Software Engineering

(1) Overview

Sokendai / National Institute of Informatics
Fuyuki Ishikawa / &)1 &1
f-ishikawa@nii.ac.jp / @fyufyu

http://research.nii.ac.jp/~f-ishikawa/

KEHFFBABREA B8 X TLMARE

SVt el

National Institute of Informatics

http://research.nii.ac.jp/~f-ishikawa/

From Syllabus

Bl earn software engineering techniques for efficient
development and operation of large-scale and high-quality
software systems

mOverview activities and techniques in each phases of
development process

mAlso discuss various development paradigms and the state-
of-the-art topics

Evaluation

mContributions to the lecture (40%)
mReport (60%)

Lecture Content

mOverview of Software Engineering

BGo though the development process
B Requirements Engineering
m System Analysis and Architecture
® Detail Design and Reuse
®Formal Methods
m Testing and Debugging
B Maintenance
B Project Management
mDiscuss different paradigms and latest research
® Agile Software Development
mVarious Development Paradigms
B State-of-the-art Industrial Applications and Research Topics

TOC

mQverview of Software Engineering
®Modeling and Process
mUML

Software Engineering

w1968 at NATO Science Committee

mResponse to “software crisis”
.JUSt over 50 yea I'S [http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF]

mDefinition in SWEBOK (to be detailed later)

the application of a systematic, disciplined,
quantifiable approach to the development,
operation, and maintenance of software;

that is, the application of engineering to software

f-ishikawa@Sokendai

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

Causes of Difficulties

BFamous phrase : “No

. I/ [F. P. Brooks, Jr., No Silver Bullet — Essence and
Sl |Ver B U | |et Accident in Software Engineering, 1987]

mComplexity : has essential complexity, where details are not trivial,
that increases non-linearly over size

mConformity : requirec

to conform a variety of principles, every

time, such as human

nerception and interfaces

mChangeability : required to deal with various changes of
requirements and environments
mInvisibility : difficult to effectively visualize with interleaving

dependencies

Other Points (vs. Programming Exercise)

mDevelop what other people want
mExample : lecture management system in Sokendai
What mutual understanding and decision making were done by
people who ordered and who constructed??

mDevelop a large product by many people, possibly crossing
multiple organizations
mMaybe no “genius”, people changing

mDevelop with an agreement or contract
mBudget, delivery dateline, scope of responsibility

SWEBOK

mSoftware Engineering Body Of Knowledge (V 3.0, 2014, |EEE)

[https://www.computer.org/education/
bodies-of-knowledge/software-engineering]

1. Software Requirements 9. Software Engineering Models

2. Software Design and Methods

3. Software Construction 10. Software Quality

4. Software Testing 11. Software Engineering

5. Software Maintenance Professional Practice

6. Software Configuration 12. Software Engineering
Management Economics

7. Software Engineering 13. Computing Foundations
Management 14. Mathematical Foundations

8. Software Engineering Process | 15. Engineering Foundations

https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering

Examples inside Software Engineering

(Not only program related issues)

mElicit "what should be done”
mTechniques : interviews, ethnography

mEstimate how much cost will be required
EmTechnigues : measurement of complexity, statistics

ECommunicate for effective collaboration
EmTechnigues : morning meeting, Kanban

TOC

mOverview of Software Engineering
®Modeling and Process
mUML

Abstraction Level in Software Development

What the organization and human
activities should be?

What the system
should do / be

How to
construct/run well
on computers?

Program
(Realization on computers)

System

Model

m\What is a “/model”?

A simplified description, especially a
mathematical one, of a system or process, to

assist calculations and predictions [Oxford English Dictionary]

mAbstraction and simplification by focusing on specific aspects
(abstracting away unnecessary details)
mEfficient, effective analysis and verification

Essential to capture systems to be developed, existing systems, and
development activities

f-ishikawa@Sokendai 13

Example of Models: Stakeholders and Goals

- - -
- -
-
.
'H.,~

- ’ -
--f "‘,,.
g —— .. R
d | oo ountaite |y — .

,‘ [Ragulzlon Healthc ars He aﬁhc are .

. ot al |:|ua life 019 ' 4 | Provider Service Y
’ Lifestylz e nihy .

