
INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

VDM Tutorial
John Fitzgerald, Newcastle University

1

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Our goal: well-founded but accessible modelling
& analysis technology

• VDMTools → Overture → Crescendo →
Symphony
– Pragmatic development methodologies
– Industry applications

• VDM: Model-oriented specification language
– Extended with objects and real time.
– Basic tools for static analysis
– Strong simulation support
– Model-based test

2

VDM Background

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• A formal method for specification of software

• Three flavours
– VDM-SL (Specification Language)

– VDM++ adds object-orientation

– VDM-RT adds real-time features (clock and deployment)

• Model-oriented specification language
– Simple, abstract data types

– Invariants to restrict membership

– Functional specification:
• Implicit specification (pre/post)

• Explicit specification (functional or imperative)

3

VDM (Vienna Development Method)

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

4

VDM-SL Module Outline
module <module-name>

definitions

end <module-name>

Definitions

Interface

state

types

values

functions

operations

...

imports

exports

...

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

5

VDM++ Class Outline
class <class-name>

end <class-name>

instance variables

...

types

values

functions

operations

thread

...

sync

...

Internal object state

Definitions

Dynamic behaviour

Synchronization control

traces

...
Test automation support

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Type Values

nat1 1, 2, 3, ...

nat 0, 1, 2, ...

int ..., -2, -1, 0, 1, ...

real -12.78356, ..., 0, ..., 3, ..., 1726.34, ...

• Basic types
– Boolean
– Numeric
– Tokens
– Quote types
– Characters / String

• Compound types
– Set types
– Sequence types
– Map types
– Product types
– Record types
– Union types
– Optional types

6

Data Types

id: token := mk_token(5);

id := mk_token(“ken”)

flag: bool := false;

flag := true

<RED>

<BLUE>

x = y (equality) and x <> y (inequality)

x = y (equality) and x <> y (inequality)
letter: char := ‘k’;

name: seq of char := “ken”

s: set of int := {1,5,8,3};
1 in set s -- trues: seq of int := [1,5,5,8,3];
s(4) -- 8m:map int to real := {1 |-> 3.14};
m(1) -- 3.14Pair = nat * real;

x: Pair := mk_(1, 3.14);

x.#1 -- 1

Pair :: a : nat

b : real;

x: Pair := mk_Pair(1, 3.14);

x.a -- 1

Colour = <RED> | <GREEN> | <BLUE>;

c: Colour := <RED>Type = [nat] equivalent to
Type = nat | nil

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

7

Type Invariants

DT
inv_DT

Even = nat

inv n == n mod 2 = 0

SpecialPair = nat * real – the first is smallest

inv mk_(n,r) == n < r

DisjointSets = set of set of A

inv ss == forall s1, s2 in set ss &

s1 <> s2 => s1 inter s2 = {}

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Unordered collections of elements

• One copy of each element

• The elements themselves can any type

• e.g.
– set of int

– {1,5,8,3};
– {}

8

Set Types

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

9

Overview of Set Operators

e in set s1 Membership () A * set of A -> bool

e not in set s1 Not membership () A * set of A -> bool

s1 union s2 Union () set of A * set of A -> set of A

s1 inter s2 Intersection () set of A * set of A -> set of A

s1 \ s2 Difference (\) set of A * set of A -> set of A

s1 subset s2 Subset () set of A * set of A -> bool

s1 psubset s2 Proper subset () set of A * set of A -> bool

s1 = s2 Equality (=) set of A * set of A -> bool

s1 <> s2 Inequality (≠) set of A * set of A -> bool

card s1 Cardinality set of A -> nat

dunion s1 Distr. Union () set of set of A -> set of A

dinter s1 Distr. Intersection () set1 of set of A -> set1 of A

power s1 Finite power set (P) set of A -> set of set of A

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Could also be called lists
– Not fixed length like Java arrays

• Ordered collections of elements

• Numbered from 1 (not 0 like Java)
– Access element with () and not [], e.g. list(1)

