Software Engineering

(5) Formal Methods

Sokendai / National Institute of Informatics
Fuyuki Ishikawa / &)1 &1
f-ishikawa@nii.ac.jp / @fyufyu

http://research.nii.ac.jp/~f-ishikawa/

KEHFFBABREA B8 X TLMARE

SVt el

National Institute of Informatics

http://research.nii.ac.jp/~f-ishikawa/

TOC

myV&v

mFormal Methods
mUnderlying Theories
mExample Methods

f-ishikawa@Sokendai

V&V

m\erification (#&3[)

Are you building the things right?

mGiven criteria about correctness (IEZf4) ?

mOften considered for each phase and each deliverable
mValidation (ZZH4HEER)

Are you building the right things?

mGiven criteria about Validity (ZZ14%)

mBasically for the whole product/service

®» Called V&V to refer to the whole activities

f-ishikawa@Sokendai

V&V: Positioning

mValidation ma

Kes questions on the ultimate goals of

customers and

USers

m\We conduct acceptance testing (next week) and questionnaires

but there will
required

always be uncertainty and continuous effort is

mVerification makes questions on (sub-)objectives necessary

for validity

mMost of formal methods (this week) and testing (next week) work
on verification but contribute to validation as well

TOC
mV&V

®mFormal Methods

mUnderlying T
BExample Met

neories

nods

f-ishikawa@Sokendai

Rigor and Expressiveness of Models

mDiagram-based models are sometimes like “sketch”
mSyntax of descriptions (including diagrams) is usually strict
mSemantics is sometimes vague (e.g., in old UML versions)
® People may have different interpretations, e.g., if they implement
interpreters for state transitions
BThe amount of information inside the model is small
» We typically have operations signatures (types of inputs/outputs)

ENatural language models (documents) are more difficult
®Too many points to check, possibly unstructured, -

Formal Methods

mFormal Methods (2= =

FE T A —RIVAY Y)

mRefers to a variety of approaches based on mathematical logic for

efficient development of

high-quality software systems

mMakes use of models with rigorous syntax and semantics

definitions to:

eliminate ambiguity and subjective assumptions and

conduct systematic/mathematical analysis and verification
mThus, aims at quality assurance in early phases

(though we also use “formal verification” for program code)

f-ishikawa@Sokendai

Simple Example: OCL

BOCL (Object Constraint Language)
mFormal language to add constraints in UML based on first-order

logic

+ parents, |, 0..2
+

Q Person

0.1

+ partngr

0.1

+ children

* i H Y
ocg'lantmitn wicontexts
r.f‘ ocl:ljnte'xtx!ai
i i \

N

{7} MoSelfPartnership
{{OCL} self.partner <> self}

= + name: String [1] "._:_xcuntext»

P L'\
% =Co nteq-stn
\ .\

Example for class diagram

{7} AcyclicAncestry
{{OCL} self.parents- > closure(parents)-
=excludes(self]}

{7} EachChildHas TwoParents

{{OCL} self.children- >forAll{child | child.parents- >size() = 2]}

N

{7} EachChildsParentsArePartners

17} NamelsAlphabetic
{{OCL} self.name.matches('[a-zA-Z]"')} {{OCL} let selfAndPartner = self- =including(self.partner) in
self.children- >forAll{child | seifAndPartner- =includesAll{child.parents)) } se OCl dOC%ZFhehZ)%Z FOCLExamplesforUMI_ html]

N Cited from
[https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclip

f-ishikawa@Sokendai 8

https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.ocl.doc%2Fhelp%2FOCLExamplesforUML.html
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.ocl.doc%2Fhelp%2FOCLExamplesforUML.html

TOC

mv&yV

mFormal Methods
mUnderlying Theories
mExample Methods

f-ishikawa@Sokendai

Theory for Sequential Programs: Overview

mFlowchart verification by Floyd

S0
———————— nEJtAiIi=1AS=0
— i-1

———————— nEJTAIEJTAISR+INS=2 0
=1

i-1 n
———n€J Ai=n+1AS= Y a;ie,S=3 g
j=1 j=1
m i=1

________ nedtAniedt AisnAnS=3 a
j=1

i
________ nedJtAi€dtANisnAS= T aq;

