VDM-RT for Co-simulation

John Fitzgerald
Peter Gorm Larsen

Newcastle / AARHUS
Un1verS1ty @ ¥ UNIVERSITY

Background: VDM

e Our goal: well-founded but accessible modelling &
analysis technology
* VDMTools - Overture - Crescendo - Symphony

— Pragmatic development methodologies
— Industry applications

* VDM: Model-oriented specification language
— Extended with objects and real time.
— Basic tools for static analysis
— Strong simulation support
— Model-based test

Newcastle AARHUS ;
+ Univers ity v UNIVERSITY Crescendo Tutorial at NIlI, Tokyo, Japan 24-10-2014 2

S
Overview

VDM use in Crescendo
 VDM-RT (Real-Time)
— Classes, instance variables, functions, operations, values

(constants), threads, synchronisation
— Real-time features

* DE-first modelling in Crescendo
— Modelling approximations

== Newcastle
@ 'Umver51ty ﬁﬁﬁ/%%SSITY Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 3

Crescendo Workspace
et e

File Edit Mavigate Search Project Run Wing

il SE| el
(1) Crescendo Explorer &2 = O
BE ¥

[> IL-’% IntelligentVehicleAutomation
b Kilobot
b & PairedKilobots
b 2 PairedKilobots2
Fi IL-’% Robotirm
4 [= configuration

_}' contract.csc

o vdmlink J
4 [~ model_ct

B8 Robot.3dm

& Robot.emx

Contract

|=| Robot.scn

& robotSimulation.emzx

& ScaraRobotall motor.ems
4 B model_de

i Controllervdmrt
CESVowdmirt

[I0wdmrt
My Systernvdmrt f
World.wdmrt

b 22 output
|=| Robotfrm.launch
= scenarios
[IL-’% TorsionBarBazeline
[IL-’% TorsionBarBxtended

&= Newcastle /
Q9 niversity \ ¥

AARHUS
UNIVERSITY

* No namespace or packages

e All VDM-RT classes under
model _de checked

* No auto-completion (sorry!)

20-sim model

VDM model

Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 4

Debugging

* Printing:
10 print(“a string™)
10 printIn(*“a string plus newline™)
10 printf(“%s: value of x 1s %s”, [1, X])
— Only %s is supported currently!

— String concatenation is /™ (usually Shift-6)
— The symbol: ~ is used to access static members of classes (not . as in Java)

* Setting breakpoints / Debug perspective

Newcastle AARHUS ;
+ Univers ity v UNIVERSITY Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 5

A Simple Controller Class

class Controller

instance variables

measured:
setpoint:

err:

Co-simulation
engine can sync
these to 20-sim

model

real ;
real ;
real;
output: real;

operations

public Step: O ==> O

periodic(2E7, O ,

end Controller

Step() ==
err = setpoint - measured;
output := P(err);

);

functions

private P: real -> real

P(err) == err * Kp

values

Kp = 2.0

thread

0 , 0)(Step);

AARHUS

&= Newcastle
Ry University N UNIVERSITY

Sections (instance variables, operations, etc.)

Inheritance supported
class Controller i1s subclass of Parent

Objects created with
new Controller

Constructors also similar to Java
public Controller: real * real ==>
Controller
Controller(a,b) == (

Sections can be repeated and mixed

Comments are
Two dashes: —— comment
— or/* block comment */

Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 6

Instance Variables

* Give the state of the object

class Controller

instance variables

Note syntax for giving the type

private measured: real := 0; -

public setpoint: real := O; private double measured;

protected err: real := 0; private measured: real;

output: real := 0;

operations * Visibility similar to Java (added here for

_ illustration only)
public Step: O ==> QO

Step() == — Default is private (no visibility given)
err := setpoint - measured;))
output := P(err); e Can be assigned when defined

)

Functions * More on types (real, etc.) later

private P: real -> real

P(err) == err * Kp

values

Kp = 2.0

thread

periodic(2E7, 0 , 0 , 0)(Step);

end Controller

Newcastle AARHUS ;
+ Univer sity v UNIVERSITY Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 7

Functions

* Functions are pure

class Controller

instance variables — No side effects

measured: real; — Cannot access instance variables
setpoint: real;

err: real; * No return keyword:

output: real; — Value of function application is defined by

operations an expression representing the returned
public Step: () ==> value of the correct type
Step() ==
err := setpoint - measured; » Useful for auxiliary / helper calculations
output := P(err);
) * Signature above definition
functions real * 1Int * bool -> real
private P: real -> real * No |OOpS
P(err) == err * Kp . . :
— Use functional programming techniques
: .
values — Can call other functions
Kp = 2.0
thread

periodic(2E7, 0 , 0 , 0)(Step);

end Controller

Newcastle AARHUS ;
+ Univers ity v UNIVERSITY Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 8

