Software Engineering

(7) Maintenance / Management

Sokendai / National Institute of Informatics
Fuyuki Ishikawa / &)1 &5
f-ishikawa@nii.ac.jp / @fyufyu

http://research.nii.ac.jp/~f-ishikawa/ jl%lﬂ _jlégﬁjﬁfﬁﬁ

http://research.nii.ac.jp/~f-ishikawa/

TOD

EMaintenance
mRefactoring
mProject Management

f-ishikawa@Sokendai

Maintenance: Overview

EMaintenance ({RSF)
activities to maintain and manage the developed software

after release
mDifferent from hardware that has aging and is difficult to modify

mKnown to have a very large cost
M67% of the whole cost (1994) ehach e economic impact ol

software reuse on maintenance, 1994 |

m5-year cost is double of the initial development fee (2020, Japan)

[BRBRATL - A=Y=z, VI U7X M) v T AHE2020
VAT LRAFE - RFIHEAE, 2020]

f-ishikawa@Sokendai

Maintenance: Classification

mTypes of maintenance
mCorrective ({Z1E) :fix bugs

mAdaptive (&) :adaptto changes in operational environments

mPerfective (2%&) :improve manageability or reusability
(specifically, refactoring activities)

mPreventive (FFh) :prepare for potential issues in future use

f-ishikawa@Sokendai 4

Maintenance: Challenges

BThe most significant and difficult activities:
tracing and understanding to identify necessary tasks

Heg., W
Heg., W
Heg., W
Heg., W
m---

®» Change

nat goals each requirement contributes to
nat requirements each function supports
Ny this architecture was obtained

nat tests were conducted for each element

Impact Analysis (ZE2Z91T)

f-ishikawa@Sokendai

Maintenance: Challenges

mDifficulties in reading code of other people or code | wrote a
few months ago
mNo assumption on availability of the same team for

development and maintenance
mSometimes feasible if the customer wants a contract like “update
every 3 months”
mOtherwise, the development team members will be allocated to
other new projects, probably not available when the maintenance
is triggered

Change Impact Analysis: Forward Approach

mApproach (1): record and keep necessary information
mRigorous models in this class will be useful in maintenance
WTraceability GEHFRIEE!%) is the key based on dependency

Me.g., goal models will allow to identify which
super-/sub-goals are affected by change in a goal

W Traceability Matrix: keep
traceability between

requirements and
Component 01 [X

implementations/test cases Component 02 | X X

Component 03 X

f-ishikawa@Sokendai

Change Impact Analysis: Backward Approach

mApproach (2): Reverse Engineering

mExtract information from the implementation code

mWhen upper-level documents are missing or obsolete
Me.g., generate class diagrams from code

Me.g., extract control and data flow from code

Me.g., search for elements in code or models

®mMore advanced recently with techniques for natural language

processing and data mining

me.g., predict links between words in natural-language documents and
names in code

Relevant Topic: Configuration Management

mConfiguration Management ({&rEE)
ETrace and manage changes in software systems
mWider than “version management” with focus on the whole
consistency of elements including documents and other
deliverables

. . Design model
Specification

Impl. code

User manual

Design model

Trace Test case
the relationships impl. code Speciication
Design model
User manual Impl. code
Trace the User manual

TeSt case Changes Test case

f-ishikawa@Sokendai

Relevant Topic: Regression Testing (Revisited)

olj@7 Xk (Regression Testing)

BCheck whether something is worse than the previous version
mBackground: it is very typical that a fix for a certain function leads
to failures in other parts
(Japanese engineers oftensay 7% L1 fordegradation)

f-ishikawa@Sokendai 10

Relevant Topic: Regression Testing (Revisited)

m(Change impact analysis on tests
1. No need to execute the test again as the test target is not

affected by the changes

2. Need to execute the test again as the test target may be affected
by the changes to check if the same test passes

3. Abandon the test case as it is no more a valid test after the
change, e.g., the expected outcome changed

Typically, wrong judgement of #2 as #1 by hidden dependencies

Related Topic: Visualization

He.g., Sourcetrail
m\Visualization of method
invocation and file inclusion

[https://www.sourcetrail.com/]

me.g. CodeCity
mMetrics over different modules
are visualized as a city
as well as their evolution