=1

Jt—gl+1 i-1
———————— nEJTAIEJTA2sisn+1IAS= }:10;
J-
Cited from [Robert W. Floyd, “Assigning

FIGURE 1. Flowchart of program to compute S = Y j—; aj (n 2 0) Meanings fo Programs”]

f-ishikawa@Sokendai 10

Theory for Sequential Programs: Hoare Logic (1)

mHoare Logic
mExample of axiom

(A[t/x]} x := t {A}

mExample of inference rule

{CAA} P {B} {TCAA} Q {B}
{A} 1f C then P else Q fi {B}

precondition {a>0/\b>0}
X 1= a

Postcondition {x>0Ab>0}

This triple can be derived from the axiom

Theory for Sequential Programs: Hoare Logic (2)

mHoare Logic (Cont'd)
mAnother example of inference rule for induction on loops

Assuming the loop invariant A holds at the beginning of one execution of the loop content P,
A is preserved after one execution of P

{CAA} P {A}
{A} while C do P od {1 CAA}

If the above property holds, by induction, we can say the loop invariant A is
preserved through the execution of the whole whole statement

Theory for Sequential Programs: Weakest Precondition

mMatching a given triple to existing axioms/inference rules is
hard

Mt is easier to think to ask “what precondition is necessary to
ensure the postcondition after execution of the program”

wp(x:=t, B) & B[t/x]

wp(if C then P else Q fi, B) <&
(C=wp (P,B)) /\ (TC=wp (Q,B))

wp = weakest precondition
wp = weakest precondition

Theory for Concurrent Systems: Automata

mConsider all the possible states by combining multiple
processes

A1/B1 dop A1/B2
AT B1
doA doB $ doA Sync ldoA
sync A2 sync B2 doB
A2/B1 A2/B2

f-ishikawa@Sokendai

Theory for Concurrent Systems: Temporal Logic

mSpecification of temporal properties

mExamples of LTL specifications (Linear Temporal Logic)
®A and B must not hold at the same time, anytime

o !'(A /\ B)

mWhenever A holds, B eventually follows
o (A = <OB)

®A can occur infinitely many times (without infinite blocking)
o <o A

TOC

mV_&V

mFormal Methods
mUnderlying Theories
mExample Methods

f-ishikawa@Sokendai

TOC

m\V&V

-ormal Methods

Underlying Theories

mExample Methods

mFormal Specification

mModel Checking
mCode Verification

f-ishikawa@Sokendai

Formal Specifiction Methods

mFormal Specification Methods (Fsz{tAkscah)
mApproach oriented to specify and verify a wide range of
specification or design, not only specific parts
mUses generic formal languages with strong expressiveness

including set theories
m\/DM, B-Method, Event-B, Alloy, CafeOBJ, Maude, ---

f-ishikawa@Sokendai

Example of Specification in B-Method (1)

MACHINE
EventManager (capacity)

CONSTRAINTS
capacity : NAT

SETS

Later refined into program-level types,
USERS PTog P

e.g., int arrays

VARIABLES
reglistered users

INVARIANT
reglistered users : POW(USERS) &
card(registered users) <= capacilty

Example of Specification in B-Method (2)

INITIALTISATION
registered users := {}
OPERATIONS
register (user) =
PRE user : USERS & user /: registered users &
card(registered users) <= capacity - 1
THEN registered users := registered users ¥/ {user}
END
END

/:means & ¥/ means set

Verification in B-Method: Theorem Proving

BTheorem proving based on Hoare Logic

BThe initial state satisfies the invariants

B The invariants are preserved by all the operations with the valid
operation call (the invariants and preconditions satisfied)
®» By induction, the invariants hold in all possible states

