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Clarity and Efficiency

A Chinese Proverb

魚和熊掌不可同時兼得
(One cannot have both fishes and bear palms at the same time.)

• In Programming
Clearly written programs have the desirable properties of being easier to
understand, show correct, and modify, but they are often (extremely)
inefficient.

• In Software Engineering
Software with high modularity can lead to inefficiency, because of the
overhead of communication between components, and because it may
preclude potential optimizations across component boundaries.
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A Simple Programming Problem

Problem: Sum up all the bigger elements in an array.

An element is bigger if it is greater than the sum of the elements
that follow it till the end of the array.

An Example:
[31, 4, 1, 5,9, 2,6] ⇒ 46
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A Clear Solution in C:

/* copy all bigger elements from A[0..n-1] into B[] */

count = 0;

for (i=0; i<n; i++) {

sumAfter = 0;

for (j=i+1; j<n; j++) {

sumAfter += A[j];

}

if (A[i] > sumAfter)

B[count++] = A[i];

}

/* compute the sum of all elements in B[] */

sumBiggers = 0;

for (i=0; i<count; i++) {

sumBiggers += B[i];

}

return sumBiggers;
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A More Efficient Solution in C:

sumBiggers = 0;

sumAfter = 0;

for (i=n-1; i>=0; i--) {

if (A[i] > sumAfter)

sumBiggers += A[i];

sumAfter += A[i];

}

return sumBiggers;
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Transformational Programming

魚和熊掌不可同時兼得
(One cannot have both fishes and bear palms at the same time.)

⇓
魚和熊掌可不同時兼得

(One can have both fishes and bear palms not at the same time.)

We start by writing clean and correct programs, and then use program
transformation techniques to transform them step-by-step to more efficient
equivalents.
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Program Calculation

Program calculation is a kind of program transformation based on the theory
of Constructive Algorithmics. (Bird:87, de Moor:91, Meijer:91, Fokkinga:92,
Johan:93, Hu:96)

QuickTime˛ Ç∆

 êLí£ÉvÉçÉOÉâÉÄ

Ç™Ç±ÇÃÉsÉNÉ`ÉÉÇå©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB



Program Optimization and Transformation in Calculational Form 8
'

&

$

%

What does it mean by calculation?

Recall the manipulation of formulas as in high school algebra.

The following example shows a calculation of the solution of x for the
equation x2 − c2 = 0.

x2 − c2 = 0
≡ { by identity: a2 − b2 = (a− b)(a + b) }

(x− c)(x + c) = 0
≡ { by law: ab = 0 ⇔ a = 0 or b = 0 }

x− c = 0 or x + c = 0
≡ { by law: a = b ⇔ a± d = b± d }

x = c or x = −c
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Bird-Meertens Formalism (Bird:87)

A program calculus designed for

• developing identities/laws/rules for calculating programs;

• deriving correct and efficient algorithms from specification based on
developed identities/laws/rules.

Proved to be Useful for Algorithm Derivation
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Calculational approach is useful for automatic program optimization
and transformation

• Fusion Transformation in Calculational Form
Gill&Peyton Jones&Launchbury:FPCA93, Takano&Meijer:FPCA95,

Hu&Iwasaki&Takeichi: ICFP96

• Tupling Transformation in Calculational Form
Hu&Iwasaki&Takeichi: ICFP97, TOPLAS(97)

• Accumulation Transformation in Calculational Form
Hu&Iwasaki&Takeichi: New Generation Computing (99)

• Parallelization Transformation in Calculational Form
Hu&Takeichi&Chin: POPL98, Hu&Takeichi&Iwasaki: ESOP02

• Bidirectional Transformation in Calculational Form
Hu&Mu&Takeichi: PEPM04, MPC04
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About this Tutorial

We demonstrate how to formalize program optimizations and transformations
in calculational form, with two examples:

• program optimization by loop fusion

• parallelizing program transformation

to show that program transformation in calculational form

• has higher modularity;

• is more suitable for efficient implementation.
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Outline

