Software Engineering

(3) System Analysis
Design Principles

Sokendai / National Institute of Informatics
Fuyuki Ishikawa / &)1 &1
f-ishikawa@nii.ac.jp / @fyufyu

http://research.nii.ac.jp/~f-ishikawa/

KEHFFBABREA B8 X TLMARE

IE_L |'£$E-?ﬁﬁ71.l’ﬁ

http://research.nii.ac.jp/~f-ishikawa/

TOC

®mQuality Characteristics of Software Systems
mSystem Analysis
mDesign Principles

Quality?

mDefinition of the term “Quality”

degree to which a set of inherent characteristics of an object
fulfils requirements

ISO 9000 for quality management systems

degree to which the system satisfies the stated and implied
needs of its various stakeholders, and thus provides value

ISO/IEC 25010 for systems and software quality requirements and evaluation

mMultiple characteristics (aspects/viewpoints)
mRelative to needs or requirements
mPrimarily deal with non-functional requirements

Decision Making of Requirements for Quality

Quiality
Characteristics ConcretizecP

Framework/Guideline Metrics

System/Requirement

DL Reliability - Availability - system availability, -+
Classification

Performance - Capacity = user access capacity, -+

Performance - Time Performance = mean response time, ---

« “Little social impact” for internal use in a
company

Standard
« “Extremely large social impact” for the Criteria

infrastructure of the country and society
If “Extremely large social impact”

« System availability: a few minutes per year
« Mean response time: should be defined

i

o — « System availability: a few minutes per year
This time, Extremely large social impact « Mean response time: 3 seconds

Contracts/Requirements
for Individual Application

SQuaRE (ISO 250XX Series): Overview

®mProvides “quality models”
mSQuaRE: Systems and software Quality Requirements and
Evaluation

Framework/Guideline (Quality ' Metrics)
Characteristics ﬁ

System/l‘\’_e_qm_rement Reliability > Availability > system availability, -+
Classification + Performance = Time Performance = mean response time, -+
Performance = Capacity = user access capacity, -+

J This part

“Little social impact” for internal use ina
company

Standard

“Extremely large social impact” for the Criteria

infrastructure of the country and society

If “Extremely large social impact”
System availability: a few minutes per year
Mean response time: should be defined

e

o — System availability: a few minutes per year
This time, Extremely large social impact + Mean response time: 3 seconds

Contracts/Requirements
for Individual Application

f-ishikawa@Sokendai

SQuaRE (ISO 250XX Series): Classification of Quality

®mQuality of Product

mPerformance, availability, security, etc. (as mentioned)

mDivided into internal/external, i.e., what are inside development

teams and what are observable from users

®mQuality in Use

me.g., How effective is the actual use, in specific contexts?
®mQuality of Process

me.g., how well documentation is systematically done

SQuaRE (ISO 250XX Series): Product Quality

Functional Suitability

- Functional
Completeness

- Functional
Correctness

- Functional
Appropriateness

Performance Efficiency
- Time Behavior

- Resource Utilization

- Capacity

Usability

- Appropriateness
Recognizability

- Learnability

- Operability

- User Error Protection

- User Interface Aesthetics
- Accessibility

Reliability

- Maturity

- Availability

-Fault
Tolerance

- Recoverability

Security

- Confidentiality

- Integrity

- Non-repudiation
- Authenticity

- Accountability

Compatibility
- Co-existence
- Interoperability

Maintainability
- Modularity

- Reusability

- Analyzability

- Modifiability

- Testability

Portability

- Adaptability

- Installability

- Replaceability

SQuaRE (ISO 250XX Series): Quality in Use

Satisfaction Effectiveness Efficiency

- Usefulness - Effectiveness - Efficiency

- Trust

- Pleasure

- Comfort
Freedom from risk Context Coverage
- Economic risk mitigation - Context completeness
- Health and safety risk - Flexibility

mitigation
- Environmental risk

mitigation

Ref: JE#EBEEK 2 L — F (Guideline in Japan)

m“System Type - Level of Non-Functional Requirements”
(from IPA, the initial ver.in 2010)

EFNSRFLY—b — =7 ———— = -
(JL—FR) Hl IE]IF.E_'_ — I F]'—]~ ,-._.-.@[Jl-ﬁ- ‘
THenEEr HEREES HENEEDN

-
18
BERNATL REShZYATL BHTREVWATL
L J

EBLEIDDETF VAT
LICEWT, FEERTI] [
v

WAEERkEER | — A
SL—K% f r ¥
- EFNLATLEIC, BRAEBICHLTA—R{l
| =xme | L\ | aeantis, BXREEHE —ROEERE U