• Multiple copies of each element allowed

• The elements themselves can be any type

• e.g.
– seq of int; seq1 of int (non-empty)
– [1,5,5,8,1,3]; []

10

Sequence Types

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

11

Overview of Sequence Operators

hd l Head seq1 of A -> A

tl l Tail seq1 of A -> seq of A

len l Length seq of A -> nat

elems l Elements seq of A -> set of A

inds l Indexes seq of A -> set of nat1

l1 ^ l2 Concatenation seq of A * seq of A -> seq of A

conc ll Distr. conc. seq of seq of A -> seq of A

l(i) Seq. application seq1 of A * nat1 -> A

l ++ m Seq. modification seq1 of A * map nat1 to A ->
seq1 of A

l1 = l2 Equality seq of A * seq of A -> bool

l1 <> l2 Inequality seq of A * seq of A -> bool

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Unordered collections of pairs of elements (maplets)
with a unique relationship
– mapping keys to values
– like Python dictionary

• The elements themselves can be any type

• e.g.
– map int to real

12

Mapping Types

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

13

Overview of Mapping Operators

dom m Domain (map A to B) -> set of A

rng m Range (map A to B) -> set of B

m1 munion m2 Merge (map A to B) * (map A to B) ->
(map A to B)

m1 ++ m2 Override (map A to B) * (map A to B) ->
(map A to B)

merge ms Distr. merge set of (map A to B) -> map A to B

s <: m Dom. restr. to set of A * (map A to B) -> map A to B

s <-: m Dom. restr. by set of A * (map A to B) -> map A to B

m :> s Rng. restr. to (map A to B) * set of A -> map A to B

m :-> s Rng. restr. by (map A to B) * set of A -> map A to B

m(d) Map apply (map A to B) * A -> B

inverse m Map inverse inmap A to B -> inmap B to A

m1 = m2 Equality (map A to B) * (map A to B) -> bool

m1 <> m2 Inequality (map A to B) * (map A to B) -> bool

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Specifications in terms of post-conditions define a
contract

sqrt(x: nat) r: real

post x = r ∗ r

• Explicit version
sqrt: nat -> real

sqrt(x) == Math`sqrt(x)

• Pre-condition and post-conditions
sqrt: int -> real

sqrt(x) == Math`sqrt(x)

pre x > 0

post x = RESULT ∗ RESULT

14

Specifying Behaviour

Implicit definition, not executable

Explicit definition can be executed

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

15

A Simple Controller Class

• Divided into sections (e.g. instance
variables, operations, etc.)

• Inheritance supported
– class Controller is subclass of Parent

• Objects created with
– new Controller

• Constructors also similar to Java
– public Controller: real * real ==> Controller

Controller(a,b) == (

x:= a;

y := b

);

• Sections can be repeated and mixed
• Comments are

– Two dashes: -- comment

– Or: /* block comment */

class Controller

instance variables

private measured: RealPort;

public setpoint: real;

protected err: real;

output: RealPort;

operations

public Step: () ==> ()

Step() == (

m := measured.getValue();

err := setpoint – m;

output.setValue(P(err));

);

functions

private P: real -> real

P(err) == err * Kp

values

Kp = 2.0

thread

periodic(2E7, 0 , 0 , 0)(Step);

end Controller

COE
synchronises

these to
other models

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

16

Instance Variables

• Give the state of the object

• Note syntax for giving the type
– private double measured;

– private measured: real;

• Visibility similar to Java (added
here for illustration only)
– Defaults is private is no visibility given

• Can be assigned when defined

class Controller

instance variables

private measured: RealPort;

public setpoint: real;

protected err: real;

output: RealPort;

operations

public Step: () ==> ()

Step() == (

m := measured.getValue();

err := setpoint – m;

output.setValue(P(err));