Operations

class Controller
instance variables

measured: real;
setpoint: real;

err: real;
output: real;

Like void

operations

public Step: O ==> QO

Step() ==
err = setpoint - measured;
output := P(err);

);

functions

private P: real -> real
P(err) == err * Kp

values
Kp = 2.0

thread

end Controller

periodic(2E7, 0 , 0 , 0)(Step);

&= Newcastle
Ry University N UNIVERSITY

AARHUS

Similar to functions, but...
— Can access instance variables / have side
effects
— Are imperative like Java
— Can use while, for loops etc.
— Must use return keyword when returning

a value
Can call other operations and functions

Can define local variables (only at the start)

Step() ==
dcl x: real := 0O;

Parentheses: (), not {}

Different arrow from function
real * Int * bool ==> real

Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 9

Va‘ues

class Controller

Used to define constants

instance variables

Note = is used, not - =
measured: real;
setpoint: real;
err: real;

Do not need a type, but can have one

output: real; Kp: real = 1.24;
operations * Are static, can be accessed from other classes
public Step:) ==> O (lf pUbIIC)
Step() == <
err := setpoint - measured; Controller Kp
output := P(err);
)
functions

private P: real -> real
P(err) == err * Kp

values
Kp = 2.0
thread

periodic(2E7, 0 , 0 , 0)(Step);

end Controller

2= Newcastle AARHUS .
+ Un_iversity W UNIVERSITY Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 10

Threads

 Threads are defined in the class
Definition could be operation call; will run

class Controller

instance variables

measured: real;

setpoint: real; once
err: real; thread
output: real;
Step(Q);
operations
* Oraloop
public Step:) ==> QO
Step() == thread
err := setpoint - measured; while true do Step();
output := P(err);
) e Starting
functions ctrl: Controller := new Controller();
private P: real -> real Start(Ctrl)

P(err) == err * Kp

Or a special, periodic definition (as on the left)
— will call Step operation once every 2e7
nanoseconds (20 milliseconds; 0.02 seconds;

thread SOHZ)
periodic(2E7, 0 , 0 , 0)(Step);

values

Kp = 2.0

end Controller

Newcastle AARHUS ;
+ University N UNIVERSITY Crescendo Tutorial at NiI, Tokyo, Japan 24-10-2014 11

VDM-RT Important Features (1)

 VDM-RT (Real Time) has extensions for modelling real-
time systems

 An internal clock

— in hanoseconds from simulation start

— accessible with the t1me keyword, e.g.
« dcl now: real := time/le9 -- time i1In seconds

 All expressions advance the clock
— default is two simulated cycles

— Can be altered with cycles(number) (expression) or
duration(number) (expression)

| @=/Newcastle AARHUS ;
+ University W UNIVERSITY Crescendo Tutorial at Nll, Tokyo, Japan 24-10-2014 12

VDM-RT Important Features (2)

* The internal clock is synchronised with 20-sim (see
semantics on earlier lecture notes)
e Also models of CPUs and buses to try to model real code

execution
— objects are “deployed” to CPU with a given speed
— the time take for execution depends on the modelled CPU
speed
— also a virtual CPU that doesn’t advance the clock (if objects
aren’t deployed)

| @=/Newcastle AARHUS ;
+ University W UNIVERSITY Crescendo Tutorial at Nll, Tokyo, Japan 24-10-2014 13

System C|ass

system MySystem

* Special class for CPU and deployment

instance variables

* Can only define instance variables and a

-- controller

public static ctrl: Controller; constructor
—~ cPU * CPU speed in (simulated) MIPS
private cpu: CPU; := new CPU(<FP>. 1E6) — getting a model within ~20% of the real
operations thing is typically “good enough”
public MySystem: () ==> MySystem
MySystem() ==
ctrl = new Controller();

cpu.deploy(ctrl)
)

end MySystem

&=/ Newcastle AARHUS ;
+ Univers ity v UNIVERSITY Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 14

or dSS

class World * Entry point for code execution

operations e Here run()is like main()

-- run a simulation

public run: O ==> O e Start threads and wait for end of
run() == . .

