Software Engineering

(6) Testing

Sokendai / National Institute of Informatics
Fuyuki Ishikawa / &)1 &1
f-ishikawa@nii.ac.jp / @fyufyu

http://research.nii.ac.jp/~f-ishikawa/

KEHFFBABREA B8 X TLMARE

SVt el

National Institute of Informatics

http://research.nii.ac.jp/~f-ishikawa/

TOC

mQOverview

mOverview of Each Test Phase
m\Whitebox Testing
mBlackbox Testing
ECombinational Testing

f-ishikawa@Sokendai

Testing

M esting
Analyze the target software and try to cause failures for

detecting bugs (defects, faults)
BThe most practical way for V&V on the program code
mCannot ensure to detect all the bugs

Test - Failure
 — .
Fault] — {
Program \/ \

Review/Measure Error

Terminology

mError (T

) I

difference between the theoretical correct

value/condition and the computed/observed/measured one
mFault ((B=, /\7, ~E®&) : wrong steps, process, or data
definition in the program code

mFailure

(B =)

provided

: state in which required functions are not

Different terminologies/translations exist,
e.g., “fault” in “fault-tolerance” is translated as 2 |

Question: what are “good” tests?

mExample: how many executiosn required to try all the
possible execution paths?

Repeat times
<= 10

4+42+434---410 = 109

Question: what are “good” tests?

B Achieve the “best” with the minimum effort, assuming we

cannot be perfect
BExample: compare two test suites for a program expected to
calculate the absolute value of the input

1f (x>=1) return x else return —Xx

1. input x =3, check theresultis 3

T ite 1 . .
estsulte 2. inputx =25, checkthe resultis 5
Tect suite 2 1. inputx =3, check the resultis 3
2. inputx=-3, check theresultis 3

Myers Triangle Problem

mDefine a test suite for the following target problem
mReads three integer values from the console
mQutputs a type of triangles with the side lengths of the values:

n i

“regular triangle,” “isosceles triangle,” or “scalene triangle”

Myers Triangle Problem: checklist (1)

ncluded a case for a valid scalene triangle?
ncluded a case for a valid reqular triangle?
ncluded a case for a valid isosceles triangle?
n #3, included at least three cases with different orders
(regarding the position of the two same values)?
e.q. (3,3,4)(3,4,3)4,3,3)
5. Included a case in which one of the value is 07
6. Included a case in which one of the value is negative?

sl e e

Myers Triangle Problem: checklist (2)

/. Included a case in which one of the values equals to the sum of the
other two values?
e.q., (1,2, 3)
8. In#7,included at least three cases with different orders?
(regarding the position of)
eqg.,(1,2,3),(1,3,2),3,1,2)
9. Included a case in which one of the values is more than the sum of

the other two values?
10. In #9, included at least three cases with different orders?

Myers Triangle Problem: checklist (3)

ncluded the case with all the values as 07

ncluded a case with a non-integer value?

ncluded a case with a wrong number of inputs?
Defined the expected outputs for all of the test cases?

> W

Myers Triangle Problem: Summary

mEach of the different test cases (except for the last item)
correspond to different types of possible faults

m/.8/14
(Probably improved now?)

® Need systematic principles/methods to derive such test
cases

Other Topics in Testing (1) Termination Criteria

mNaive termination criteria
m“When we ran out the time/budget”: easy but not essential
m“When we didn't find any bug”: may lead to “weak” tests with less
bug-finding capability
mStatistics and heuristics
He.g., comparison with known average values for detected bugs for
the size of the target program
He.g. convergence in the number of detected bugs in a certain
time period

Other Topics in Testing (2) Mental Aspects

BmPrinciples based on the mental aspects
mDefine the expected outputs beforehand
mNot test the program of your own
B Make test cases for wrong inputs
minvestigate also there is no unintended behavior
mNot expect “there should not be any error”
mExpect more errors in the part where many errors were found
mNot criticize the coder
mThink testing as creative challenges

