Challenges in Quality Assurance for Machine Learning-based Systems

Fuyuki Ishikawa, National Institute of Informatics, Japan
with QAML Project / JSSST-MLSE / QA4AI Consortium

f-ishikawa@nii.ac.jp
About Speaker

- Dependability: formal methods, testing, optimization, assurance arguments, etc.
- Current focus (1): dependability of (autonomous) driving systems (talk at A-MOST yesterday)
- Current focus (2): dependability of machine-learning-based systems
 - Chair of SIG-MLSE
 - Vice Steering Chair of QA4AI Consortium
 - A new research project just started
“Interesting” Examples
How Will You Test? (1)

- When Honda sees ramen shop sign
 - First buzz in Dec 2017
 - [https://twitter.com/_gyochan_/status/938240168078622720]
 - [https://twitter.com/Bleu_kakeru727/status/937680760491753473]
 - Now a caution on the web site
 - http://www.honda.co.jp/hondasensing/feature/srf/

- Second buzz in Sep 2018
 - [http://www.tenkaippin.co.jp/company.html]

Can you find beforehand or prevent adverse (?) news??
How Will You Test? (2)

- From DeNA (May 2018)
 - Generate an image of a certain pose
 - Generate a movie given a pose sequence while changing the character

[https://dena.com/intl/anime-generation/]

What do you ensure to sell this to anime companies?
How do you Judge Acceptance?

- Technically unsolved issues
 - e.g., in Google Photo
 [https://www.theguardian.com/technology/2015/jul/01/google-sorry-racist-auto-tag-photo-app]
 [https://www.theguardian.com/technology/2018/jan/12/google-racism-ban-gorilla-black-people]

- Continuous learning, unclear oracle
 - A Microsoft bot learnt and made absolutely unacceptable tweets
 - A tweet by a Japanese bot rather attracted: “No way, you bald” “natural” from a “high-school girl” to her “parent” (Windows Japan) ?
 [https://twitter.com/ms_rinna/status/706615350524252160]
Correct Result vs. (Implicitly) Expected Logic

- A lot of studies on explainability (XAI)

- How do we use such techniques in engineering?
 - Which part of the input image was used for the classification?
 - *snow for wolf*

- What samples in training had high influence on the classification?
 - *fishes with similar colors*

[Ribeiro et. al., "Why Should I Trust You?": Explaining the Predictions of Any Classifier, KDD’16]

[Koh et. al., Understanding Black-box Predictions via Influence Functions, ICML’17]
Source of New Difficulties
Software 2.0 or Inductive Software Dev.

- Let us focus on ML
 - Present movement on AI was driven by ML, specifically advance in deep learning techniques
 - With ML, we construct a software component in a different way: derive the rule that governs the behavior from training data (not directly from engineers)
 - In the Japanese industry, the terms “inductive software development” and “inductive programming” is also used to clarify the essence

[https://medium.com/@karpathy/software-2-0-a64152b37c35]
Example

Boundary created from training data

Gibbon

Panda

[http://free-photos.gatag.net/]

Apr 23 2019

f-ishikawa@MLST'19
Impacts on Testing (Not Comprehensive)

- Large black-box to handle various situations
 - Principle of unit testing (and debugging) invalidated
- Errors as normal behavior (i.e., not 100% accuracy)
 - Test fail does not mean existence of a bug
- Often non-testable [Weyuker, On Testing Non-Testable Programs, 1982]
 - No oracle or oracle too costly to build
- Unknown boundaries in the implementation, adversarial examples
 - Little confidence on how it works in “similar” cases
 (no “equivalence classes”)

[Goodfellow et al., Explaining and Harnessing Adversarial Examples, 2015]
V&V Research Emerging in SE Community

- SMT-based verification [CAV’17]
- Search for non-robust cases with “neuron coverage” [SOSP’17 [ICSE’18]
- System-level falsification [NFM’17]
- Safe reinforcement learning [AAAI’18]
- Verification by stochastic game [TACAS’18]
- Metamorphic testing case studies [ISSTA’18]
- Empirical study on bug statistics [ISSTA’18]
- Mutation analysis [ISSRE’18]
- Updated coverage criteria [ASE’18]
- Fairness testing [ASE’18]
- Concolic testing [ASE’18]
- Surprise-driven testing [ICSE’19]
- Demonstration: structural coverage is misleading [ICSE’19]
- (and more) e.g., [https://github.com/TrustAI/Literature-on-DNN-Verification-and-Testing]
Movement in Japan (Partial)

- SIG-MLSE (Apr 2018)
 - SIG on Machine Learning Systems Engineering
 - Providing venues for presentations and discussions
 - Events almost every month, often go over the capacity

- QA4AI Consortium (Apr 2018)
 - Consortium of Quality Assurance for Artificial-Intelligence-based products and services
 - Guidelines for QA (to be released in May)

- And many others …
 - e.g., AIST + NII:
 Standards for quality like ISO26262 or Common Criteria
Guideline from QA4AI (to appear)

■ 5 axis of evaluation
 ■ Model, System, and Data
 ■ Process: especially agility to improve and react to unexpected outcomes
 ■ To match with Customer Expectation

■ Technical catalog (Body Of Knowledge)

■ Domain-specific insights
 ■ Autonomous driving, factory data processing, smart speakers, and creative generation

Can only be the current best and to be updated
Perception by Engineers

Questionnaire Survey

Method

- Dissemination by mailing lists and social networks (software engineering, ML, and AI)
- “those who have used ML at work”
- 280 answers