[https://wettel.github.io/codecity.html]

f-ishikawa@Sokendai 12

https://www.sourcetrail.com/
https://www.sourcetrail.com/
https://wettel.github.io/codecity.html

Relevant Topic: Dependency Analysis of Code

mControl Flow Graph
mControl dependency: it depends on conditions in SO whether S1 is
executed or not
mData dependency: variable values used in ST depend on
definitions or assignments in SO

: int func(int datal[]l, int n) {
: int sum = 0;

: int prod = 1;

: int 1 = 0;

: while (i < n) {

sum = sum + datali];

prod = prod * datali];

i =1+ 1;

e.g.,
line 6 has
- control dependency on line 5

- - data dependency on line 2

: print (sum) ;
: print (prod);

P O W oo Jo U b w N

o

f-ishikawa@Sokendai 13

Relevant Topic: Slicing

mSlicing
Extract parts of the code relevant with the current target of

analysis

Wi.e. parts that the target depends on directly or indirectly
Slicing for line 10

1: int func(int datal[], int n) { 1: int func(int datal[], int n) {
2: int sum = 0O; 2: int sum = 0O;

3: int prod = 1;

4: int 1 = 0O; 4: int 1 = 0;

5: while (1 < n) { 5: while (1 < n) {

6: sum = sum + datali]; 6: sum = sum + datal[i];
7 prod = prod * datalil];

8: i =1+ 1; 8: i =1+ 1;

9: } 9: }
10: print (sum); 10: print (sum);
11: print(prod);

f-ishikawa@Sokendai 14

TOD

EMaintenance
mRefactoring
mProject Management

f-ishikawa@Sokendai

Refactoring: Definition

mPerfective/preventive maintenance does not make any
change on the existing functions

® Refactoring (V770 %21)>27) -
make changes in architecture or implementation methods

without changing the functions
mSometime called reengineering or rejuvenation

Refactoring: Significance

mDifficult to predict future changes
B Architecture patterns or design patterns aim at supporting
specific types of changes or reuses

mDifficult to have “clean code that works”
m“Clean code” in your mind often does not work
®You may make it work, then you have “dirty code”
mSome methods rather recommend this way of “first dirty working
code, then refactoring” for complex functions
(e.g., test-driven development, to be discussed next week)

Refactoring: Triggers

mBad Smells: trends that imply potential issues

mDuplicated Code: similar code in multiple places

® Extraction of methods or classes
m[arge Class: many responsibilities in one class

® Extraction of classes/subclasses or replacement of multiple data

values by an object

mFeature Envy: a method interacting more with other classes

®» Move of fields or methods

Refactoring: Practice

BmRealize as a combination of small operations that does not
break the current code
ENow IDE (Integrated Development Environment) has strong

supports for refactoring
mRenaming of class, field, or method
mExtracting a specified part of code as a new method
mMoving fields or methods to the super-class

mMoving static fields or methods to another class
....

Refactoring: Example

mInitial design
BThe document classes (XXDoc) own the responsibilities for

print/view
mThe Printer/Previewer classes only call the methods provided by XXDoc

B This is good when we have more XXDoc but only with print/view

. C h a n g e +print(d : ;;i:::ent}'void
[_)oct_lme_nt / : :
BWe don’t have more XXDoc but e [
We eXpeCt mOre WayS Of / \ + preview(d : Document) - void

processing (convert/scan/etc.)

