INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=

_ INTO-CPS
VDM Tutorial
John Fitzgerald, Newcastle University
@5 Newcastle

Xﬁi#ﬁ.ﬂﬁi;ﬁ ﬂ’/li‘%ﬁﬂﬁ AA R H U S
E[r ' -] PR / . .
N I I N unversTY NGy University

ESRRR I Horizon 2020
* Programme

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

VDM Background @

INTO-CPS

* Our goal: well-founded but accessible modelling
& analysis technology |

 VDMTools - Overture - Crescendo -
Symphony
— Pragmatic development methodologies
— Industry applications

 VDM: Model-oriented specification language
— Extended with objects and real time.
— Basic tools for static analysis
— Strong simulation support
— Model-based test

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

L
VDM (Vienna Development Method) @

INTO-CPS

* A formal method for specification of software
* Three flavours
— VDM-SL (Specification Language)
— VDM++ adds object-orientation
— VDM-RT adds real-time features (clock and deployment)

 Model-oriented specification language
— Simple, abstract data types
— Invariants to restrict membership

— Functional specification:
* Implicit specification (pre/post)
» Explicit specification (functional or imperative)

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

VDM-SL Module Outline (_i;c?

INTO-CPS

module <module-name>

imports
exports

.. >>’ Interface

VINITTRIFD
4 EFIAERGE _/

definitions
state)

EONHRRRESE VDM-SL
BEORBAELLIC,
1 i

types
values

: > Definitions
functions

operations

[] o o —/
end <module—-name>

Horizon 2020 4
Programme

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

VDM++ Class Outline Li;c?

INTO-CPS
: | class <class—-name>
! Validated Designs instance wvariables _
for Opject il + Internal object state
ystems
types
values L
_ \ Definitions
functions
operations
thread ’
¢ Dynamic behaviour
sync .
Y » Synchronization control
traces :
> Test automation support

. end <class—-name> e
Horizon 2020
Programme

INtegrated TOolchain for Cyber-Physical Systems

Data Types

http://into-cps.au.dk/

=LA

INTO-CPS
T\lnn \/aliiac
* BaSIC types flaql: bool := false;
— Boolean < Rt Ldede
— Numeric ,< 1nc?: tok&r’ :’="'mk_token(5) ;
— Tokens = %S mk, ZoKeR,(Tken”)
— Quote types < %%egﬁ%@ﬁﬂ.é”ﬁq{,yy(&,equm .

Characters / String <

rame, (@pditpfanchazr> Hindgedtity)

Compound types

Sot ¢) s: set of int := {1,5,8,3};

— cetlypes =] 1.1B.8%65¢Sint TEVU$1,5,5,8,3];

— Sequence types < s {map-in8 to real := {1 |-> 3.14};
— Map types < —— ;

— Product types < xT Pair fp::mreai" 3.14);

— Record types < ’# ' . . ‘o .:. aRnAnknkS

— Union types < 7§;a50i0f5§:_1 sqivlent to

pd
~

Optional types

Type = nat | nil

N Horizon 2020
Programme

Fven = nat

inv n == nmod 2 = 0

SpecialPair
inv mk (n,r)

DisjointSets

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Type Invariants (:;-_-)

INTO-CPS

nat * real - the first i1s smallest
== n < r

= set of set of A

inv ss == forall sl, s2 in set ss &

ESRRR I Horizon 2020

Programme

sl <> s2 => sl inter s2 = {}

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
(- ;2
LCD

INTO-CPS

Set Types

* Unordered collections of elements
* One copy of each element
* The elements themselves can any type

* e.g.
— set of int
- {1,5,8,3};
- {1}

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=LA

Overview of Set Operators

INTO-CPS
e in set sl Membership () A * set of A -> bool
e not in set sl Not membership (¢) A * set of A -> bool
sl union s2 Union (V) set of A * set of A -> set of A
sl inter s2 Intersection (M) set of A * set of A -> set of A
sl \ s2 Difference (\) set of A * set of A -> set of A
sl subset s2 Subset (<) set of A * set of A -> bool
sl psubset s2 Proper subset (<) set of A * set of A -> bool
sl = s2 Equality (=) set of A * set of A -> bool
sl <> s2 Inequality (#) set of A * set of A -> bool
card sl Cardinality set of A -> nat
dunion sl Distr. Union () set of set of A -> set of A
dinter sl Distr. Intersection () setl of set of A -> setl of A
power sl Finite power set () set of A -> set of set of A