Classification (1) Whitebox/Blackbox

m\Whitebox testing
mDesign tests by considering the internal structure of the program

code
Me.g., make tests for both of the branches in an if-else statement

mBlackbox testing

mDesign tests only by considering the specification
Me.g., make tests based on use cases

f-ishikawa@Sokendai 14

Classification (2) Phases

mUnitTesting (2= b7 A b « BKT A)
mTarget small components such as methods
Bintegration Testing GG&&7 A « ST A M)
EmTarget combination of (already tested) components
mSystem Testing (AT LT A K)
EmTarget system elements such as network, hardware, and database

mAcceptance Testing (ZlFANT A K)

mTarget actual operation including user satisfaction, load, long-
term operation

f-ishikawa@Sokendai 15

(Review) The V Process Model

Requirements Acceptance
Modeling Testing
Architectural System
Design Testing
Component Integration

Design Testing

Code Unit
Generation Testing

Executable Software

[C. Bucanac, 1999 |

f-ishikawa@Sokendai 16

Regression Testing

mRegression Testing (E@7 X)
BCheck whether something is worse than the previous version
mBackground: it is very typical that a fix for a certain function leads
to failures in other parts
(Japanese engineers oftensay 7% L1 fordegradation)

f-ishikawa@Sokendai 17

TOC

mOverview

mQOverview of Each Test Phase
m\Whitebox Testing

mBlackbox Testing
ECombinational Testing

Basic Concept: Test Driver and Stub

mWe want to focus on SUT (System Unc
by excluding possibilities of bugs in ot

er Test) in each test
ner parts

W Test driver: invoke the SUT and observe t

ne outcome

mTest stub: provide pseudo functions for components that have not

been implemented or tested

Test driver

//ﬁint ml (int x) {
p = ... T

result = ml (p); ml sub(...)
assert result==5;

f-ishikawa@Sokendai

ml sub(int n) {
switch (n) {
case O0:
return 2;

case 1:
return 3;

Unit Testing

mFocus on specific small components by making use of test

drivers and stubs

mOften use popular XUnit frameworks
mJunit, CppUnit, PHPUnit, unittest (Python), -
mDefine each test case separately, and execute them again and

again

public class TestCasel
extends TestCase{

assertEqual (x, 3
}
}

public void testFunl () {

) ;

sulite.addTest (new TestCasel ());
sulite.addTest (new TestCaseZ2());

suite.run (result) ;

(now tools automatically
collects defined tests in
a project)

Integration Testing

mGradually integrate and test combinations of components
mOtherwise, it's hard to identify the bug (big-bang)
mincremental Testing
ETop-down vs. bottom-up: bottom-up is easier to do in paralell
with coding but may encounter large rollbacks as the key function

- Top-down Bottom-up
at the top level is tested last A and B . Cand D
. (with C stub) (with E, F stubs)
T 2. A,B,andC 2. C,D,andE
B C (with D, E, F stubs) (with F stub)
t L 3. A.B,C, andD 3. (,D,E,andF

(with E, F stubs) 4,

System Testing and Acceptance Testing

mVarious system-level aspects
mStress, performance, volume, usability, security, compatibility,
portability, document-understandability, -

BAcceptance testing uses actual users or data

TOC

mOverview

mOverview of Each Test Phase
mWhitebox Testing
mBlackbox Testing
ECombinational Testing

f-ishikawa@Sokendai

Coverage

mCoverage (A/\L WY, HESR)
how many “elements” were covered by tests?

mExample: if (P and Q) then - else -
mCover branches (then, else)
— (P, Q) = (true, true), (false, true) covers 2/2

mCover conditions of P and Q (true, false)
— (P, Q) = (true, true), (false, false) covers 4/4

f-ishikawa@Sokendai

Statement Coverage

mStatement Coverage (fn5iE#E, CO)
mEach statement was executed at least once

e.g. input (a, b, x) =

(2,0, 3)

f-ishikawa@Sokendai

<

va>1ANDb=0

X=X/a

<

ya=20Rx>1

X=X++

25

Branch Coverage

mBranch Coverage / Decision Coverage

(D lsEHE - FIRE SR

Wa#E, C1)

mEach statement was executed at least once

e.qg. input (a,b,x)=(3,0,3),(2,1,1)

f-ishikawa@Sokendai

<

va>1ANDb=0

X=X/a

<

vya=20Rx>1

X=X++

26

Note on Statement Coverage and Branch Coverage

m\We often think branch coverage subsumes statement
coverage
mStrictly speaking, there are some situations where a test

suite satisfy the branch coverage but not the statement one
mif there is an unreachable part of the code (this is considered as a
bug or undesirable)
mif there are many entries for the program