Question aspects

- Experience on SE activities and on ML techniques
- Past projects that used ML
- Quality attributes considered significant
- Perception of difficulties
- Characteristics of ML that lead to the difficulties
Experienced engineers were recently pushed to learn and use ML.
ML Usage Domain

- Manufacturing
- Information & Communication
- Company-Specific Services
- Foundational Development (e.g., middleware)
- Academic Research
- Automotive / Railway
- Finance / Insurance
- Home Appliance
- Wholesale and Retail
- Education
- Life Service / Amusement
- Medical / Welfare
- Construction
- Real Estate
- Utility

Application in manufacturing is large (in Japan)
XAI (eXplainable AI) is thought as significant also in practice

Maintenance, security, and privacy are somewhat left behind, or domains were limited not to consider them
We need to use new approaches as the existing ones do not work anymore

We can apply the same approaches but methods, etc., are still immature

- Decision Making with Customers
- Testing & Quality Evaluation / Assurance
- Debugging
- Updates
- Project Management
- Operation
- Training Data
- Architecture Design

We already have dedicated methods, etc. We can use existing methods, frameworks, or tools
Some Typical Comments

■ Tough negotiation with customers
 ■ We need to make a priori agreement that we cannot make a priori agreement on what we can develop, e.g., what accuracy we will be able to achieve
 ■ Free attacks at the acceptance time (with too much expectation on “AI”)

■ “POC (Proof-of-Concept) Poverty”
 ■ There are so many projects that finish at the POC phase

■ “We have data! We have! fraud”
 ■ Having large volume of data does not mean it is well annotated, not noisy, or with good correlations
Challenges more than Testing
Quality Attributes

- From SQuaRE Metrics (ISO/IEC 25023:2016)
 - e.g., Functional coverage: what proportion of the specified functions has been implemented?
 \[1 - \frac{\text{functions_missing}}{\text{functions_specified}} \]
 - Whether/how should we interpret and define similar metrics for ML-based systems?
 - e.g., Functional correctness: what proportion of functions provides the correct results?
 \[1 - \frac{\text{functions_incorrect}}{\text{functions_considered}} \]
 - Is the accuracy (and the like) as the average for the whole data space enough?
Our Simple Example: Attributed Tests

- To specify & check constraints
- To describe current status
- To discuss validity
- To compare with operational data

We tested with 100,000 data!

What data …? Did you test misty days?

Actual representation may be spreadsheet, GUI, or whatever

[Ishikawa, Concepts in Quality Assessment for Machine Learning - From Test Data to Arguments, ER’18]

Apr 23 2019
f-ishikawa@MLST'19 24
Our Simple Example: Attributed Tests

What if we do “equivalence classes” testing based on requirements and environmental assumptions?

Accuracy for different classification targets (e.g., “car”) in the vertical axis and different primary colors (e.g., “red”) in the horizontal axis

- Left: before data augmentation (accuracy: 79%)
- Right: after data augmentation (accuracy: 81%)
 (keras sample of Capsule CNN for CIFAR10 dataset)

Weakness changes!
Explicitly model intrinsic uncertainty in arguments to be aware of risk and need for continuous update.

Three patterns for uncertainty in goal decomposition, evidence contribution, and feasibility of goals:

- Reliability is shown for the weaknesses of the image recognition function
- Likely to incomplete and/or highly fragile
- Reliability is shown for images of foggy situations
- Validity of decomposition is dependent on the implementation and environment (which are changeable and must be monitored with dynamic evidences)

[Ishikawa et al., Continuous Argument Engineering: Tackling Uncertainty in Machine Learning based Systems, ASSURE’18]
Encoding into Engineering Terminology

How do we “encode” the required principles?

Assessment list in EU AI Ethics

- e.g., could the AI system affect human autonomy by interfering with the (end) user’s decision-making process in an unintended way?
- e.g., did you take safeguards to prevent overconfidence in or overreliance on the AI system for work processes?

FAQs on Emerging Testing Research (1)

- Metamorphic testing
 Define the expected output via a metamorphic relation: “changing an input this way will change the output that way”
 e.g., switching the RGB channels and re-learning will not change the classification results
 [Dwarakanath, Identifying Implementation Bugs in Machine Learning, 2018]

How to find such relations?
This is not testing based requirements: how much should we do? How to argue cost-effectiveness?
FAQs on Emerging Testing Research (2)

When to use what? What is the whole picture and roles of each method?

- Standard measurement of accuracy
- Search for adversarial examples
- Metamorphic testing
- Neuron coverage
- ...

And, is this all of what are required/necessary/effective?
Rough Illustration

In the input space

- Implemented boundary (unknown)
- Required/correct boundary (often unclear, vague, and implicit)

Current test dataset

Data to appear in operation i.e., what really matters (unknown beforehand)

Where are you generating/selecting new test data? What coverage/division are you considering?
Example: White-box Structural Coverage

“How diverse output values of each neuron have been observed by a test suite?”

- Originally used for increasing diversity in the “bad” (non-robust) outputs to be generated

- Used as criteria to judge a test suite (dataset)

 [Ma et al., DeepGauge: multi-granularity testing criteria for deep learning systems, 2018]

- Now said “could be misleading”

 - e.g., dependency rather on the search methods
 - e.g., natural faults vs. adversarial faults

 [Li et al., Structural Coverage Criteria for Neural Networks Could Be Misleading, 2019]
Summary

Machine learning as a new development paradigm

- Different characteristics, invalidating some of existing principles (in testing and in software engineering)
- Currently, efforts are initial and explorative: based on (implicit) hypothesis that we should do similar things to what we did for classical software systems

More contributions by the testing community demanded for essential discussions and insights on what are “good tests”, what are “bugs”, …