Horizon 2020
Programme

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

Sequence Types INTO-CPS

Could also be called lists
— Not fixed length like Java arrays

 Ordered collections of elements

* Numbered from 1 (not O like Java)
— Access element with () and not [], e.g. 1ist (1)

* Multiple copies of each element allowed
* The elements themselves can be any type

* e.g.
— seq of int;seql of int (non-empty)
- [1/5/5/8/1/3]; []

10

INtegrated TOolchain for Cyber-Physical Systems

Overview of Sequence Operators @

http://into-cps.au.dk/

INTO-CPS

hd 1

tl 1
len 1
elems 1
inds 1
11 ~ 12
conc 11
1(1)

1 ++ m

11 12
11 <> 12

Head

Talil

Length

Elements
Indexes
Concatenation
Distr. conc.

Seq. application
Seg. modification

Equality
Inequality

seql of A -> A

seql of A -> seq of A

seq of A -> nat

seq of A -> set of A

seq of A -> set of natl

seq of A * seq of A -> seq of A
seq of seq of A -> seq of A
seql of A * natl -> A

seql of A * map natl to A ->
seql of A

seq of A * seq of A -> bool
seq of A * seq of A -> bool

Horizon 2020
Programme

11

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Mapping Types

* Unordered collections of pairs of elements (maplets)

with a unique relationship
— mapping keys to values
— like Python dictionary

* The elements themselves can be any type

* e.g.

— map int to real

12

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Overview of Mapping Operators =
INTO-CPS
dom m Domain (map A to B) -> set of A
rng m Range (map A to B) -> set of B
ml munion m2 Merge (map A to B) * (map A to B) ->
(map A to B)
ml ++ m2 Override (map A to B) * (map A to B) —->
(map A to B)
merge ms Distr. merge set of (map A to B) -> map A to B
s <:m Dom. restr. to set of A * (map A to B) -> map A to B
s <-: m Dom. restr. by set of A * (map A to B) -> map A to B
m :> s Rng. restr. to (map A to B) * set of A -> map A to B
m :-> s Rng. restr. by (map A to B) * set of A -> map A to B
m (d) Map apply (map A to B) * A -> B
inverse m Map inverse inmap A to B -> inmap B to A
ml = m2 Equality (map A to B) * (map A to B) -> bool
ml <> m2 Inequality (map A to B) * (map A to B) -> bool

Horizon 2020 13

Programme

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=

INTO-CPS

Specifying Behaviour

e Specifications in terms of post-conditions define a
contract

sgrt (x: nat) r: real
post x = r *x r

* Explicit version

sgrt: nat -> real
sgrt (x) == Math sqgrt (x)

* Pre-condition and post-conditions

sgrt: int -> real

sgrt (x) == Math sqgrt (x)
pre x > 0

post x = RESULT * RESULT

Implicit definition, not executable

N

Explicit definition can be executed

N

14

ESRRR I Horizon 2020
* Programme

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

-
INTO-CPS

A Simple Controller Class

class Controller

instance variables Divided into sections (e.g. instance
private neasured: RealPort; Ve riables, operations, etc.)
R synchronises | * Inheritance supported

these to — class Controller is subclass of Parent
operations other models

* Objects created with
public Step: () ==> () — new Controller
Step () == (. .
n :- measured.getvalue () ; * Constructors also similar to Java
err := setpolnt - m; — public Controller: real * real ==> Controller

output.setValue (P (err));
)

Controller(a,b) == (
X:= ay

. y :=D
functions) ;

Sections can be repeated and mixed

private P: real -> real

P(err) == err * Kp
valuee * Comments are

- TWO daShes: —-— comment
Kp = 2.0

- ()r: /* block comment */
thread

periodic (2E7, 0 , 0 , 0) (Step);

end Controller 15

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
(- 2
LCD

INTO-CPS

Instance Variables

class Controller
instance wvariables
private measured: RealPort;
public setpoint: real;
protected err: real;
output: RealPort;
operations
public Step: () ==> ()
Step() == (
m := measured.getValue();
err := setpoint - m;
output.setValue (P (err));
)

functions

private P: real -> real
P(err) == err * Kp

values
Kp = 2.0

thread

periodic (2E7, 0 , 0 , 0) (Step);

end Controller

Give the state of the object
Note syntax for giving the type

— private double measured;
— private measured: real;