[H Balmcare l! ;

Efficignt
Hels Cperafions

Ca
L
'f Hak
' m : raen el Fugndwgn Flzzible !
_ _ Tregimznt -
Time Saving , I Effeclve
Wi #ﬁnere;ﬁ ; L en e TrzaarT Bhig
I E&F T Ent
=B - o . Fa‘ﬁrﬂ }
: 1 Eln:l-mess]
Hel Falie 1 L T !
W) e ' .' k ;
. Treatmernt])
Catal ! Rl \l Des ign Esecute !
: ; . Treatmenf { Treztment '
'l- I"IL F'IElFI .
W

Fl:|||l:m'
4
="

; el rnen’r Plan | ife =
N et N acThlts ; .
bl Te—_——

Ly

\ln .‘
~ w3l sipns
* ‘_,"‘ Ié onitored
A nd” n Fatlent ﬂ. |:|rE
“ CF? s MEnn

[
¥

N

-
-‘-.'ll-_-'-'-

o

L
T
commodatrig . [
Bk i T 5 (73t e 5
Edjuzimen PLETS
. Teanle = v
Cusiomized v =
Frafarer tes Patiant Lx
aw Tregtment . repas (FLA
*f — al1h are
At ;eSS
3 Nt
4 — |§: FlG ~sd1] g r-merrt
ustnmlz n& ?Tb .
re me Atz
Leqifim ate M Tﬂ?‘ﬁim N
=& iy "\ r K L
L]
[r
‘ " ’.

[cited from E. Yu, Social Modeling and i*]
14

f-ishikawa@Sokendai

Example of Models: System Architecture

pkg3-System Analysis)

<<boundary>=> <<boundary>>
SeatReservationUl FlightManagementUI
+input seat search conditions() : void +input flight info() : void
+ select seat() - void + show all flights() - void
+ show list of available seats() : void 7
+ show price() - void
+ show warning() : void

1

1

<<control=>
<<control>> FlightManagementProcessor
SeatReservationProcessor

| ——] +add flight() - void

+ search seats() : void 1 1 + get_all ﬂig_hts() : voi_d
+ check availability() : void + register flight() - void
+ make list of available seats() : void P T~
+reserve seat() : void <<create/>,>f 1 RRTSY . <<croate>>
<<create>>/" 1 . .
Le * ‘{/’/ ’ B T~
oL <<entity>> <<entity>> RN
Reservation SeaiClass Flight * + origin 1_5 T
dat - B Airport
ki + numberCOfAvailableSeats . + create() : void Irpo
+ create() : void + price —— 1 + getdeparture date() : void + location
p
t arrival date() : void - ;
+ get number of available seats() : void : g:t 2:{;2 ai?pig()‘f?oid Lt destinatibn | + create origin() : void
+ gel price() : vm: . . — S geldaslingicair e + create destination() : void
+ decrease number of available seats() : voi + get seats() - void
<<enlity=>

<<gntity=>

BusiessClass EconomyClass

+ arrival date

+ create() : void

+ create() : void +departure date

4 1
<<gntity>>
Date

+ create departure date() : void
+ create armnval date() - void

Example

of Models: Behavior and Interaction

sd Sequence Diagram for Reserve Seat)

x HO O O

cUser . SeatReservationU| . SeatReservationProcessor . SeatClass

| 1: selectSeat() : void | | |
: - selectSeat) : voi +1.1: price = reserveSeat(seatClpssNumber) - int |

rd
#

i 11.1: decrement\facancy(%:id

r

Select on the standard input
by choosing the index

number from the result list) . -:-:crea_te»l) @
of Searchisn _1__2__Re_ser_va£oﬂ(sgaglgss_8§aga_ss_)__%esewatl

| - Reservation

:Id:| 1.2: showPrice(price) : void

~

T T |Show on the standard output]ﬁ

Example of Models: Process (Waterfall Model)

Communication
Project initiation
(Requirements gathering

Planning
Estimating
~ Scheduling
Tracking
(Modeling
~® | Analysis
Design
Construction
' | Code
Test
(Deployment
- Delivery
Support
Feedback

f-ishikawa@Sokendai

17

Example of Models: Process (V-Model)

|

Requirements Acceptance
Modeling Testing
Architectural System
Design Testing
Component Integration

