
obtained bySAB.

Dataset
Name

Keys
obtained
by Exact

Additional
keys obtained

by SAB
DB1-DB2 148 (4) 428
DB1-DB3 612 (6) 5,552
DB1-DB4 806 (8) 2,189
DB2-DB3 464 (10) 5,172
DB2-DB4 356 (9) 900
DB3-DB4 6,016 (12) 38,614

Table 4. Number of blocking keys.

Performance comparison Table 5 summarizes the perfor-
mance ofExact&KB, SAB&KB, andSAB-only. The table
shows: (i) the number of the pairs that were identified as du-
plicates by the classifier, (ii) the number of the pairs that re-
quired human review, (iii) the number of the pairs that were
falsely identified as duplicates, and (iv) the total number of
correctly identified duplicate pairs.

The figures in the parentheses for (iii) and (iv) repre-
sent the detected candidates as a percentage of the known
duplicates found bySAB&KB. Note that human reviews
were applied only to those pairs that had been found by
SAB&KB. For Exact&KB and SAB&KB, all the pairs la-
beled as ‘match’ by the classifier were automatically con-
sidered as correct. The justification was also confirmed by
the human reviewers. For these cases, (iii) also includes the
cost of checking the correspondences of blocking keys auto-
matically extracted. ForSAB-only, (iii) represents the num-
ber of records with at least one duplication candidate. This
is because human reviewers check those candidates simul-
taneously on the same screen.

ForSAB-only, the following three ideal cases were com-
pared: first, all the detected candidates were considered as
‘possible match.’ The ratio of falsely identified pairs (p1),
and the ratio of missed duplications (p2) were not speci-
fied. The threshold values for ‘match’, ‘ possible match’, and
‘non-match’ were simply determined as the highest and the
lowest scores of the negative and the positive examples, re-
spectively. In the second case,p1 was set to 0.1% and the
threshold value for ‘match’ and ‘possible match’ were op-
timized so that the number of ‘possible match’ was mini-
mized givenp1. p2 was not specified. In the third case,p1

was maintained as 0.1%, andp2 was set to 5%. In this case,
the threshold values for ‘possible match’ and ‘non-match’
were optimized so that the number of ‘possible match’ was
minimized givenp1 andp2.

To summarize the results in Table 5,SAB&KBshowed
the best performance, showing the effectiveness of combin-
ing these two blocking schemes. In addition, the following
observations were made.

• SAB&KBsuccessfully found additional duplicates that
could not be found byExact&KB. This is also shown
in Table 4 where considerable numbers of additional
blocking keys were obtained bySAB&KB. Note that
the performance ofExact&KBdepends on the ad hoc
generalization of the blocking keys. Without this gen-
eralization, the performance ofExact&KB was not
comparable.

• The cost of human review was much smaller with
SAB&KB and Exact&KB than with SAB-only. SAB-
onlyby itself can detect approximately 95% –99% can-
didate pairs found bySAB&KB. However, the num-
ber of human reviews was not drastically reduced with
SAB-only, even when the quality requirement was re-
laxed.

Finally, the existing CiNii system found an additional 476
duplicates for the dataset (DB2-DB4) after 262,829 human
judgments. This means that the estimated false-non-match
ratio for SAB&KB was approximately 0.2%. Conversely,
SAB&KBfound 1,471 duplications that were not identified
by the existing CiNii system only after 15,715 human judg-
ments. The figures demonstrated the effectiveness of the
proposedSAB&KB. In the future, we plan to carry out fur-
ther comparison with existing blocking methods using more
comprehensive human review results.

5. Conclusion

In this paper, we propose a new blocking scheme for
large-scale record linkage problems. Through the prelimi-
nary experiments using real-world bibliographic databases,
the effectiveness of the proposed method both in computa-



Method
Dataset
name

Automatically
identified
duplicates

Total number
of human
judgments

Falsely
identified
pairs (%)

Total number of
correctly identified

duplicates (%)
SAB-only DB1-DB2 1,058 308,746 0 (0.0) 88,655 (97.3)
p1 = * DB1-DB3 1,230 500,890 0 (0.0) 265,175 (98.9)
p2 = * DB1-DB4 152 505,367 0 (0.0) 325,198 (99.2)

DB2-DB3 2,226 622,587 0 (0.0) 184,390 (95.6)
DB2-DB4 871 661,728 0 (0.0) 199,441 (98.4)
DB3-DB4 1,500 2,981,888 0 (0.0) 1,339,823 (99.4)

SAB-only DB1-DB2 60,503 249,301 91 (0.1) 88,655 (97.3)
p1 = 0.001 DB1-DB3 21,260 480,860 268 (0.1) 265,175 (98.9)
p2 = * DB1-DB4 3,072 502,447 327 (0.1) 325,198 (99.2)

DB2-DB3 3,502 621,311 192 (0.1) 184,390 (95.6)
DB2-DB4 44,544 618,055 202 (0.1) 199,441 (98.4)
DB3-DB4 14,736 2,968,652 1,348 (0.1) 1,339,823 (99.4)

SAB-only DB1-DB2 60,503 27,864 91 (0.1) 86,564 (95.0)
p1 = 0.001 DB1-DB3 21,260 235,922 268 (0.1) 254,722 (95.0)
p2 = 0.05 DB1-DB4 3,072 326,023 327 (0.1) 311,324 (95.0)

DB2-DB3 3,502 189,935 192 (0.1) 183,230 (95.0)
DB2-DB4 44,544 153,370 202 (0.1) 192,475 (95.0)
DB3-DB4 14,736 1,295,445 1,348 (0.1) 1,280,674 (95.0)

Exact&KB DB1-DB2 71,856 4,561 0 (0.0) 76,124 (83.5)
DB1-DB3 216,155 14,525 0 (0.0) 225,899 (84.3)
DB1-DB4 299,356 13,863 0 (0.0) 312,810 (95.5)
DB2-DB3 157,304 14,105 0 (0.0) 169,996 (88.1)
DB2-DB4 179,920 13,134 0 (0.0) 192,729 (95.1)
DB3-DB4 1,068,498 96,473 0 (0.0) 1,164,971 (86.4)

SAB&KB DB1-DB2 86,051 5,931 0 (0.0) 91,121 (100.0)
DB1-DB3 254,713 21,877 0 (0.0) 268,129 (100.0)
DB1-DB4 314,453 20,318 0 (0.0) 327,710 (100.0)
DB2-DB3 182,779 17,418 0 (0.0) 192,874 (100.0)
DB2-DB4 190,637 15,715 0 (0.0) 202,606 (100.0)
DB3-DB4 1,256,090 129,507 0 (0.0) 1,348,078 (100.0)

Table 5. Performance comparison.

tion time and in the cost of human review has been demon-
strated. Although the experiments in this paper mainly focus
on records of traditional databases, we expect that the pro-
posed method will be an initial step towards practical Web
resources exploitation, in that:

(i) the matching results enabled us to generate large-
scale dictionaries of entities with their notational vari-
ations and acronyms. In addition, heuristic normal-
ization rules can automatically be identified. Such re-
sources are in most cases crucial in identifying and an-
alyzing descriptions of entities that appear in unfor-
matted text on the Web.

(ii) because the proposed SAB method considers each
record as plain text, the method is directly applicable to
semi-structured or unstructured data, the examples of
which include home pages of researchers or research
organizations, references to full-text papers, and other
bibliographic collections that constitute the academic

infrastructure on the Web.

Future work includes incorporating machine learning tech-
niques to the extraction of blocking keys and automatic
acquisition of normalization dictionaries from the verified
linkages.
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