Software Engineering

(9) Various Paradigms

Sokendai / National Institute of Informatics
Fuyuki Ishikawa / &)1 &1
f-ishikawa@nii.ac.jp / @fyufyu

http://research.nii.ac.jp/~f-ishikawa/

KEHFFBABREA B8 X TLMARE

SVt el

National Institute of Informatics

http://research.nii.ac.jp/~f-ishikawa/

BHR

BAspect-Orientation
mSoftware Product Line
mModel-Driven Development

Cross-Cutting Concerns

mSeparation of Concerns (BE/I(E
principles of software design
mCross-cutting Concerns ({ERTRYES\EE)

= D7) B

is one of the key

mConcerns that span over multiple classes in object-oriented

design/programming

Mlogging, security processing (encryption, signature, access

control), screen update, state preservation, -

Class1

Class2

Class3

f-ishikawa@Sokendai

Aspect-Orientation

mAspect-Oriented XXX (77 A% ~gm)
mMechanism to capture cross cutting concerns as “aspects’,
separated modules
mAspect-oriented requirements analysis, aspect-oriented design,
aspect-oriented programming (AOP), -
mTool example: Aspect] for Java-based AOP
mDiscussed actively around 2000

f-ishikawa@Sokendai

Example in Aspect) (1)

BmPointcut: targets that take the common behavior

mAdvice: the common behavior in pointcuts
Be.g., logging before/after all the methods that change the points

pointcut move () :
call (void FigureElement.setXY (int,int)) ||
call (void Point.setX(int)) | |
call (void Point.setY (int)) | |
call (void Line.set* (Point));

~ A~ o~ o~

before(): move () {
System.out.println ("about to move");

}

after () returning: move () {

System.out.println ("just successfully moved");

}

[https://www.eclipse.orqg/aspectj/doc/
released/progquide/starting-aspectj.html]

https://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html

Example in Aspect) (2)

mAdd a field and method onto the existing class Point

aspect PointObserving {
private Vector Point.observers = new Vector();

public static void addObserver (Point p, Screen s) {
p.observers.add(s) ;

}
A new data field observers is added

pointcut changes (Point p): to the existing Point class

target (p) && call(void Point.set* (int));

The observers are used to display

after (Point p): changes(p) { information after any setXXX

for (Screen s : p.observers) { method is invoked

s.display (p);
}

[https://www.eclipse.orqg/aspectj/doc/released/progquide/starting-aspectj.html]

f-ishikawa@Sokendai

https://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html

Aspect-Orientation: Discussion

mDifficulties in understanding the merged behavior, possibly
causing inconsistency

mSeparation of concerns is still considered significant
mMaybe not the old trendy word “aspect-orientation”
mTypical implementation: the framework (for security, for logging,
for debugging) inserts common behavior according to specific
configuration files

BHR

BAspect-Orientation
mSoftware Product Line
mModel-Driven Development

Software Product Line

mSoftware Product Line : SPL

(V7 b0z 770%7 8Z742)

mApproach to systematically develop a similar line of products
EmTraditional product line

mDesign efficient production of hardware, food, etc. by using

common instruments and materials
Me.g. “Hamburgers” in Mcdonald’s

f-ishikawa@Sokendai

Activities in Software Product Line

mDomain engineering
mBuild core assets to be used for development of each product by
identifying common/different parts
mAnalyze and design the variability (RTZ4)
mApplication engineering
mEfficiently build each product using the core assets

. . Product 1:
Domain: software of AV display of cars with smart phone connection
e.g., variability: with or without smart | Product 2: |
phone connection function without smart phone connection

- Each case is build in this way -

f-ishikawa@Sokendai 10

Techniques for Software Product Line

mFeature Model (7 4 —F+v—E7)l)
®mA model to define each product variant by specifying common
and different aspects

Optional And
Mandatory P

\ LeotureManageW Alternative

Inteﬁacretanguage ClassSearchFunction Networgﬂxcceaa

Auth-e_r'goation
e U

dapgﬂeae Enéfiah F’ut;iic DnlyUniﬁNetWDrk PEES-‘;MDr'd Multi—.phaae

Public = Multi-phase — - nstraints

f-ishikawa@Sokendai 11

Techniques for Software Product Line

EMechanism to generate models and code of each product
Me.g., embed specific behavior for a certain feature by using aspect-
oriented programming
Me.g., activate/deactivate specific behaviors by C/C++ macro (ifdef)
m--

This time, the product employs

@featurel featurel and feature 2B
class Display{
void show () { @featurel
. . class Display{
@feature2A void show () {
show (text) ; ...
@feature2B showTranslated (text) ;

showTranslated (text) ; }

BHR

BAspect-Orientation
mSoftware Product Line
EModel-Driven Development

Model-Driven Development

mModel-Driven Development: M
mApproach to consider the develo
model transformation activities

DD (&7 /VEREIRE %)

oment process as multi-phase

mUse of systematic, ideally automated, transformation rules such as
one from specification to design, from design to implementation

mReaction to changes by re-generation of implementation code
from the updated requirements models (ideally)

f-ishikawa@Sokendai 14

Model Driven Architecture

®Model Driven Architecture: MDA
(BT IVEREN 7 —F T U F +)

mDefines the modeling structure as a process architecture

(not a design architecture)

EComputation Independent Model (CIM): business and domain
mPlatform-Independent Model (PIM): system models
mPlatform-Specific Model (PSM): design models

mProposed in 2001 but too ideal to think of fully automated model
transformation from requirements to code

Techniques for Model-Driven Development

mUML with clear semantics for generating code
mfUML (foundational subset for executable UML models)

mDomain-Specific Language (DSL)
EmGenerating language tools from a syntax definition
me.g., Eclipse Modeling Framework, Xtext, -+

Bl .anguages and tools for model transformation
mQVT, ATL, -+

Example: Xtext

DSL syntax definition

MyUnivMode'l:
(lectures+=Lecture)*;

Lecture:
‘lecture’ lecid=ID (‘type’ lectype=ID)? '{'
(students+=Student) *
l}l;

Student:
stuid=ID

Auto-generate

Parser
Editor

Develop

DSL
Tools

Run time: DSL description instance

lecture BS001 {
S4602111, T2141136

}

lecture NSO05 type external {
S4603041. T1140855, T3421608

}

Edit with the generated editor tool

Read from code by prepared APIs
- myUnivModel.getLectures()

lecture.getLecid()

f-ishikawa@Sokendai

[https://www.eclipse.org/Xtext/]

17

https://www.eclipse.org/Xtext/

Model-Based Development

mModel-Based Development (&7)b X—XBH)
mTerm used in control software such as in automotive systems
mDesign control behavior with mathematical formula as models,
e.g., by using MATLAB/Simulink
EThen, generate program code from the models

Summary

mDifferent paradigms have been still actively investigated
m\With the core focus on reusability and response to changes

	スライド 1: Software Engineering (9) Various Paradigms
	スライド 2: 目次
	スライド 3: Cross-Cutting Concerns
	スライド 4: Aspect-Orientation
	スライド 5: Example in AspectJ (1)
	スライド 6: Example in AspectJ (2)
	スライド 7: Aspect-Orientation: Discussion
	スライド 8: 目次
	スライド 9: Software Product Line
	スライド 10: Activities in Software Product Line
	スライド 11: Techniques for Software Product Line
	スライド 12: Techniques for Software Product Line
	スライド 13: 目次
	スライド 14: Model-Driven Development
	スライド 15: Model Driven Architecture
	スライド 16: Techniques for Model-Driven Development
	スライド 17: Example: Xtext
	スライド 18: Model-Based Development
	スライド 19: Summary