• Introduction

• Program Calculation vs Fold/Unfold Program Transformation

• Loop Fusion in Calculational Form

• Parallelization in Calculational Form

• Implementing Program Calculation in Yicho

• Conclusion

Yicho’s Home Page:

http://www.ipl.t.u-tokyo.ac.jp/yicho/

(by Tetsuro Yokoyama)
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Outline
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– Notation for writing programs and specifying calculation rules

– Fold/Unfold approach to program transformation

– Program calculation and program transformation in calculational form

• Loop Fusion in Calculational Form

• Parallelization in Calculational Form

• Implementing Program Calculation in Yicho

• Conclusion
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Notation

Haskell is a popular functional language, which will be used for writing
programs and specifying transformation laws/rules.

• It is good for writing clear and modular programs,
because it supports a powerful and elegant programming style.

• It is good for performing transformation,
because of its nice mathematical properties.
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Functions

Programs are a list of function definitions.

square x = x ∗ x

larger x y = if x > y then x else y

Lambda expressions are used to define a function without giving its name.

λx. x ∗ x
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Functional application is denoted by a space and the argument.

square 5 ⇒ 25
larger 3 2 ⇒ 3
(λx. x ∗ x) 5 ⇒ 25

Functional application is regarded as stronger binding than any other operator.

square 5 + 3 = (square 5) + 3 6= square (5 + 3)
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Functional composition is denoted by a centralized circle ◦.
(f ◦ g)x = f (g x)

Functional composition is an associative operator, and the identity function,
denoted by id, is its unit.
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Infix binary operators will often be denoted by ⊕,⊗ and can be sectioned; an
infix binary operator like ⊕ can be turned into unary functions as follows.

(a⊕) b = a⊕ b = (⊕ b) a

What do the following functions denote?

(1+)
(/2)
(== 9) ◦ (1+) ◦ (∗2)
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List (Array)

Lists are finite sequences of values of the same type. The type of the cons lists
with elements of type a is defined as follows.

data [a] = [] | a : [a]

Abbreviation:
[x1, x2, . . . , xn] = x1 : (x2 : (. . . : (xn : [])))

List concatenation function ++ :

[1, 2, 3] ++ [4, 5, 6] = [1, 2, 3, 4, 5, 6]
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Recursion

Functions may be defined recursively.

sort [] = []
sort (a : x) = insert a (sort x)

insert a [] = [a]
insert a (b : x) = if a ≥ b then a : (b : x)

else b : insert a x
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Higher-order Functions

Higher-order functions are functions which can take other functions as
arguments, and may also return functions as results.

map (1+) [1, 2, 3, 4, 5] = [2, 3, 4, 5, 6]
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Can you understand the following Haskell program?

sumBiggers = sum ◦ biggers
where

biggers [] = []
biggers (a : x) = if a > sum x then a : biggers x else biggers x

sum [] = 0
sum (a : x) = a + sum x
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How about this?

sumBiggers x = let (b, c) = sumBiggers’ x in a

where
sumBiggers’ [] = (0, 0)
sumBiggers’ (a : x) = let (b, c) = sumBiggers’ x

in if a > c then (a + b, a + c) else (b, a + c)
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Outline

• Introduction

• Program Calculation vs Fold/Unfold Program Transformation

– Notation for writing programs and specifying calculation rules

– Fold/Unfold approach to program transformation

– Program calculation and program transformation in calculational form

• Loop Fusion in Calculational Form

• Parallelization in Calculational Form

• Implementing Program Calculation in Yicho

• Conclusion
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Fold/Unfold Approach to Program Transformation

Transform programs (basically) by repeatedly
applying unfolding rules or folding rules.

For any function definition of a program:

f x1 . . . xn = e

we have a unfolding rule:
f x1 . . . xn ⇒ e

and a folding rule:
f x1 . . . xn ⇐ e.



Program Optimization and Transformation in Calculational Form 26
'

&

$

%

An Example of Fold/Unfold Transformations

A Programming Problem

Find a maximum element in a list.

A Naive Solution

Suppose that we already have sort. Then, a direct solution is to sort the input
and to return the first element:

max x = hd (sort x)

where
hd [] = −∞
hd (a : x) = a.