Condition Coverage

mCondition Coverage (&&-#a%E, C2)

mEach possible outcome of individual conditions was exposed at

least once
va>1ANDb=0
< d
e.g., input x=x/a
(alblx):(1lol3)l(211l1) <"a:20RX>1

X=X++

f-ishikawa@Sokendai

28

Note on Branch Coverage and Condition Coverage

BmThere are some situations where a test suite satisfy the
condition coverage but not the branch one

me.g., for “if PAND Q"
(P, Q) = (true, false), (false, true)

Multiple-condition Coverage

mMultiple-condition Coverage (183 E-HE%E)
mEach possible combination of possible outcomes in each branch
was exposed at least once

€.g. (a, b, x) = va>1ANDb=0
(21 OI 4) 9 (T‘T, T‘T) _v/
(21 1/ 1) 9 (T‘F, T‘F) —
ya=20Rx>1
(1,0,2) > (F-T, F-T) <
(1,1,1) > (F-F, F-F) =

f-ishikawa@Sokendai 30

MC/DC

BMC/DC (Modified Condition/Decision Coverage)

mBranch coverage

m(Condition coverage, but “condition covered” means “each
condition solely affects the branch decision”

» i.e., we don't think “unused condition value” as “covered”

Example: if (P and Q) then --- else ---
— (P, Q) = (true, true), (false, false) = 4/4 condition values covered?
— Q=false was not actually used!

— We should have (P, Q) = (true, true), (true, false), (false, true)

f-ishikawa@Sokendai

Practices of Coverage

®m100% is often difficult
EmThere may be impossible combinations of condition values
Mt is very difficult to derive a test suite
®» Thresholds are often defined in each company, e.g., 85%

mComplex coverage criteria are more difficult to achieve and

costly to evaluate
mBranch coverage (C1) is a modest standard?

mSafety-aware domains require MC/DC such as avionics

TOC

mOverview

mOverview of Each Test Phase
m\Whitebox Testing
mBlackbox Testing
ECombinational Testing

f-ishikawa@Sokendai

Equivalence Partitioning

mEquivalence Partitioning (RHEDE!])

Make classes (groups) of inputs that lead to specific types of
behaviors

mWe should have at least one test case for each equivalent class
mExample: price calculation for standard mail

Weight Price

<=25q 30 Yen Necessary test cases (example)
<=50g 90 Yen -5g, 10g, 359, 809

Error 80 Yen 90 Yen Non-standard

[L \ \ |
0 25 50

f-ishikawa@Sokendai 34

Equivalence Partitioning: Guidelines

BmGuidelines for partitioning
BAn input has range of values or ranges for num. of values
» Class for effective inputs, one for too small, one for too large

BAn input has enumeration of possible values
» Classes for each value, one for invalid value

AN input has a condition to satisfy
®» Class for valid inputs, one for invalid inputs

Equivalence Partitioning: Example

mExample: compiler function to handle array declaration part

®Num of arrays: 1, 1+, none
mlLength of array name: valid, 0, too long
®Array name: alphabets, with numbers, with other characters
®mArray dimension: valid, 0, too many
mNum. of elements
in each dimension valid, negative, too many

specified, not specified
specified as const, specified with int variable, -

Boundary Value Analysis

mBoundary Value Analysis (3EFREDHT)

mUse boundary values in equivalence classes
mExample: price calculation for standard mail

Weight Price Necessary test cases
<= 25¢ 80 Yen
<=50q 90 Yen Oqg, 1g, 25¢g, 269, 50g, 51¢g

Error 80 Yen 90 Yen Non-standard
| | [| |

— @ >

f-ishikawa@Sokendai

37

Boundary Value Analysis

mExample: sort and print of exam. results

ENum. of questions:
ENum. of students:
mSorting results:

M Deviation scores:

ENum. of pages:
....