Design Testing

Code Unit
Generation Testing

|

Executable Software

f-ishikawa@Sokendai

18

TOC

mOverview of Software Engineering
®Modeling and Process
mUML

Before OO (1)

mStructured Programming (Procedure-Oriented)

Data (Global Variables) Functionalities (Procedures)
var _procl)
| var2 proc2 i
Program Modules
var3 . proc3 \
\ vard proc4

mDependencies through global variab
mDifficulties in preventing destructive
values, or unexpected side effects

f-ishikawa@Sokendai

es
modification of variable

20

Before OO0 (2)

mStructured Programming (Procedure-Oriented)

Data (Global Variables)

varl procl)
| var2 proc2 i
var3 ‘proc3 |
| var4 proc4 |

Functionalities (Procedures)

Program Modules

mDecomposition of the application functionality into procedures
mProcedures understandable and meaningful only from the global
viewpoint of the application, not reusable in a more general

context

f-ishikawa@Sokendai

21

Before OO (3)

mStructured Programming (Procedure-Oriented)

Data (Global Variables) Functionalities (Procedures)
var _procl)
| var2 proc2 i
‘ Program Modules
var3 . proc3 \
\ vard proc4

mImplicit interdependencies among data and functionalities

mSide effects of modification to other parts

mDifficulties in reusing meaningful combinations of data and
functionalities, especially extending them

f-ishikawa@Sokendai

22

OO0 Approach : Object (1)

Objectl
attribute1 || method1
attribute? || method?2

BCombine related data and functionalities as a unit of
modularization

»Explicitly model the relationships among data and functionalities

mMove from functionality-oriented to object-oriented

®»Modularization dependent on not the application but the natural
concepts in the real world

OO0 Approach : Object (2)

BMessage passing or method invocation
mObjects interact with each other by sending messages (requests)
EmThe result can differ depending on the state of the receiving
object, even if the same messages are sent

invoke
method3!

Objectl Object?2
attribute1 || method1 attribute3 || method3

method4

attribute?2 || method?2

f-ishikawa@Sokendai

OO0 Approach : Object (3)

BEncapsulation

As objects interact with each other only by message passing,

not by manipulating data directly,

BThe requester object does not need to know inside of the
provider object but need only to know the interface

B The provider object can change its inside without affecting its
requester objects

B The provider object can be sure its data can be modified only in a
way it defines in the object

OO Approach: Class (1)

m(lass: abstract characteristics that define a thing (object),

including its attributes and methods
mProvide a notion to group objects that have same types of
attributes, and same methods

Objectl
attributeAT method1
attributeB1 method?2

ClassP
attributeA method1
attributeB method?2

Object?2
attributeA2 method1
attributeB2 method?2

OO Approach: Class (2)

Hnheritance
B A class (subclass) can inherit attributes and methods from another
(superclass), and have more:
mReusability is improved based on specialization relationships:
creating a new subclass, or generalization relationships: creating a
new superclass
mCommon parts and specialized parts are separated clearly

4 Class-subP)
: ClassP attributeA method1
attributeA method1 N
method? attributeB | me:[c?o(cj% }
metho
g ~J

OO Approach: Class (3)

mPolymorphism
mDifferent functionalities can be obtained by invoking a method of
the same name, appropriately according to the context
BA subclass can define a method of the same name as in the
superclass, and give it a different functionality (override)
B A class can define multiple methods of the same name with
different arguments (overload)

Different behavior with the
same interface (override)

attributeAT method1 attributeAT method1
attributeB1 method?2 attributeB1 method?2

[Objectl of Subclass P1 } [Objectl of Subclass P2 }

Object-Oriented XXX

BObjected-Orientation is not limited to Programming
mObject-oriented model-centric software development
mObject-oriented analysis and design process

mObject-oriented domain analysis
. oo

UML

mUML: Unified Modeling Language
mObject-oriented modeling language (diagrams)
m 14 diagrams with different roles
mStandard by OMG (Object Management Group)