);

functions

private P: real -> real

P(err) == err * Kp

values

Kp = 2.0

thread

periodic(2E7, 0 , 0 , 0)(Step);

end Controller

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

17

Functions

• Are pure
– No side effects
– Cannot access instance variables

• No return keyword, defined with
expressions that return the correct
type

• Useful for auxiliary / helper
calculations

• Note signature above definition
– real * int * bool -> real

• No loops, must use functional
programming techniques
– Can call other functions

class Controller

instance variables

private measured: RealPort;

public setpoint: real;

protected err: real;

output: RealPort;

operations

public Step: () ==> ()

Step() == (

m := measured.getValue();

err := setpoint – m;

output.setValue(P(err));

);

functions

private P: real -> real

P(err) == err * Kp

values

Kp = 2.0

thread

periodic(2E7, 0 , 0 , 0)(Step);

end Controller

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

18

Operations
class Controller

instance variables

private measured: RealPort;

public setpoint: real;

protected err: real;

output: RealPort;

operations

public Step: () ==> ()

Step() == (

m := measured.getValue();

err := setpoint – m;

output.setValue(P(err));

);

functions

private P: real -> real

P(err) == err * Kp

values

Kp = 2.0

thread

periodic(2E7, 0 , 0 , 0)(Step);

end Controller

• Similar to functions, but...
– Can access instance variables / have

side effects
– Are imperative like Java
– Can use while, for loops etc.
– Must use return keyword when

returning a value

• Can call other operations and
functions

• Can define local variables but only
at the start
– Step() == (

dcl x: real := 0;

• Note parentheses () not {}

• Note different arrow to function
– real * int * bool ==> real

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

19

Values
class Controller

instance variables

private measured: RealPort;

public setpoint: real;

protected err: real;

output: RealPort;

operations

public Step: () ==> ()

Step() == (

m := measured.getValue();

err := setpoint – m;

output.setValue(P(err));

);

functions

private P: real -> real

P(err) == err * Kp

values

Kp = 2.0

thread

periodic(2E7, 0 , 0 , 0)(Step);

end Controller

• Used to define constants

• Note = is used, not :=

• Do not need a type
– but can have one

Kp: real = 1.24;

• Can be set as Shared Design
Parameters

• Are static, can be accessed from
other classes (if public)
– Controller`Kp

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

20

Threads

• Threads are defined in the class

• Definition could be operation call;
will run once
– thread

Step();

• Or a loop
– thread

while true do Step();

• Starting
– ctrl: Controller := new Controller();

start(ctrl)

• Or a special, periodic definition (as
on the left)
– will call Step operation once every

2e7 nanoseconds (20 milliseconds;
0.02 seconds; 50Hz)

class Controller

instance variables

private measured: RealPort;

public setpoint: real;

protected err: real;

output: RealPort;

operations

public Step: () ==> ()

Step() == (

m := measured.getValue();

err := setpoint – m;

output.setValue(P(err));

);

functions

private P: real -> real

P(err) == err * Kp

values

Kp = 2.0

thread

periodic(2E7, 0 , 0 , 0)(Step);

end Controller

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

class HardwareInterface

values

-- @ interface: type = parameter, name="minlevel";

public minlevel : RealPort = new RealPort(1.0);

-- @ interface: type = parameter, name="maxlevel";

public maxlevel : RealPort = new RealPort(2.0);

instance variables

-- @ interface: type = input, name="level";

public level : RealPort := new RealPort(0.0);

instance variables

-- @ interface: type = output, name="valveState";

public valveState : BoolPort := new BoolPort(false);

end HardwareInterface

21

The HardwareInterface Class

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

22

The System Class
system MySystem

instance variables

-- controller

public static ctrl: Controller;

-- Hardware interface variable required

-- by FMU Import/Export

public static hwi: HardwareInterface :=

new HardwareInterface();

-- CPU

private cpu: CPU; := new CPU(<FP>, 1E6)

operations

public MySystem: () ==> MySystem

MySystem() == (

ctrl := new Controller();

cpu.deploy(ctrl)