Verification in B-Method: Refinement

ERefinement
mModels are refined into more concrete ones, i.e., models with
more implementation-oriented representations
mConsistency is checked: the concrete model never reach states
that the abstract model does not reach,
.e., the invariants of the abstract model are preserved

m(Correctness by construction
mBy step-wise refinement, we obtain code and “we already know it
s correct”

Application Examples

mB-Method is well known in railway systems
mAutomated shuttles in the Paris (CDG) airport
mAutomated metro No. 14 in Paris
B (then exported to many train systems in the world)

Hin Japan, VDM is well-known with FeliCa application
mVDM is similar to B-Method but more lightweight (program-like
syntax, verification by testing)
mThe specification of the IC chips is given with VDM, which is the
input to chip vendors

TOC

mV&V
mFormal Methods
mUnderlying Theories

mExample Methods

mFormal Specification

mModel Checking
mCode Verification

f-ishikawa@Sokendai

Difficulties in Concurrency

mProblems that come to the surface only with very specific
execution order/timing

BmThe dining philosopher problem

mIf each philosopher (process) takes
mTake the right fork, then the left one,
eat, put the left fork, and put the right one

— Possibility of deadlock

f-ishikawa@Sokendai 25

Model Checking

mModel Checking (&7 /UIEE)

mintuitively and practically, verification of given properties by

exhaustive search over all the possible state transitions

mOriginally, based on a mathematical term “model” refers to an
interpretation (e.g., variable assignment) that satisfies a logical formula

mUseful especially in concurrent systems

m“One-button” techniques but with the state-explosion problem

mNeed to focus on essences such as control flags, abstracting away
unnecessary values in large integers

State Transitions of Dinning Philosophers

fork0 : available
fork1 : available
fork2 : available

forkO : pO (Right)

forkO : pO (Right) fork1 © p1 (Right)
fork0 : pO (Right) fork1 @ available fork2 : pO (Left)
fork1 : available fork2 : pO (Left)

fork2 : available

forkO : pO (Right)
fork1 : available
fork2 : p2 (Right)

=

: ‘ fork0 : pO (Right)
forkO : pO (Right) : .
fork1 : p1 (Right) forkl : p1 (Right) Deadlock

fork2 : available fork2 @ p2 (Right)

f-ishikawa@Sokendai

Example of Process Description in the SPIN Tool

mtype = {p0, pl, p2, none}; | Enumerate type
mtype fork[3] = none;

active proctype PO () {

do
:: atomic{fork[0] == none -> fork[0] = p0};
atomic{fork[2] == none -> fork[2] = p0};
skip;
fork[2] = none; E—
fFork[0] = none; do is infinite loop,
od - is for non-deterministic choices

} (only one choice in this example)

TOC

mV&V
mFormal Methods
mUnderlying Theories

mExample Methods

mFormal Specification
mModel Checking
mCode Verification

f-ishikawa@Sokendai

Code-Level Verification

mBoth of theorem proving and model checking
mModel checking requires proper bounding, e.g., exhaustive search
only within 10000 steps

m\What to check
B Application-specific specifications given in formal languages, if
given
B Application-independent properties such as non-occurrence of
null reference, zero division, invalid array index, resource leak, etc.

Specification on Code: Example (1)

mBank account class in JML (Java Modeling Language)

public class BankAccount {

private /*Q@ spec public @*/ int balance;
private /*Q@ spec public @*/ static int MIN BALANCE = 0;

//@ public invariant balance >= MIN BALANCE;

//@ requires amount > 0;
//@ requires amount <= balance - MIN BALANCE;
//@ ensures balance == ¥old(balance) - amount;
//Q@ signals (Exception) amount > balance - MIN BALANCE;
public void withdraw (int amount) throws Exception/{
if (balance - amount < MIN BALANCE) throw new Exception();
balance = balance - amount;

Specification on Code: Example (2)

mBinary Search in JML (Java Modeling Language)

