Software Engineering

(8) Agile Software Development

Sokendai / National Institute of Informatics
Fuyuki Ishikawa / &)1 &5
f-ishikawa@nii.ac.jp / @fyufyu

http://research.nii.ac.jp/~f-ishikawa/ %“ _jlégﬁjﬁﬁfﬁﬁ

http://research.nii.ac.jp/~f-ishikawa/

BHR

BmAgile Software Development
mAgile Practices

Critical Review on “Traditional” Approaches

mBiased too much to plans and templates/routines
®mDo not consider changes or adaptations by assuming and
following feasible and useful plans
mNeed long time, half a year or a year, to obtain and validate the
value by the working
mHave little support individuals and teams, including mental and
social aspects

®» Agile Manifesto in 2001

Agile Manifesto

BIndividuals and interactions over processes and tools
m\Working software over comprehensive documentation
mCustomer collaboration over contract negotiation
mResponding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.

[http://aqgilemanifesto.org/]

Also check the principles!
[http://agilemanifesto.org/principles.html]

http://agilemanifesto.org/
http://agilemanifesto.org/principles.html

Principles behind Agile Manifesto (1)

mOur highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

m\Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive
advantage.

mDeliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

mBusiness people and developers must work together daily
throughout the project.

[http://agilemanifesto.org/principles.html]

http://agilemanifesto.org/principles.html

Principles behind Agile Manifesto (2)

mBuild projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

BThe most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

m\Working software is the primary measure of progress.

B Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

[http://agilemanifesto.org/principles.html]

http://agilemanifesto.org/principles.html

Principles behind Agile Manifesto (3)

mContinuous attention to technical excellence and good design
enhances agility.

mSimplicity--the art of maximizing the amount of work not done--is
essential.

BThe best architectures, requirements, and designs emerge from
self-organizing teams.

mAt reqular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

[http://agilemanifesto.org/principles.html]

http://agilemanifesto.org/principles.html

Agile Software Development

mAgile Software Development
(7Y ALV T O TRERE)

B A wide term that refers to various approaches based on the
manifesto

Blterative and Incremental Development

(RIEHY - EERFHFE)
mlterates cycles of 2-3 weeks or 2-3 months

mRepeat: “work on the minimum valuable part, and then decide the
next by considering the feedback”

f-ishikawa@Sokendai 8

Typical “Agile” Approaches (1)

mDecide the target and way of progress on a case-by-case

basis
mManage goals, TODOs, and their priorities in periodical meetings
including the customer

mHave the working integrated code
mAvoid “only component” states or “do not work if integrated”
mAlways run the tests that represent the value for the customer and
maintain the system to pass them
ENeed use of tentative code (mock) and automated testing

Typical “Agile” Approaches

Bl et the team self-organized
®mDo not employ a manager who makes commands
mRequest each team member to understand the project status and
given them the right of decision for their work

EHave minimum software development
BYAGNI : You Ain't Gonna Need It

mNot confused “functions that may be used sometime”
mConsider documents/models as means, not goals

Famous Metaphor on MVP
BMinimal Viable Product (MVP)

Not like this....

1. Most important goal: “allow to run”
- find stability is important
2. "Allow to run in a stable way”
- hard to go over tens of meters
3. “Allow more efficient run”
- we may find this is already enough!

[https://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp |

f-ishikawa@Sokendai 11

https://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp

Popular Terminology (1)

mProduct owner
mParticipants from the customer side

mUser story
mRequirements stated in a way to clarify who/what/why
mishikawa, a lecturer, wants to check who joined each week so that
he can give proper scores for his lecture---
m(Coach, scrum master
mRole responsible for facilitation inside the team and with outside
ENo power for managing the project

Popular Terminology (2)

M|teration, sprint
mUnit of iteration, usually one week — one month at most
mBacklog
mSet of “what we want to do/what we should do”
mDifferent from “what we decided to do” or “what we are doing”
®mProduct-level or iteration-level
mVelocity

mSpeed of development (estimation and actual)
mNecessary for adaptive planning

BHR

mAgile Software Development
mAgile Practices

Practice

BPractice (725774 X)
mPractical know-how or technique to realize the principles
mIn other words, patterns of development activities
mSome methods recommend a set of practices, such as scrum, XP