Program Optimization and Transformation in Calculational Form 27
'

&

$

%

Optimization by Fold/Unfold Transformations

We aim to derive a new recursive definition for max.
For the base case, we have:

max []
= { unfold max }

hd (sort [])
= { unfold sort }

hd []
= { unfold hd }

−∞
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For the recursive case, we do unfolding similarly.

max (a : x)
= { unfold max }

hd (sort (a : x))
= { unfold sort }

hd (insert a (sort x))

We get stuck; we can neither unfold insert because we do not know whether
sort x is empty or not, nor perform folding to get a recursive definition.

⇒ To instantiate x.
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For the case where x = [], we can easily obtain max [a] = a.

For the case where x is not empty, we unfold insert, by assuming
b : x′ = sort x, that is

b = hd (sort x)
x′ = tail (sort x)
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Here is the detailed transformation.

hd (insert a (b : x′))
= { unfold insert }

hd (if a ≥ b then a : (b : x)′ else b : insert a x′)
= { law: f (if b then e1 else e2) = if b then f e1 else f e2 }

if a ≥ b then hd (a : (b : x′)) else hd (b : insert a x′)
= { unfold hd }

if a ≥ b then a else b

= { unfold b }
if a ≥ hd (sort x) then a else hd (sort x)

= { fold max }
if a ≥ max x then a else max x
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Derived Efficient Program

max [] = −∞
max [a] = a

max (a : x) = if a ≥ max x then a else max x

Or it is simple as follow:

max [] = −∞
max (a : x) = if a ≥ max x then a else max x
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Limitations of Fold/Unfold Transformations

It is general and powerful, but suffers from several problems which often
prevent it from being used in practice.

• It is difficult to decide when unfolding steps should stop while
guaranteeing exposition of enough information for later folding steps.

• It is expensive to implement, because it requires keeping records of all
possible folding patterns and have them checked upon any new
subexpressions produced during transformation.

• Each transformation step is very small, but an effective way is lacking to
group and/or structure them into bigger steps.
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Outline
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– Program calculation and program transformation in calculational form
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• Implementing Program Calculation in Yicho

• Conclusion
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Program Transformations in Calculational Form

Fold-free Program Transformations

Transformations are based on a set of calculation
laws but exclude the use of folding steps.

The challenge is how to formalize necessary
folding steps by means of calculation laws.
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Three-Step Formalization Procedure

1. Define a specific form of programs that are best suitable for the
transformation and can be used to describe a class of interesting
computations.

2. Develop calculational rules (laws) for implementing the transformation on
programs in the specific form.

3. Show how to turn more general programs into those in the specific form
and how to apply the newly developed calculational rules systematically.



Program Optimization and Transformation in Calculational Form 36
'

&

$

%

Homomorphisms: A Generic Recursive Form

It is known that goto is considered harmful to write clear programs and to
optimize programs.

Loop (recursion) should be structured for efficient manipulation!

f [ ] = · · ·
f (a : x) = · · · f x · · · f (g x) · · · f (f x) · · ·

⇓
Composition of recursive functions in simpler form.

homl [] = e

homl (a : x) = a⊕ homl x.

homl = ([e,⊕])l
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Examples of (List) Homomorphisms

sum = ([0,+])
prod = ([1,×])
maxlist = ([−∞, ↑]) where a ↑ r = if a ≥ r then a else r

reverse = ([[],⊕]) where a⊕ r = r ++ [a]
inits = ([[[]],⊕]) where a⊕ r = [] : map (a :) r

map f = ([[],⊕]) where a⊕ r = f a : r

sort = ([[], insert])

Compositions of homomorphisms can describe complicated computation
concisely.

mis = maxlist ◦ (map sum) ◦ inits
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Promotion: A Generic Calculation Law

promotion:
f (a⊕ x) = a⊗ f x

f ◦ ([e,⊕]) = ([f e,⊗])
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Revisit max: Program Calculation without Folding Steps

max = hd ◦ sort

We may calculate as follows.

max
= { define max in terms of hom }

hd ◦ ([[], insert])
= { promotion: ∀a, x. hd (insert a x) = a⊗ hd x }

([hd [],⊗])
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The ⊗ that satisfies

∀a, x. hd (insert a x) = a⊗ hd x

may be obtained via a higher order matching algorithm. Here, we show
another concise calculation.

a⊗ b = { let x be any list; by inversion }
a⊗ hd (b : x)

= { the condition in the promotion rule }
hd (insert a (b : x))

= { definition of insert }
hd (if a ≥ b then a : (b : x) else b : insert a x)

= { if property }
if a ≥ b then hd (a : (b : x)) else hd (b : insert a x)

= { definition of hd }
if a ≥ b then a else b
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How to Obtain Homomorphisms?