Visibility similar to Java (added

here for illustration only)
— Defaults is private is no visibility given

Can be assigned when defined

16

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

Functions

class Controller
instance wvariables
private measured: RealPort;
public setpoint: real;
protected err: real;
output: RealPort;
operations
public Step: () ==> ()
Step() == (
m := measured.getValue();
err := setpoint - m;
output.setValue (P (err));
)

functions

private P: real -> real
P(err) == err * Kp

values
Kp = 2.0

thread

periodic (2E7, 0 , 0 , 0) (Step);

end Controller

INTO-CPS
Are pure
— No side effects
— Cannot access instance variables

No return keyword, defined with
expressions that return the correct
type

Useful for auxiliary / helper
calculations

Note signature above definition

- real * int * bool -> real

No loops, must use functional

programming techniques
— Can call other functions

17

INtegrated TOolchain for Cyber-Physical Systems

Operations

class Controller

instance wvariables

private measured: RealPort;
public setpoint: real;
protected err: real;
output: RealPort;

operations

public Step: ()

Step () == (
m := measured.getValue();
err := setpoint - m;

output.setValue (P (err)) ;
)7

functions

private P: real -> real
P(err) == err * Kp

values

Kp = 2.0

thread

periodic (2E7, 0 , O ,

end Controller

0) (Step) ;

http://into-cps.au.dk/

=,

INTO-CPS

Similar to functions, but...
— Can access instance variables / have
side effects
— Are imperative like Java
— Can use while, for loops etc.
— Must use return keyword when
returning a value

Can call other operations and
functions

Can define local variables but only
at the start

— Step() == (
dcl x: real := 0;

Note parentheses () not {}
Note different arrow to function

- real * int * bool ==> real

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
(- 2
LCD

INTO-CPS

class Controller
instance wvariables
private measured: RealPort;
public setpoint: real;
protected err: real;
output: RealPort;
operations
public Step: () ==> ()
Step() == (
m := measured.getValue();
err := setpoint - m;
output.setValue (P (err));
)

functions

private P: real -> real
P(err) == err * Kp

values
Kp = 2.0

thread

periodic (2E7, 0 , 0 , 0) (Step);

end Controller

Values

e Used to define constants
* Note =is used, not :-

* Do not need a type

— but can have one
Kp: real = 1.24;

* Can be set as Shared Design
Parameters

* Are static, can be accessed from
other classes (if public)

— Controller Kp

19

INtegrated TOolchain for Cyber-Physical Systems

http://into-cps.au.dk/

class Controller
instance wvariables
private measured: RealPort;
public setpoint: real;
protected err: real;
output: RealPort;
operations
public Step: () ==> ()
Step() == (
m := measured.getValue();
err := setpoint - m;
output.setValue (P (err));
)

functions

private P: real -> real
P(err) == err * Kp

values
Kp = 2.0

thread

periodic (2E7, 0 , 0 , 0) (Step);

end Controller

Threads @

INTO-CPS

Threads are defined in the class

Definition could be operation call;
will run once

- thread
Step();

Or a loop

- thread
while true do Step();

Starting

- ctrl: Controller := new Controller();
start (ctrl)

Or a special, periodic definition (as
on the left)

— will call step operation once every
2e7 nanoseconds (20 milliseconds;
0.02 seconds; 50Hz)

20

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
(- :2
E:__SZD

INTO-CPS

The Hardwarelnterface Class

class HardwareInterface

values

—-— @ interface: type = parameter, name="minlevel";
public minlevel : RealPort = new RealPort(1.0);