(eXtream Programing), etc.
mBut if you follow them blindly, it may not be the “agile” way

f-ishikawa@Sokendai

Practices of Agile Software Development

BExample: agile practice map

Definition of Done Pont estimates Planning poker Backbg

O

Kanban board

Definiion of Ready Reltive sstimation User Story Tempiate

o

Lead time

Given-
When-
Then

Task board Backleg grooming ATDD

Burndown chart Personas @ Acceptance tests
Story mapping o) Ubguitous language
Scrum of Scrums)
Thres Questbns Storyspittng @ Contnuous Mock objscts
Miko-niko deployment
Sustainable User stories Continuaus)
Pace tteratons Integration Refactoring
TDD
Pair Programming Daily meeting Velochy Freguent Colective Simple design
releases Ownership
Rukes of simplicity
o o Team room 3Cs o Unittests
Proget Faciltation
charters o o Automated build
Heartbeat
retrospective Quick design session Exploratory testing
o (0]
Team erative development ncremental develbpment “ersion control
Usabilty tesfing
CRC cards
Lines represent practices from the various Agile “tribes” or areas of concern:
s [xirerne Programming e Scrom —)50
feams Product managemen! s Testing [https://www.agilealliance.org/aqile101/
a = i FOn O C S (S—— . i i
T e —Devops undamentals subway-map-to-agile-practices/]

f-ishikawa@Sokendai 16

https://www.agilealliance.org/agile101/subway-map-to-agile-practices/
https://www.agilealliance.org/agile101/subway-map-to-agile-practices/

Practices of Agile Software Development

mExample: agile practice map (by a Japanese company

BV SWE S

AL
A25L (HR)
XP

{EfEiER

F—LELF1¥d

ARIF—
HEFRH

KTV
7 2 x -4
2 > 7 i
+ ¥ 7 A
L L a h
L] # & T
]] 5 2
E B g 3

w

&

RIS L

NuV=TRYVAZEE

D=R DI FITI=A

FAAGRF—LE FEEE
RTD
AFNTYT FRET OER
SROES
REvy7
FO¥s kv ZE bR
FSyh—RIZ481X & OM = a
I
H
)
A FLRASR— .j a 7ag o bF—F— s f,
] I 1 I U t
® R Y Y ! 7
a 7 I I] B
AYFURY F OB 5 2) 2 ¥ &l
I s 5 k Keyond Ly ¥ > il
L A = I UZPAwAY b [M > ¥]
2 1 = U) v " v 52
FRE * 2 & | Ed P Z * L
IFL—a>
ATzt
ATV bRy oOd TFL—ayIsw=wy
ATUY TSy
ARVETYTI=Fa
- s
AFUX L FOARSIF4 T FLY—2H5L
AFYYFLEa—
N=2dIuFo—h
AOSTA
FIv= v I R—h—
ER#AD
25 L (R XP ffifEiFEsE F=LELT 17

f-ishikawa@Sokendai

[https://www.aqile-
studio.jp/aqgile-practice-map]

17

https://www.agile-studio.jp/agile-practice-map
https://www.agile-studio.jp/agile-practice-map

Practice Example: Kanban

mKanban
EProblem: need to control the work amount when requirements
and their changes emerge in an uncertain and irreqular way
mMeans: use a board to manage the status of tasks and specify the
limit of WIP (Work in Progress)

Backlog ToDo|(2) In Progress|(2) | | Done

Practice Example: Velocity Measurement

mVelocity Measurement
BmProblem: cannot estimate the release date if we don't know the
work amount per iteration
mMeans: record progress in each iteration by using metrics such as

“story points”
mSimilar to “function points”, we make scores of

mNote: need to record velocity values for multiple iterations and
combine traditional estimation if enough experience is not
accumulated

Practice Example: Burndown Chart

mBurndown Chart

mProblem: need to adaptively make decision on actions in
iterations or release cycles by checking the actual progress
EMeans: visualize the progress in terms of story points over time

Sample Burndown Chart

25
20
B

Q
152 Completed ta
g pleted tasks

o
© =—#—Remaining effort
10 g ——|deal burndown

Remaining tasks

5 ° Cited from
[IPA, 772 v 1 JVEIRERICEIT S
owomomon | I ITTARERB VT 7LV AAA K]
. [https://en.wikipedia.org/wiki/Burndo
wn_chart#/media/File:SampleBurndow
nChart.svg]

f-ishikawa@Sokendai 20

Practice Example: Inception Deck

Hnception Deck
®mProblem: sometimes objective and direction not clear among the
customer and different stakeholders

®Means: make 10 tough questions
Why are we here?
Meet your neighbors
Ask what keeps us up at night
Be clear on what's going to give

Practice Example: Planning Poker

mPlanning Poker

mProblem: need to make estimation by involving knowledge of
different stakeholders, especially, different experts

®Means: make a game to let everyone to

1. Given the initial estimation, everyone shows his/her opinion at
the same time by a card, e.q., “+3"

2. People with the highest/lowest values tell the reasons and
everyone have discussion

3. Repeat until timeout or convergence

Practice Example: Pair Programming

mPair Programming
EmProblem: each member has different skills, we want to develop a
product that outperforms what can be done by one person,
knowledge is closed inside each person
EMeans: do the programming tasks by a pair of persons
(not limited to programming)
mVariation: mob programming by more than two persons