0, 1, upper-bound, uppor-bound+1
0, 1, upper-bound, uppor-bound+1
all the same, all different

“one score 0 and the others 100"
(max. deviation),

“all the same scores” (deviation 0)
0, 1, upper-bound, uppor-bound+1

TOC

mOverview

mOverview of Each Test Phase
m\Whitebox Testing
mBlackbox Testing
mCombinational Testing

Combinational Testing

mSome bugs lead to observable failures only for a certain

combinations of multiple factors
mWeb application: OS type/version, browser type/version, browser
plug-in version, -

BmThere is a logical reason why the specific combination does
not work but it is very hard to know that before we actually

encounter and investigate the failure
Hi.e., we cannot say “we don’t need tests for this combination”

Combinational Testing

In general,
mWhen we have n aspects (factors, [Kl+) and each can

~ef

take a possible values (levels, 7KZE)

- We have a" combinations
m4 factor, 3 levels for each factor: 81 combinations
m 10 factor, 3 levels for each factor: 59049 combinations

®» How can we get effective tests with a smaller number of
combinations?

Pair Construction

BOne idea:

test all the pairs of values from two factors
mJust a heuristic, not without any theoretical gurantee
mPast statistics showed more than half (sometimes 80%) faults
could be detected with this strategy
(faults with one aspect and faults with two aspects are dominant)

Pair Construction

mExample

mFactor: A, B, C

mlevel for each factor: 0, 1

mFor each of (A, B), (B, €), and (C, A),
we cover (0,0), (0, 1), (1,0), (1, 1)

A B C
Test case 1 0 0 0
Test case 2 0 1 1
Test case 3 1 0 T
Test case 4 1 1 0

f-ishikawa@Sokendai

43

Construction of Test Suite

mApproach 1: prepare tables like the previous one and apply
them 1o the give prOblem http://neilsloane.com/oadir/

» Orthogonal Arrays (E3ZRZZ)
mFor each column pair (factor pair), all the pairs appear the same
number of times
mApproach 2: make an algorithm to generate test suites

mExhaustive search does not scale
mTypically use heuristics or meta-heuristics

http://neilsloane.com/oadir/

Orthogonal Arrays: Parameters

mParameters of orthogonal arrays

ne num. of factors ¢ (appears as columns)
ne num. of levels: n

ne num of test cases (appears as rows)

0000
0111
000 0222
011 1012
101 | Ly(23) 1120 Lo(3%)
110 1201
2021
2102

2210

Notation
L, (n°)

Orthogonal Arrays: Examples

00000
0000000 11110 4]
1111110 00111 L5(2441)
2222220 11001
0012120 010712
1120200 10102
2201010 01103
0102211 10013
1210021 |_18(37)
2021101 0000
0220111 001
1001221 0101
81;$8g; 0110 Cover triples
1001 such as (0,0, 0), (1,0, 1)
1202102 1070
2010212 1100
0211202 1
1022012

2100122

Orthogonal Arrays: Application

mApplication example
mA: {IE,FF,CH}, B: {ON, OFF}, C: {win,mac,lin}

IE | ON | win IE | ON | win
0000 000 IE | OFF | mac IE | OFF | mac
0111 011 E | ? | lin IE | ON | lin
?é%% \ ?é% \ FF | ON | mac \ FF ' ON | mac
1120 112 | FF | OFF | lin | FF | OFF | lin
1201 / 120 FF | 2 | win FF | OFF | win
3?(2); %?é CH | ON | lin CH | ON | lin
2210 221 CH | OFF | win CH | OFF | win
L9(34) CH ? | mac CH | ON | mac

Remove the 4th Replace with Fill unused levels

column unnecessary actual levels with arbitrary values
f-ishikawa@Sokendai

Orthogonal Arrays: Characteristics

mBasically, we cannot remove rows when we customize
mProbably violating the “all the pairs” constraint
mDifficult to handle exception or inhibition, i.e., we want to exclude

a certain combination
mWhat if we cannot include “IE-mac” in the previous example

mAll the pairs appear the same number of times
ENot the minimum to cover all the pairs
mBut covers many triples, quadruples, -+ thanks to the symmetry