[https://www.omaq.org/spec/UML/]

rrrrr

Behavior

cu[.“punent iject Activity Use Case State Machine

Class Diagram Diagram Diagram Diagram

oooooooooooooooooooooooooo

Diagram

aaaaaa
Diagram

Overview

f-ishikawa@Sokendai

Communication
Diagram

Timing

30

https://www.omg.org/spec/UML/

Example: Class Diagram (Conceptual Analysis)

mConcepts in flight reservation

pkg

+++++

1 + price

[\

Airport
ion

Operat
+++++
1
SeatClass * Flight
+ numberQOfAvailableSeats s arrivalTime

+ departureTime

BusinessClass Econom yClass

Example: Class Diagram (Program Design

mDesign of a flight reservation system

. <<Create=> -
/ / "
‘ /] -
P " Ll Domain
’ e -
<< =, -—
create > <<entity>> P
P SeatClass -7
s ;o
-
L + numberOfAvailableSeats ™
S + price

*

= + getVacancy() - int \0
L 1 +getPrice() : int

<<gnlity>>
e / +decrementVacancy() : void Flight
,
L

+ Flight(originAirport - Airport, destinationAirport - Airport, departureDate - Date, arrivalDate - Date, seatClasses - SeatClass[]) - Flight
<<entity=> + getDepartureDate() - Date
Reservation + getArrivalDate() - Date
+ date + getOriginAirport() - Airport
+ getDestinationAirport() - void
+ getSeats() - SeatClass][]

+ Reservation(seatClass - SeatClass) : Reservation

+ departure date

<<gntity>> <<gntity>> 1 + arrival date
BusiessClass EconomyClass 1
<<entity=>
+ BusinessClass(price - int, vacancy : int) - BusiessClass + EconomyClassi{price : int, vacancy - int) : EconomyClass Date

+ Date(date : String) : Date

Example: Sequence Diagram

minteraction for flight reservation

sd Sequence Diagram for Reserve Seat)

% KO O O

“User : SeatReservationUl . SeatReservationProcessor - SeatClass

I void | | |
: selectSeat() : void

: 0 y —1.1: price = reseweSeat(seatCIpssNumber}: int |

s —

i 11.1: decrement\z’acancy(%:id

/

Select on the standard input
by choosing the index <<create>>|

number from the result list] . Seal .]
of Search Seats _1__2__Re_ser_vaﬂc:ﬂ(sgat_CIgss__Sgagla_ss_)__%esewatl

| - Reservation

]d:l 1.2: showPrice(price) : void

-~

‘Show on the standard output]ﬁ

_|
-

Summary

mSoftware engineering
mDeals with everything about software development, operation,
and maintenance

EModels
mEssential to capture, share, analyze, and evaluate abstract
(intermediate) deliverables, complex systems, or development
activities
mEffectively support the process from abstract goals and problems
to software-based solutions

	スライド 1: Software Engineering (1) Overview
	スライド 2: From Syllabus
	スライド 3: Evaluation
	スライド 4: Lecture Content
	スライド 5: TOC
	スライド 6: Software Engineering
	スライド 7: Causes of Difficulties
	スライド 8: Other Points (vs. Programming Exercise)
	スライド 9: SWEBOK
	スライド 10: Examples inside Software Engineering
	スライド 11: TOC
	スライド 12: Abstraction Level in Software Development
	スライド 13: Model
	スライド 14: Example of Models: Stakeholders and Goals
	スライド 15: Example of Models: System Architecture
	スライド 16: Example of Models: Behavior and Interaction
	スライド 17: Example of Models: Process (Waterfall Model)
	スライド 18: Example of Models: Process (V-Model)
	スライド 19: TOC
	スライド 20: Before OO (1)
	スライド 21: Before OO (2)
	スライド 22: Before OO (3)
	スライド 23: OO Approach : Object (1)
	スライド 24: OO Approach : Object (２)
	スライド 25: OO Approach : Object (３)
	スライド 26: OO Approach: Class (1)
	スライド 27: OO Approach: Class (2)
	スライド 28: OO Approach: Class (3)
	スライド 29: Object-Oriented XXX
	スライド 30: UML
	スライド 31: Example: Class Diagram (Conceptual Analysis)
	スライド 32: Example: Class Diagram (Program Design)
	スライド 33: Example: Sequence Diagram
	スライド 34: Summary