Generally, the promotion rule can do this.

f = f ◦ id = f ◦ ([[], (:)])

In practice, we may need to find more efficient and systematic way.

• Warm fusion (Sheard&Launchbury:FPCA95)

• Deriving Hylomorphisms (Hu&Iwasaki&Takeichi:ICFP96)
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A Note on Genericity

The framework discussed so far applies to any algebraic data types like lists
and trees. We focus on lists in this tutorial.
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Loop Fusion

Loop fusion, a well-known optimization technique in compiler construction, is
to fuse some adjacent loops into one loop to reduce loop overhead and improve
run-time performance.

There are basically three cases for two adjacent loops:

1. one loop is put after another and the result computed by the first is used
by the second;

2. one loop is put after another and the result computed by the first is not
used by the second;

3. one loop is used inside another.
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A C Program with Multiple Loops

/* copy all bigger elements from A[0..n-1] into B[] */

count = 0;

for (i=0; i<n; i++) {

sumAfter = 0;

for (j=i+1; j<n; j++) {

sumAfter += A[j];

}

if (A[i] > sumAfter)

B[count++] = A[i];

}

/* compute the sum of all elements in B[] */

sumBiggers = 0;

for (i=0; i<count; i++) {

sumBiggers += B[i];

}

return sumBiggers;
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An Efficient C Program after Loop Fusion

sumBiggers = 0;

sumAfter = 0;

for (i=n-1; i>=0; i--) {

if (A[i] > sumAfter)

sumBiggers += A[i];

sumAfter += A[i];

}

return sumBiggers;
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Multiple Loops (Recursion) in Haskell

sumBiggers = sum ◦ biggers
biggers [] = []
biggers (a : x) = if a ≥ sum x then a : biggers x else biggers x

sum [] = []
sum (a : x) = a + sum x
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An Efficient Haskell Program after Loop Fusion

sumBiggers x = let (b, c) = sumBiggers’ x in a

where
sumBiggers’ [] = (0, 0)
sumBiggers’ (a : x) = let (b, c) = sumBiggers’ x

in if a > c then (a + b, a + c) else (b, a + c)
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Mutumorphism: A Structured Form for Loop Fusion

A function f1 is said to be a list mutumorphism with respect to other
functions f2, . . . , fn if each fi (i = 1, 2, . . . , n) is defined in the following form:

fi [] = ei

fi (a : x) = a⊕i (f1 x, f2 x, . . . , fn x)

where ei (i = 1, 2, . . . , n) are given constants and ⊕i (i = 1, 2, . . . , n) are given
binary functions. We represent f1 as follows.

f1 = [[(e1, . . . , en), (⊕1, . . . ,⊕n)]].

Note:
([e,⊕]) = [[(e), (⊕)]]
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An Example

From

biggers [] = []
biggers (a : x) = if a ≥ sum x then a : biggers x else biggers x

sum [] = []
sum (a : x) = a + sum x

we have
biggers = [[([], 0), (⊕1,⊕2)]]

where a⊕1 (r, s) = if a ≥ s then a : r else r

a⊕2 (r, s) = a + s
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Calculational Rules for Loop Fusion

Flatten: dealing with nested loops

[[(e1, e2, . . . , en), (⊕1,⊕2, . . . ,⊕n)]] = fst ◦ ([(e1, e2, . . . , en),⊕])
where a⊕ r = (a⊕1 r, a⊕2 r, . . . , a⊕n r)

Here, fst is a projection function returning the first element of a tuple.
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An Example