—-— @ interface: type = parameter, name="maxlevel";
public maxlevel : RealPort = new RealPort(2.0);

instance variables
—-— @ interface: type = 1input, name="level";
public level : RealPort := new RealPort(0.0);

instance variables
—-— @ interface: type = output, name="valveState";
public valveState : BoolPort := new BoolPort (false);

end HardwarelInterface
21

http://into-cps.au.dk/

INtegrated TOolchain for Cyber-Physical Systems

The System Class

system MySystem
instance variables

-— controller
public static ctrl: Controller;

-- Hardware interface variable required

-- by FMU Import/Export

public static hwi: HardwareInterface :=
new HardwarelInterface();

-— CPU
private cpu: CPU; := new CPU(<FP>, 1E6)
operations
public MySystem: () ==> MySystem
MySystem () == (

ctrl := new Controller();

cpu.deploy (ctrl)
)

end MySystem

=,

INTO-CPS

Special class for CPU and
deployment

Can only define instance variables
and a constructor

CPU speed in (simulated) MIPS

— getting a model within ~20% of the
real thing is typically “good enough”

22

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

The World Class @

class World
operations

-— run a simulation
public run: () ==> ()
run () == (
start (System'ctrl);
block () ;
)

-— wait for simulation to finish
block: () ==> ()

block () == skip;

sync per block => false;

end World

INTO-CPS

Entry point for code execution

Start threads and wait for end of
simulation

23

http://into-cps.au.dk/

INtegrated TOolchain for Cyber-Physical Systems

Concurrency

 Concurrency in VDM-RT is based on threads

* Threads communicate using shared objects

* Synchronization on shared objects is specified using
permission predicates

— sync

per <operation name> => predicate
— Operation is blocked when the predicate is false

— mutex (A, B)

— History counters

#req op The number of times that op has been requested
#act op The number of times that op has been activated
#£in op The number of times that op has been completed

#active op

The number of active executions of op

#waiting op

The number of waiting executions of op

=,

INTO-CPS

24

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

VDM-RT Features (1) =L

INTO-CPS

 VDM-RT has extensions for modelling real-time systems

* Aninternal clock
— in nanoseconds from simulation start

— accessible with the time keyword, e.g.
* dcl now: real := time/le9 -- time in seconds

* All expressions advance the clock
— default is two simulated cycles

— Can be altered with cycles (number) (expression) OF
duration (number) (expression)

— Cycles used to compute duration

25

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

VDM-RT Features (2) =L

INTO-CPS

* Also models of CPUs and BUSes to try to model real code
execution
— objects are “deployed” to CPU with a given speed
— execution duration depends on the modelled CPU speed
— also a virtual CPU that doesn’t advance the clock

e e o >y
r i) I
monitor | sens |
		[controller
	etrl . = 7	value
		act [4 -~
U		
:	e N act	{mi}2m2}
	[value I - P e Ay	
ll : BUS1	I _\\|	ctri2 \|
CcPU1] l cPU2	[- [
N - .~ s	ether	
ether]
	! I	
	I	
	I	
iieiuly Sl '““'T“{"“' - I
I I
J \ CPU2 J

—— — — — — —— — — — —

26

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

DE-first Modelling @

INTO-CPS

e DE-first (DE-only) model:

— Controller, sensor and actuator classes
— Environment model

=

DE approximation

DE-first
development

B
B
!

Interface

}
I
}

FMI

C / 3 \) onIy
Nal” modelling
sen] S
(et) M e < > P Integration of
[act | — A initial multi-model

M Horizon 2020 27

Programme

http://into-cps.au.dk/

INtegrated TOolchain for Cyber-Physical Systems

Approximating CT Behaviour

* Linear approximations
* Simple integration:

position = position + velocity * dt;
velocity = velocity + acceleration * dt;

* Approximation of non-linear behaviour

Data input

=,

INTO-CPS

Angle (degrees) Angle (degrees)

20 20
15 15
10
5 10
0 5
0

4 5 6 7
time (seconds) 4 5 6 7
time (seconds)

File entries:

“time”,“angle”

NO OO
R oo

L e
r WN RO

M Horizon 2020

Angle (degrees)
20

SN

4 5 6 7
time (seconds)

Tuples:
(0.0, 0.0)
(4.0,0.0)

(5.0, 15.0)

(6.0, 15.0)

(7.0,0.0)