: ER—ELDTLS,
BIRLEEF N VAT LAOR-ABASEIC, §E

| I KIEBEOLANIVERETS,

HE-R Iﬁma&ﬁﬂ{ib‘ N HE—RTERLIERERKE. 51z

et myse AL\ EELAKBE TR, SEXTEE. BE
ZAMTORREERINTSE Gty it 4 T <MBEAT M TSI, % 1
HoEFRRESNTLS,

111 EXmE |—| ERME |

U ema | { =xma |
E=E -_ ‘ - [(=xma |

HitEmE L

1—F DR TIEMEERR
%

i

BORNEDLLTS, L

< ERIAE LAl
A/ RAEHREBETAE

EERE :
FEHREE R ERR h.)i

=

[FEMEBEE KT L — R2018 R A1 FEEEHRL Y
https://www.ipa.go.jp/sec/softwareengineering/std/ent03-b.html]

X 1.4.2.1 FEHREERS L — FOMEL L&A AV
f-ishikawa@Sokendai 9

https://www.ipa.go.jp/sec/softwareengineering/std/ent03-b.html

Ref: JE#EBEEK 2 L — F (Guideline in Japan)

®mQuality characteristics and their levels

x| % LRI
H|E| /MEB INELE B9 - =
B|E al " 0 1 2 3 4 5
A | [BRAT o |OAT LOBE R O e R E T &R Of |BUE L | EEA |REIDA || EEIEE | B T O | 24050 2%
| & | A5,) (9B ~17 |21k OELEE (LEFY =it
% 1% B) (9B ~21 |V (OB~

B) (9BF~F |EHBA%ES5

L= M AN

m | evel selection according to system types

HEMEEITEENSRT L HEMBBHIREENELRT A HEMBELNBHTREVSRTLA
BIRL AL BIRBOEH BIRLAIL 2R DSEH RRLAIL BIREDEH
2 [RB D [RRI-EET 20X B3 ATL | 4 [BTOR [245REELCORBMBHERZL | b |245HE |V AT Lzl CxARMm A FL
ST X TR IEBY | BV AT LAOBIERESE B |,
(9BF~21 (95~ | B,
i59) -] EARRMEL > ER>TERERM $A8mF55 1 1BOR7 22—)L TEHIICER
SHHHE) [BREDT 7L REBHHNEE K LT ARMELSELET S8
[+] 24BSRIE S 1Y T —FRIEZ D BAERE LT 5154
ERMOELEOHEEZDBE [+] 24B5RR S L CEAT 5194

[IEREREER T L — RK2018 7 L— F&R LY
https://www.ipa.go.jp/sec/softwareengineering/std/ent03-b.html]
f-ishikawa@Sokendai

https://www.ipa.go.jp/sec/softwareengineering/std/ent03-b.html

TOC

®mQuality Characteristics of Software Systems
mSystem Analysis
mDesign Principles

System Analysis

mSystem Analysis
mConstruct system models about “how to realize the functionality”
based on domain and requirements models
Binvestigate abstract essences and do not define the
implementation detail, guiding the following design activities

mRobustness Analysis
mOne of popular methods for system analysis
mMake requirements, specifically use cases, robust by examining
their realization

f-ishikawa@Sokendai 12

System Analysis: Typical Procedure

1. Analyze and define the flow to realize each use case
mDefine classes with three roles of boundary, control, and entity

(this is the idea of robustness analysis) — =====)
mAnalyze interactions in each use case B0 T Qe T R

2. Integrate definitions obtained for each use case into those

of the whole system
mOrganize elements and relationships, typically in class diagrams

Robustness Analysis: Three Roles of Classes

mDefine how to realize each use case in an abstract way with
the following three elements

mBoundary: class that serves as the interface between actors and
the system

mControl: class that works on entities or other controls classes given
stimulus from boundaries

mEntity: class that maintains information in a durable way

Demonstration

Example of Robustness Analysis

mUse case for “reserve seat”
mUsing three symbols for objects in the communication diagram

sd Communcation Diagram for Reserve Seat)