All-Pair Method

mAll-Pair method

mFinds a combination by an algorithm to cover all the pairs
mExample for A: {0, 1}, B: {0, 1}, C: {0, 1, 2}

A B C

0 0 0

0 1 1

1 0 1

: : 0 71 Wedon't have
0 0 5 012

: : 5 102

compared with
orthogonal array

All-Pair Method: Characteristics

mBy good algorithms

mMuch less test cases than orthogonal arrays with symmetry
mExample: for 100 factors and 2 levels, 101 test cases by orthogonal arrays
but 10 by an all-pair algorithm
mAllows for customization such as inhibition

mVarious approaches
BmGreedy search by generating rows one by one
®mMeta-heuristics such as genetic algorithms

mUpdate on existing tables
....

Example of Tool

mPICT
mhttps://qgithub.com/Microsoft/pict/blob/main/doc/pict.md

f-ishikawa@Sokendai

51

https://github.com/Microsoft/pict/blob/main/doc/pict.md

Logical Combination

ECombinational Testing: without assumptions on logical

dependencies between factors

ENo over-confidence on”
mif the logical relationship is clear, we can just organize it to

design the tests
mDecision tables
m(Cause effect graphs

Rule 1

Rule 2

Rule 3

Rule 4

Condition

Married

Y

Y

N

N

Student

Y

N

Y

N

Action

Discount

60

26

50

Summary

M Testing
mCore of V&V activities
mCannot be perfect and explore the cost-effectiveness by trying to
efficiently expose hidden defects
mEmploys different approaches for different phases and objectives

	スライド 1: Software Engineering (6) Testing
	スライド 2: TOC
	スライド 3: Testing
	スライド 4: Terminology
	スライド 5: Question: what are “good” tests?
	スライド 6: Question: what are “good” tests?
	スライド 7: Myers Triangle Problem
	スライド 8: Myers Triangle Problem: checklist (1)
	スライド 9: Myers Triangle Problem: checklist (2)
	スライド 10: Myers Triangle Problem: checklist (3)
	スライド 11: Myers Triangle Problem: Summary
	スライド 12: Other Topics in Testing (1) Termination Criteria
	スライド 13: Other Topics in Testing (2) Mental Aspects
	スライド 14: Classification (1) Whitebox/Blackbox
	スライド 15: Classification (2) Phases
	スライド 16: (Review) The V Process Model
	スライド 17: Regression Testing
	スライド 18: TOC
	スライド 19: Basic Concept: Test Driver and Stub
	スライド 20: Unit Testing
	スライド 21: Integration Testing
	スライド 22: System Testing and Acceptance Testing
	スライド 23: TOC
	スライド 24: Coverage
	スライド 25: Statement Coverage
	スライド 26: Branch Coverage
	スライド 27: Note on Statement Coverage and Branch Coverage
	スライド 28: Condition Coverage
	スライド 29: Note on Branch Coverage and Condition Coverage
	スライド 30: Multiple-condition Coverage
	スライド 31: MC/DC
	スライド 32: Practices of Coverage
	スライド 33: TOC
	スライド 34: Equivalence Partitioning
	スライド 35: Equivalence Partitioning: Guidelines
	スライド 36: Equivalence Partitioning: Example
	スライド 37: Boundary Value Analysis
	スライド 38: Boundary Value Analysis
	スライド 39: TOC
	スライド 40: Combinational Testing
	スライド 41: Combinational Testing
	スライド 42: Pair Construction
	スライド 43: Pair Construction
	スライド 44: Construction of Test Suite
	スライド 45: Orthogonal Arrays: Parameters
	スライド 46: Orthogonal Arrays: Examples
	スライド 47: Orthogonal Arrays: Application
	スライド 48: Orthogonal Arrays: Characteristics
	スライド 49: All-Pair Method
	スライド 50: All-Pair Method: Characteristics
	スライド 51: Example of Tool
	スライド 52: Logical Combination
	スライド 53: Summary