start(System ctrl): simulation

block();
E

-- wait for simulation to finish
block: O ==> O

block() == skip;

sync per block => false;

end World

2= Newcastle AARHUS .
+ Un_iversity W UNIVERSITY Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 15

DE-first Modelling (1)

=T sen) e DE-first
development

CONTRACT

Contract
definition

T-only

S
C < A > P } modelling

Integration of
initial co-model

e DE-first (DE-only) model:

— Controller, sensor and actuator classes
— Environment model

== Newcastle
@ 'Ul’llV@I‘Slty Gﬁﬁ/%%SSITY Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 16

DE-first Modelling (2)

* Development begins with a system model in the DE formalism

* This model contains a controller object (ctrl) and environment
object (env)

 Linked by (one or more) sensor and actuator objects (sens and act).

* The environment object is used to mimic the behaviour of the CT
world in the DE domain.

* Once sufficient confidence is gained, a contract is defined.

» Alternative implementations of sensor and actuator objects are

made
— that do not interact with the environment object and act simply as locations

for shared variables that are updated by the co-simulation engine.

| @=/Newcastle AARHUS ;
+ University W UNIVERSITY Crescendo Tutorial at Nll, Tokyo, Japan 24-10-2014 17

Environment Model

* A simplified model of the plant that will later be replaced
by a CT model
* Built an Environment class that can act as (or be called by)

a thread.
— Step operation with dt (time since last call)

* Two approaches:
— Data driven: pre-calculated data is read in and provided to the
controller model via the sensor objects
— Integration: simple implementation of a CT-like integrator
— Or: a combination of both

| @=/Newcastle AARHUS ;
+ University W UNIVERSITY Crescendo Tutorial at Nll, Tokyo, Japan 24-10-2014 18

Simple Integration

* Consider a moving object with an acceleration, velocity
and position, simulated over some time step, dt.
* A simple Euler integration might look like:

position = position + velocity * dt;
velocity = velocity + acceleration * dt;

* Simplifying assumptions used, e.g.
— acceleration is constant, or
— motors have no acceleration and instantly reach speed

| @=/Newcastle AARHUS ;
+ University W UNIVERSITY Crescendo Tutorial at Nll, Tokyo, Japan 24-10-2014 19

Approximating CT Behaviour

* Linear approximations are okay for the plant
model, what about non-linear (e.g. user

Ang[ez(odegrees) |nput)?
iéj - e.g. the plot here might represent user input
: on the self-balancing scooter
4 5 6 7 — itis high fidelity

time (seconds) .
— but for testing safety and modes (e.g. start-

up), only an approximation will do

Newcastle
@ University 7 ﬁﬁﬁ/}-lli%SSITY Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 20

Finding Approximations

Angle (degrees) ° Tup|es
20
15 — create a sequence of time/value pairs
s A — seq of (real * real)
; ; ; '7 — change at the given time, interpolate
time (seconds) ;
Tuples: between times
(0.0, 0.0)
(4.0, 0.0)
(5.0, 15.0)
(6.0, 15.0)
(7.0, 0.0)
Anglez(odegrees) e Data input
1(5} — use real measured data or generate data
. — Store in CSV and read in at the given time
4 5 6 - CSV freadval[seq of real](filename)
time (seconds)
File entries:
“time”,“angle
4.0,0.0
4.1,0.1
4.2,0.8
4.3,2.1

Newcastle AARHUS ;
+ Univers ity N UNIVERSITY Crescendo Tutorial at NI, Tokyo, Japan 24-10-2014 21

Summary

* VDM-RT is used to build controllers in Crescendo
— it is object-oriented, supports inheritance

— classes are divided into sections
* instance variables, operations, functions, values, thread, sync

— there is an internal clock that is synchronised with 20-sim; all
expressions take time and increase the internal clock
e DE-first
— simplified plant model
— runs as a thread, like a simple simulator
— approximations of CT behaviour

| [@==/Newcastle AARHUS i
+ University W UNIVERSTY Crescendo Tutorial at NII, Tokyo, Japan 24-10-2014 22

Practical:
Line-following Robot Co-model

John Fitzgerald
Peter Gorm Larsen

@ Newcastle / AARHUS
Unlversﬂ;y @ v UNIVERSITY

S
Instructions

e Extract Practical.zip
— this will place a Robot folder on your hard drive

* Navigate to the extracted folder and follow the
instructions in Practical-Instructions.pdf

== Newcastle
@ 'Umvers1ty Gﬁﬁ/}-lli%SSITY Crescendo Tutorial at NII, Tokyo, Japan 31-05-2014 24