//Q@ requires a != null;
//@ requires ¥forall int i; 0 <= 1 && 1 < a.length - 1; (¥forall int Jj; 1 < J && j< a.length; al[i] < aljl);
//@ ensures ¥result >= 0 ==> ¥result < a.length && a[¥result] == key;
//@ ensures ¥result < 0 ==> (¥forall int i; 0 <= 1 && 1 < a.length; al[i] != key);
public static int binarySearch(int af[], int key) {
int low = 0;
int high = a.length;
//@ maintaining 0 <= low && low <= a.length && 0 <= high && high <= a.length;
//Q@ maintaining (¥forall int i; 0 <= 1i && 1 < low; al[i] < key);
//Q@ maintaining (¥forall int i; high <= 1 && i < a.length; a[i] > key);
//@ decreases high - low;
while (low < high) {
int mid = low + (high - low) / 2;
int midval = a[mid];
if (key < midval) { high = mid; }
else if (midval < key) { low = mid + 1; }
else { return mid; // key found}
}
return -low - 1; // key not found.
}
f-ishikawa@Sokendai 32

Specification on Code

mExample of specification language and tool
.ACS L/Frama—c (for C) [https://frama-c.com/]
.JML/OpenJML (for Java) [https://www.openjml.org/]

mTypical tool functions
B Test generation: rewrite the code to include checking of

preconditions, postconditions, and invariants
BTheorem proving based on weakest precondition calculus

https://frama-c.com/
https://www.openjml.org/

Typical Tools for Static Analysis

mStatic analysis tools
(static: without code execution)
mOften checks only application-independent properties
BSometimes theorem proving used inside
- Possibility of false-negative (“I tried to prove this variable is not
null but | cannot find a proof, so I'm making a warning”)

mExample: infer (by Facebook)
mStrong background with Separation Logic (extension of Hoare
Logic to handle pointer issues) ttps//fbinfer.comy/]

[https://research.fb.com/publications/
moving-fast-with-software-verification/ |

https://fbinfer.com/
https://research.fb.com/publications/moving-fast-with-software-verification/

Summary

mV&V

mCore activities for quality assurance
mDistinguishing verification and validation

mFormal Methods
mMakes use of models with rigorous syntax and semantics
definitions
mProvides strong verification capabilities but also contributes to
elimination of unclear or ambiguous descriptions

	スライド 1: Software Engineering (5) Formal Methods
	スライド 2: TOC
	スライド 3: V&V
	スライド 4: V&V: Positioning
	スライド 5: TOC
	スライド 6: Rigor and Expressiveness of Models
	スライド 7: Formal Methods
	スライド 8: Simple Example: OCL
	スライド 9: TOC
	スライド 10: Theory for Sequential Programs: Overview
	スライド 11: Theory for Sequential Programs: Hoare Logic (1)
	スライド 12: Theory for Sequential Programs: Hoare Logic (2)
	スライド 13: Theory for Sequential Programs: Weakest Precondition
	スライド 14: Theory for Concurrent Systems: Automata
	スライド 15: Theory for Concurrent Systems: Temporal Logic
	スライド 16: TOC
	スライド 17: TOC
	スライド 18: Formal Specifiction Methods
	スライド 19: Example of Specification in B-Method (1)
	スライド 20: Example of Specification in B-Method (2)
	スライド 21: Verification in B-Method: Theorem Proving
	スライド 22: Verification in B-Method: Refinement
	スライド 23: Application Examples
	スライド 24: TOC
	スライド 25: Difficulties in Concurrency
	スライド 26: Model Checking
	スライド 27: State Transitions of Dinning Philosophers
	スライド 28: Example of Process Description in the SPIN Tool
	スライド 29: TOC
	スライド 30: Code-Level Verification
	スライド 31: Specification on Code: Example (1)
	スライド 32: Specification on Code: Example (2)
	スライド 33: Specification on Code
	スライド 34: Typical Tools for Static Analysis
	スライド 35: Summary