+ print() : void + print() : void
+ preview() - void + preview() : void

Refactoring: Example

mFirst, move the print behavior from the XXDoc classes to the
Printer class
» Now, the print methods in XXDoc just call the Printer object

Printer

+ print(d : ASClIDoc) : void

Document /__, !)
+ print(d : PDFDoc) : void

+ print(p : Printer) : void

+ preview() : void \
Previewer
+ preview(d : Document) : void

ASCIlIDoc PDFDoc

+ print(p : Printer) : void + print(p : Printer) : void
+ preview() : void + preview() - void

Refactoring: Example

mDo the same for the preview function

Printer

Document

+ print{p : Printer) : void
+ preview() : void

+ print(d : ASClIDoc) : void
+ print(d : PDFDoc) : void

\

Previewer

+ preview(d : ASCIlIDoc) : void
+ preview(d : PDFDoc) : void

ASCIIDoc

PDFDoc

+ print{p : Printer) : void
+ preview(p : Previewer) : void

+ print{p : Printer) : void
+ preview(p : Previewer) : void

Refactoring: Example

mUnify the Printer/Previewer interfaces

Printer

+visit({d : ASCIIDoc) : void

Document ’{_/_/" o .
+visit(d : PDFDoc) : void

+ print(p : Printer) : void Visitor

+visit(d : ASCIIDoc) : void
+visit(d : PDFDoc) : void

+ preview() : void \

Previewer

\/

+visit(d : ASClIDoc) : void
+visit(d : PDFDoc) : void

ASCIlIDoc PDFDoc

+ print(p : Printer) : void + print(p : Printer) : void
+ preview(p : Previewer) : void + preview(p : Previewer) : void

Refactoring: Example

B ast: update the XXDoc classes to use the unified interface

Printer

000000 + visit(d : ASCIlIDoc) : void

+visit(d : PDFDoc) : void
cept(v - Visitor) - void \ﬁ Visitor

+visit(d : ASCIIDoc) : void
Previewer + visit(d : PDFDoc) : void
+visit(d : ASClIDoc) : void
+ visit(d : PDFDoc) : void

ASCIliDoc PDFDoc

+accept(v : Visitor) : void v - Visitor) : void

Note: Visitor Pattern

BmThe resulting design is the Visitor pattern in GoF
mData class implements a procedure to traverse the data structure
mConcrete processing functions are implemented as visitors and
passed to the data class

He.g. fora program code
m\We prepare a component to traverse all of the nodes of the
abstract syntax tree
BmThen, we can pass any processing function to it, e.g., counting
elements, checking consistency, etc.

TOD

EMaintenance
mRefactoring
BProject Management

f-ishikawa@Sokendai

Management

mBody of knowledae from SWEBOK 3.0

Process for the
Review and
Revision of
Requirements

Effort, Schedule,
I and Cost
Estimation

Resource
Allocation

= Risk Management

Quality
Management

L Plan Management

Implementation

= of Measurement

Process

» Monitor Process

—» Control Process

—» Reporting

f-ishikawa@Sokendai

Perform the
| Measurement
Process

Evaluate
Measurement

Software
Engineering
Management
Software Software
Initiation and Software Project Software Project Review and . o ; Engineering
) " 1 X B . r X X Closure 1 Engineering
Scope Definition Planning Enactment Evaluation Management
Measurement
Tools
-~ . Establish and
i)
Demm“"a}"_n . Implementation Dcl_crmlr_l ing Determining Sustain
| and Negotiation = Process Planning of Plans - Satisfaction of Clas -
of Reguirements Requirements LISHES MC&ISUFC]]‘!C]‘J[
Commitment
Software S
Feasibility Determine Acauisit d Reviewing and Plan the
casi I.ll}' Lif.'l']Tl]l'l(. I qull.hl li'l‘l'l an —b li\-‘uluu[i]]g s —b Mﬂﬂsummml
Analysis Deliverables Supplier Contract . Activities . R
° Performance Process
Management

27

Example of Management Method: Cost Estimation

iE)

EFunctional Size Measurement (A&gE+EAEAIE
mMethods such as COCOMO, COSMIC, NESMA

ECommon concept of “function point”:
we derive points or scores for each function by counting

inputs and outputs and evaluating the complexity
meg., IN 24 X Complexity 4 + OUT 14 X Complexity 5 + --- =320
mMay consider factors of complexity such as “high performance
required” or “inputs made in multiple views”
mMay consider factors such as experience levels of engineers