)

end MySystem

• Special class for CPU and
deployment

• Can only define instance variables
and a constructor

• CPU speed in (simulated) MIPS
– getting a model within ~20% of the

real thing is typically “good enough”

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

23

The World Class

• Entry point for code execution

• Start threads and wait for end of
simulation

class World

operations

-- run a simulation

public run: () ==> ()

run() == (

start(System‘ctrl);

block();

);

-- wait for simulation to finish

block: () ==> ()

block() == skip;

sync per block => false;

end World

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Concurrency in VDM-RT is based on threads

• Threads communicate using shared objects

• Synchronization on shared objects is specified using
permission predicates
– sync

per <operation name> => predicate

– Operation is blocked when the predicate is false
– mutex(A, B)

– History counters

24

Concurrency

#req op The number of times that op has been requested

#act op The number of times that op has been activated

#fin op The number of times that op has been completed

#active op The number of active executions of op

#waiting op The number of waiting executions of op

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• VDM-RT has extensions for modelling real-time systems

• An internal clock
– in nanoseconds from simulation start

– accessible with the time keyword, e.g.
• dcl now: real := time/1e9 -- time in seconds

• All expressions advance the clock
– default is two simulated cycles

– Can be altered with cycles(number)(expression) or
duration(number)(expression)

– Cycles used to compute duration

25

VDM-RT Features (1)

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Also models of CPUs and BUSes to try to model real code
execution
– objects are “deployed” to CPU with a given speed
– execution duration depends on the modelled CPU speed
– also a virtual CPU that doesn’t advance the clock

26

VDM-RT Features (2)

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• DE-first (DE-only) model:
– Controller, sensor and actuator classes
– Environment model

27

DE-first Modelling

DE approximation

Interface
definition

Integration of
initial multi-model

FMI

FMI

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Linear approximations

• Simple integration:
position = position + velocity * dt;

velocity = velocity + acceleration * dt;

• Approximation of non-linear behaviour

28

Approximating CT Behaviour

Data input

Tuples

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Open-source tool for analysing VDM models

• Eclipse/Java based

• Current stable version 2.5.4 (November 2017)

• Visit us at http://overturetool.org/
– Useful references
– Examples can be imported
– Language manual
– Tool users manual
– Install the FMI Exporter
– Install the C code generator

29

The Overture Tool

http://overturetool.org/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Simulation of VDM models
– Debugging
– Combining VDM with executable code

• Model validation
– Static analysis (e.g. type-checking)
– Unit testing
– Adding visualisation to a VDM model
– System-level timing constraints (VDM-RT trace viewer)

• Realising a VDM model
– Generate Java, C from subsets of VDM dialects

30

Overview of the Tool Features (1)

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• VDM standard libraries
– IO: For file and console input/output
– CSV: For working with CSV-based data
– MATH: Provides commonly used math functions
– VDMUnit: A unit testing framework for VDM
– VDMUtil: For converting between VDM values

31

Overview of the Tool Features (2)

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Two types of external interfacing
– External Call Interface

• From the VDM model to an external interface

– Remote Control Interface
• Allows for external calls into a VDM Model

• Used to implement the VDM libraries

32

Combining VDM with Executable Code

public static sqrt: real -> real

sqrt(a) ==

is not yet specified

pre a >= 0;

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Understanding a formal model can itself be difficult
• Especially for a non-technical stakeholder

• Validating a model with a domain expert

33

Visualising a VDM model

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• VDM-RT models a distributed architecture
• CPUs are connected via buses
• Objects are deployed on CPUs

• A trace records the VDM-RT model execution
• Message exchange between objects

• Validation of system-level timing constraints

34

VDM-RT trace viewer

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

• Import model description to make skeleton model
• Creates system class
• Creates World class
• Creates HardwareInterface class

• Export to FMU
• Tool wrapper
• Source code (in C)

35

Functional Mockup Units (FMUs)