Programme

Tuples

28

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
(- 2
LCD

INTO-CPS

The Overture Tool

* Open-source tool for analysing VDM models
* Eclipse/Java based
e Current stable version 2.5.4 (November 2017)

 Visit us at http://overturetool.org/
— Useful references
— Examples can be imported
— Language manual
— Tool users manual
— Install the FMI Exporter
— Install the C code generator

nnnnn

29

S Horizon 2020
Programme

http://overturetool.org/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

Overview of the Tool Features (1)
INTO-CPS

e Simulation of VDM models
— Debugging
— Combining VDM with executable code

* Model validation
— Static analysis (e.g. type-checking)
— Unit testing
— Adding visualisation to a VDM model
— System-level timing constraints (VDM-RT trace viewer)

e Realising a VDM model

— Generate Java, C from subsets of VDM dialects

30

INtegrated TOolchain for Cyber-Physical Systems

VDM standard libraries
— 10: For file and console input/output
— CSV: For working with CSV-based data
— MATH: Provides commonly used math functions
— VDMUnit: A unit testing framework for VDM
— VDMUtil: For converting between VDM values

http://into-cps.au.dk/

Overview of the Tool Features (2)

@Error g | it Problems E,Tasks & Console 52| @l vDM Quick Interpreter 4" search = B8
|BepB|l 2 B~
[l Con] [|] Overt:
eeeeeeeeeeeeee le T
World created:
1: Environment: Bus route 2
Waypoi
[<Central>, <WP3>, <E>, <WPl>, , <A», <Central>]
Stops:
[<Central ¥y < 1x]
1: Environment: Bus route 7
Waypoi
[<Cent P4, 1x] L
Stops:
[<Central EE 1x]
1: Environment: Bus route 57
Waypoi
[<c]
Stops:
7]

=,

INTO-CPS

31

INtegrated TOolchain for Cyber-Physical Systems

http://into-cps.au.dk/

Combining VDM with Executable Code @

INTO-CPS

* Two types of external interfacing

— External Call Interface

* From the VDM model to an external interface

— Remote Control Interface

e Allows for external calls into a VDM Model

 Used to implement the VDM libraries

public static sqgrt:
sgrt (a) ==

is not yet specified
pre a >= 0;

real -> real

M Horizon 2020
Programme

External
Application

GUI

Interface
Layer

Overture

32

INtegrated TOolchain for Cyber-Physical Systems

Visualising a VDM model

http://into-cps.au.dk/

=,

INTO-CPS

* Understanding a formal model can itself be difficult

e Especially for a non-technical stakeholder

* Validating a model with a domain expert

M Horizon 2020
Programme

33

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

VDM-RT trace viewer @

INTO-CPS

e VDM-RT models a distributed architecture

e CPUs are connected via buses
* Objects are deployed on CPUs

* A trace records the VDM-RT model execution
 Message exchange between objects

* Validation of system-level timing constraints

4= VDM-RT Realtime Log Viewer 52 = g

=
=

;
I
|

I
1
1
1

118264176
118264267
186395874
186437541
209165269
209165360 -
JT7306967
277348634
300076362
300076453
000000000

34

http://into-cps.au.dk/

INtegrated TOolchain for Cyber-Physical Systems

Functional Mockup Units (FMUs) @

* Import model description to ma
* Creates system class
* Creates World class
* Creates Hardwarelnterface class

* Export to FMU

* Tool wrapper
e Source code (in C)

M Horizon 2020
Programme

INTO-CPS

ke skeleton model

\-’DM Explorer &3 = 0 System.vdmrt World.wdmrt E2
=

S =3
v [LFRController
~o = il New

1 class World
2

C

H [{:=:‘l C opy Ctrl+C
5 Paste Ctrl+V
" 3 Delete Delete

Rename... F2

EE
&
=
=1

Refresh F5 lse;
Close Project
Close Unrelated Projects

Run As
Debug As
Profile As
Team

Compare With

Restore from Local History... ZEE e

Owverture FMU > ' Export Tool Wrapper FMU
Overture Developer Utils > B Export Source Code FMU
Code Generation > (il Add VDM FMI Library
Latex > % Impert Medel Description
Proof Obligations
M. UML Transformation

ExportFmuCe

3 &

&

T LFRCantre

Ruild Path

35