Example of Management Method: Software Equation

mE =1°/pP3t*

Necessary effort (person-year) E is
Proportional to the cube of the code size L
nversely proportional to the biquadratic of the time t (year)

nversely proportional to the cube of productivity P

mExample: L = 33,000,P = 12,000
Wt = 1.75 (year) 2 E = 3.8 (man-year) decrease the period by

Wt =13 (year) > E = 7.2 (man-year)

Double of persons to

about half a year

BThereis a lower-bound of the time

Example of Management Method: Simple Practice

BOne example of guideline/statistics in Japan
ENum of views - effort estimation

BE =191 X (#views + %#dataschemes) 5 | . n=892
BThen, effort = time estimation - .
ﬁ 30 & v :5;7:0;;5;,»’3)
mT = 2.73F L »

mSimple, even done during meetings |
SETH =270 x Y2AEIH

10 100 500 1000 2000 3000
EHEITH

Cited from [BERBERV AT L« I—V—HR, VI b7 X My 7 AFEE2020
VAT LRFE - RFIHE, 2020]

Metrics

EMeasurement and monitoring of metrics (A~ X) %

is essential for management
mSize of development
mProgress and effectiveness of tests
mDesign quality
mSource code quality
m--

f-ishikawa@Sokendai

Example of Metrics (1)

mSize of development
mLOC (Line of Code) / KLOC: understand the size of code after
development by counting the lines with standard formatting
BmFunction Point: estimate the size of development beforehand

BProgress and effectiveness of tests
mTest Case Density and Defect Density: count test cases or detected
defects per 1 KLOC/1 FP to evaluate test adequacy and product
quality

Example of Metrics (2)

mDesign quality
m[Card, 1990]

mFan-out f,,: (i) : num of modules directly invoked by the module i
mStructural complexity S(i) = f2,.(i)
mData complexity D(i) = v(i)/f (D) + 1
where v(i) is the num of input/output variables
mSystem complexity C(i) = S(i) + D(i)
m(Cohesion and coupling
Me.g., num of references to elements in other classes
He.g., num of methods in the same class that use a certain field

Example of Metrics (3)

mSource code quality
mCyclomatic complexity (oA 7T« v 7EME) :
measuring the complexity by counting independent paths

“#edges - #nodes + 2" in the control graph
mEmpirically, <=10 is desirable and
>=30 leads to many defects

10-1T1+2=1

f-ishikawa@Sokendai 34

Summary

EMaintenance
mVery significant but difficult activities
®Practical solutions investigated by combining prior
documentation and by posterior analysis and mining
BManagement
mDeals with cost and process aspects based on statistics and data

	スライド 1: Software Engineering (7) Maintenance / Management
	スライド 2: TOD
	スライド 3: Maintenance: Overview
	スライド 4: Maintenance: Classification
	スライド 5: Maintenance: Challenges
	スライド 6: Maintenance: Challenges
	スライド 7: Change Impact Analysis: Forward Approach
	スライド 8: Change Impact Analysis: Backward Approach
	スライド 9: Relevant Topic: Configuration Management
	スライド 10: Relevant Topic: Regression Testing (Revisited)
	スライド 11: Relevant Topic: Regression Testing (Revisited)
	スライド 12: Related Topic: Visualization
	スライド 13: Relevant Topic: Dependency Analysis of Code
	スライド 14: Relevant Topic: Slicing
	スライド 15: TOD
	スライド 16: Refactoring: Definition
	スライド 17: Refactoring: Significance
	スライド 18: Refactoring: Triggers
	スライド 19: Refactoring: Practice
	スライド 20: Refactoring: Example
	スライド 21: Refactoring: Example
	スライド 22: Refactoring: Example
	スライド 23: Refactoring: Example
	スライド 24: Refactoring: Example
	スライド 25: Note: Visitor Pattern
	スライド 26: TOD
	スライド 27: Management
	スライド 28: Example of Management Method: Cost Estimation
	スライド 29: Example of Management Method: Software Equation
	スライド 30: Example of Management Method: Simple Practice
	スライド 31: Metrics
	スライド 32: Example of Metrics (1)
	スライド 33: Example of Metrics (2)
	スライド 34: Example of Metrics (3)
	スライド 35: Summary