Practice Example: Test-Driven Development

mTDD : Test-Driven Development (7 X b EXEIRIF)

mProblem: we easily make wrong code or break existing code if we
postpone test definition and execution

EMeans: repeat the cycle of “define executable tests, develop code
that passes them”

mOften with a principle of “make (even dirty) working code and
then refactoring”

f-ishikawa@Sokendai 24

Practice Example: Test-Driven Development

B (Simplistic) Example
1. Test Case 1: (x,y,z, RESULT) = (3, 3, 5, “Isosceles”)

String judgeTriangle(int x, int y, int z){
if (x==y) return "ZZ4"
else return ""

}
2. Test Case 2: (x,y, z, RESULT) = (3, 5, 3, “Isosceles”)

String judgeTriangle(int x, int y, int z){
if (x==y || x==z) return "Z“ZO"
else return ""

}

(this way is effective when the problem is very difficult/complex)

Behavior Driven Development

mBehavior Driven Development (E\1 E 77 EREIRIF)

mUse tests, i.e., concrete examples, as the goal of development
mMake tests readable by the product owner and end users
mExtend TDD, which was for unit-level engineer tasks

Specification by Test / Test as Document (in Cucumber) Test Code

Feature: Is it Friday yet?

Everybody wants to know when 1it's Friday @Given("today is Friday")

public void today_is_Friday() {

- n : "e.
Scenario: Sunday isn't Friday today Friday™;

Given today 1is Sunday
When I ask whether 1it's Friday yet
Then I should be told "Nope”

}

f-ishikawa@Sokendai 26

Practice Example: Continuous Integration

mContinuous Integration (&A1 > 77 L—2 3)

BmProblem: each small component of individual engineers does not
work when integrated

mMeans: build and test the whole system periodically or upon each
commit so that work of each engineers links to the whole systems

mAutomated by tools such as Jenkins, Circle Cl, Travis Cl

mAlso discussed with Continuous Delivery, including the packaging
and deployment tasks (we often say CI/CD)

f-ishikawa@Sokendai 27

Practice Example: Others

mDaily Meeting (EA%L)
mRetrospective (SYUDHZY)
BTeam room (FHBEDERE)
mNiko-niko (HL>Z—)
N

Questions or Limitations of Agile (1)

mApplicability
mSmall number of people in the same place (said at most 10)
mMulti-skilled members: everyone can do work of another;
everyone works on a system-level story (not like “only network”)
mEssential difficulties in changes
mDesign patterns are “preparation for a certain type of changes”
m(Cost on exploration and tentative development

Me.g., we made skateboard, bicycle, and bike before car in the MVP
example

Questions or Limitations of Agile (2)

®mQuality that needs careful planning and design
mSecurity should be considered by design, not ad-hoc

®(In old days) unnecessary negative claims on traditional
ways
mAs if all of the evils came from waterfall, documents, contracts, etc.
Bm“Enterprise Agile”

mExploration of combining traditional principles and
planning/management for more stable process or large products

Summary

BmAgile Software Development
mCountermeasure to too much bias to planning and
template/procedure as well as the era of rapidly changing world
M| argest impactin

	スライド 1: Software Engineering (8) Agile Software Development
	スライド 2: 目次
	スライド 3: Critical Review on “Traditional” Approaches
	スライド 4: Agile Manifesto
	スライド 5: Principles behind Agile Manifesto (1)
	スライド 6: Principles behind Agile Manifesto (2)
	スライド 7: Principles behind Agile Manifesto (3)
	スライド 8: Agile Software Development
	スライド 9: Typical “Agile” Approaches (1)
	スライド 10: Typical “Agile” Approaches
	スライド 11: Famous Metaphor on MVP
	スライド 12: Popular Terminology (1)
	スライド 13: Popular Terminology (2)
	スライド 14: 目次
	スライド 15: Practice
	スライド 16: Practices of Agile Software Development
	スライド 17: Practices of Agile Software Development
	スライド 18: Practice Example: Kanban
	スライド 19: Practice Example: Velocity Measurement
	スライド 20: Practice Example: Burndown Chart
	スライド 21: Practice Example: Inception Deck
	スライド 22: Practice Example: Planning Poker
	スライド 23: Practice Example: Pair Programming
	スライド 24: Practice Example: Test-Driven Development
	スライド 25: Practice Example: Test-Driven Development
	スライド 26: Behavior Driven Development
	スライド 27: Practice Example: Continuous Integration
	スライド 28: Practice Example: Others
	スライド 29: Questions or Limitations of Agile (1)
	スライド 30: Questions or Limitations of Agile (2)
	スライド 31: Summary