I\/\gssages Control 2.3: get price()
(with sequence numbers) object —»
1: select seat() : void 2-reserve seat() - void 2.1: decrease number of available seats()
—> O — —>
:%er . SeatReservationUl ‘ : SealReser%ancessor : St%ass
ACtOr 2.4 show price() : void
BO.U nda ry 2.2 create() .
object \ Entity
objects
Naming convention Q

- Reservation

instance_name : class_name
(instance_name may be omitted unless there are multiple objects of the same class)

f-ishikawa@Sokendai 16

Robustness Analysis: Principles

mHigh abstraction level
mDo not care conventions of programming languages
(e.g., naming rules, object creation, etc.)
mDo not define data types
mMay include naive behavior in terms of implementation
(e.g., mutual invocations between two objects, without using
“return” value, generally not desirable at the program level)

System Analysis (Cont’d)

mRobustness analysis was the first step, for eac
m\We got what classes (modules/functionalities/res
necessary in the form of exchanges messages

EMerge the class definitions obtained for each

N use Case

nonsibilities) are

use Case

mEntity classes are generally common in multiple use cases and
should match with the concepts obtained in the domain analysis

mAbstraction level is still high

Me.g., no design on “which object has a pointer to another” or “how each
object is initialized” (unless it is the core of the use case)

Other Examples of Robustness Analysis (1)

mUse case of “register flight”

sd Communication Diagram for Register Flight)

1: input flight info() : void

—

29 get all flights() - void

2.8 add flighy) : void

—p

2 register flight() : void

—P

- Administrator - FlightManagementUl
9 g 4

2.10: show all flights() : void

- FlightManagementProcessor

2.2: create destination()

2.1: create oilgin()

" A

2.3: create departure date() : void
2 4 create arival date() - void

\A\h

@)

:Date

2.5 create() : void

- EconomyClass

\ 2 6: create() : void

: BusiessClass

2 T create() - void

- Flight

f-ishikawa@Sokendai

9

Other Examples of Robustness Analysis (2)

mUse case of “search seats”

sd Communcation Diagram for Search Seats)

2.2 6: [# of available seats = 0] get amval date() : void

Very naive in terms of >
Ssearc h a |g @) r|t h m 2.2.5: [# of available seats > 0] get departure date() : void
2.3: make list of available seats() : void P
—» 2.2 4: [# of available seats > 0] get destiination airport() : void
2 2: check availability() : void B
2.2.3: [# of available seats = 0] get origin airport() : void
) L) P
1. input seat search conditions() : void 2: search seats() : void
221:.gets ats() V)
7
) Fllght
“User : SeatReservationUl SeatResewatloancessor

—>
) . 4_ 222 get number of available seats()
2 4: [# of available seats = 0] show list of available seats() : void
4—

2 5: [# of available seats = 0] show waming() : void
: SeatClass

L

i 2 1: get all flights() : void

Using an existing control
for flight registration

: FlightManagementProcessor Q
:Date

f-ishikawa@Sokendai

System Analysis (Integrated Class Diagram

pkg 3-System Analysis)

<<boundary=>
SeatReservationUl

+input seat search conditions() : void
+ select seat() : void

+show list of available seats() - void
+ show price() : void

+show warmning() : void

1

1

SeatReservationProcessor

<<control>>

+ search seats() : void 1
+ check availability() : void
+ make list of available seats() : void

+ date

+ create() : void

<<boundary=>
FlightManagementUI

+ input flight info() : void
+ show all flights() : void

1

<<control==>
FlightManagementProcessor

+ add flight() : void

+ get all flights() : void
+ register flight() - void

’

RS <<create>>

+reserve seat() - void <<create>>
>
7 1
<<create=>=,
p
‘
L= . .
<<entity>> <<entity=>
Reservation
SeatClass

+ numberOfAvailableSeats
+ price

+ get number of available seats() - void
+get price() : void

+ decrease number of available seats() : void

<<entity>>
BusiessClass

<<entity==>

EconomyClass

+ create() : void

+ create() - void

<<entity=> S
Figh \s p—
+ create() : void Airport
+ get departure date() : void +location

+get arrival date() : void

+get origin airport() : void

+ get destiination airport() : void
+get seats() : void

Lt deslinalﬂon

+ create origin() : void
+ create destination() : void

=

+ arrival date

+ departure date

4 1

<<enlity>>
Date

+ create departure date() : void
+ create arrival date() - void

TOC

®mQuality Characteristics of Software Systems
mSystem Analysis
mDesign Principles

Design

mDesign
mDefines "How" to realize the requirements
ENeeds to reflect the non-functional requirements
mDeals with the whole system (architecture) or individual parts
(components)

f-ishikawa@Sokendai

Design Principles

BEncapsulation

mInformation Hiding

mAbstraction

®Modularization

mDivide-and-Conquer

mConsideration of Cohesion and Coupling
mSeparation of Concerns

Extended from [Buschmann et al., Pattern-Oriented Software Architecture, Wiley, 1996]

f-ishikawa@Sokendai 24

Encapsulation and Information Hiding

mEncapsulation (A 7+tJl1t)
mDefine an abstract element by grouping the structure and
behavior and design the interface for access
mContributes to information hiding, abstraction, modifiability, and
reusability
minformation Hiding ([&#RBEikk)
mHide the implementation detail from the client
m(lients do not need to know the inside
mProviders can modify the inside without affecting clients

f-ishikawa@Sokendai 25

Abstraction

mAbstraction (GHER1b)

BOne Definition: an abstraction denotes the essential
characteristics of an object that distinguish it from all other kinds
of object and thus provide crisply defined conceptual boundaries,
relative to the perspective of the viewer. [Booch, 1991]

mExamples often discussed

,l— e el N
2¥E s t

from W5 F &P

ARORYRD =T

: © == =g htips//www.tokyometro.jp/station/]

f-ishikawa@Sokendai 26

https://www.tokyometro.jp/station/

Coupling

mCoupling (FEEE)

BmThe upper side is considered “bad” with more dependencies

between modules

Content A module uses and alters data in another

Control A modules communicate with another by passing a
control flag to affect the behavior

Common Two modules communicate through global data

Stamp Two modules communicate by passing a shared
structure (including redundancy)

Data Two modules communicate by passing the minimum
required data

f-ishikawa@Sokendai

27

Cohesion

mCohesion (BE&EE)
BThe upper side is considered “bad” with less relationships
between elements in a module

Coincidental Elements are unrelated

Logical Elements have similar activities (e.q., all I/0 actions)
Temporal Elements perform in similar timing (e.q., initialization)
Procedural Elements work sequentially (on different data)

(e.g., a part split from a flow chart)

Communicational

Elements work on the same input

Informational

Elements cover all the functions on one data structure

Functional

Elements are related with each other to perform one function

f-ishikawa@Sokendai

28

Separation of Concerns

mSeparation of Concerns (BE/OED 7 5)
mDifferent or unrelated obligations should be separated e.g., by
allocation to different components

BmSeparation of Interface and Implementation

®» Minimization of what each role of developers needs to know,
as well as what changes affect

Summary

mQuality
mSystematically investigated with characteristics or different
aspects, often derived from standards/quidelines
mSystem Analysis / Robustness Analysis
mExamine “how” in implementation-independent abstract models
and validate requirements
mDesign Principles
mFocusing on decisions of roles/responsibilities, or boundaries, for
maintainability including changeability, testability, etc.

	スライド 1: Software Engineering (3) System Analysis Design Principles
	スライド 2: TOC
	スライド 3: Quality?
	スライド 4: Decision Making of Requirements for Quality
	スライド 5: SQuaRE (ISO 250XX Series): Overview
	スライド 6: SQuaRE (ISO 250XX Series): Classification of Quality
	スライド 7: SQuaRE (ISO 250XX Series): Product Quality
	スライド 8: SQuaRE (ISO 250XX Series): Quality in Use
	スライド 9: Ref: 非機能要求グレード (Guideline in Japan)
	スライド 10: Ref: 非機能要求グレード (Guideline in Japan)
	スライド 11: TOC
	スライド 12: System Analysis
	スライド 13: System Analysis: Typical Procedure
	スライド 14: Robustness Analysis: Three Roles of Classes
	スライド 15: Demonstration
	スライド 16: Example of Robustness Analysis
	スライド 17: Robustness Analysis: Principles
	スライド 18: System Analysis (Cont’d)
	スライド 19: Other Examples of Robustness Analysis (1)
	スライド 20: Other Examples of Robustness Analysis (2)
	スライド 21: System Analysis (Integrated Class Diagram)
	スライド 22: TOC
	スライド 23: Design
	スライド 24: Design Principles
	スライド 25: Encapsulation and Information Hiding
	スライド 26: Abstraction
	スライド 27: Coupling
	スライド 28: Cohesion
	スライド 29: Separation of Concerns
	スライド 30: Summary