Consider to apply the flattening rule to biggers to flatten the nested loop.

biggers
= { mutumorphism for biggers }

[[([], 0), (⊕1,⊕2)]]
= { flattening rule }

fst ◦ ([([], 0),⊕])
where a⊕ (r, s) = (if a ≥ s then a : r else r, a + s)
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Inlining the homomorphism in the derived program gives the following
readable recursive program, which consists of a single loop.

biggers x = let (r, s) = hom x in r

where hom [] = ([], 0)
hom (a : x) = let (r, s) = hom x

in (if a ≥ s then a : r else r, a + s)
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Tupling: dealing with adjacent independent loops

f(([e1,⊕1]) x, ([e2,⊕2]) x) = f(([(e1, e2),⊕]) x)
where a⊕ (r1, r2) = (a⊕1 r1, a⊕2 r2)



Program Optimization and Transformation in Calculational Form 58
'

&

$

%

An Example

The following program is to compute the average of a list:

average x = sum x/length x

which has two loops can be merged into a single loop by applying the tupling
rule.

average x = let (s, l) = tup x in s/l

where tup = ([(0, 0), λa (s, l). (a + s, 1 + l)])
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Fusion: dealing with adjacent dependent loops

([e,⊕]) ◦ build g = g (e,⊕)
where build g = g ([], (:))

Here the build-form can be obtained by promotion:

([d,⊗]) = build (λ(c,¯). ([c,¯]) ◦ ([d,⊗]))



Program Optimization and Transformation in Calculational Form 60
'

&

$

%

An Example

Recall that we have obtained the following definition for biggers.

biggers = fst ◦ ([([], 0),⊕])
where a⊕ (r, s) = (if a ≥ s then a : r else r, a + s)

We can obtain the following build form:

biggers = build (λ(c,¯). fst ◦ ([(c, 0),⊕′]))
where a⊕′ (r, s) = (if a ≥ s then a¯ r else r, a + s)
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Now applying the shortcut fusion rule to

sumBiggers = ([0,+]) ◦ bigger

soon yields the following single-loop program for sumBiggers:

sumBiggers = fst ◦ ([(0, 0),⊗])
where a⊗ (r, s) = (if a ≥ s then a + r else r, a + s)

which is actually the same as that in the introduction if we inline it.
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A Calculational Algorithm for Loop Fusion

1. Represent as many recursive functions on lists by mutumorphisms as
possible.

2. Apply the flattening rule to transform all mutumorphism to
homomorphisms.

3. Apply the promotion rule and shortcut fusion rule as much as possible.

4. Apply the tupling rule to merge independent homomorphisms.

5. Inline homomorphism/mutumorphism to output transformed program in
a friendly manner.

Note: A similar algorithm was implemented in Glasgow Haskell Compiler (The Hylo

System by Onoue, 1997); References: ICFP’96, ICFP’97.
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Example:

sumBiggers = sum ◦ biggers
= { represent list functions by mutumorphism/homomorphism }

([0,+]) ◦ [[([], 0), (⊕1,⊕2)]]
where a⊕1 (r, s) = if a ≥ s then a : r else r

a⊕2 (r, s) = a + s

= { flatten: a⊗ (r, s) = (if a ≥ s then a + r else r, a + s) }
([0,+]) ◦ fst ◦ ([(0, 0),⊗])

= { make “build” form }
([0,+]) ◦ build (λ(c,¯). fst ◦ ([(c, 0),⊕′]))

where a⊕′ (r, s) = (if a ≥ s then a¯ r else r, a + s)
= { fusion }

fst ◦ ([(0, 0),⊗])
where a⊗ (r, s) = (if a ≥ s then a + r else r, a + s)
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Parallelization

Parallelization is a transformation for automatically generating parallel code
from high level sequential description.

A Sequential Program ⇒ A Parallel Program

It is a big challenge to clarify

• what kind of sequential programs can be parallelized

• how they can be systematically parallelized.
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Parallelization of List Functions

Parallelization is a transformation for automatically generating parallel code
from high level sequential description manipulating lists.

A Sequential Program
f :: [a] → R

⇒ A Parallel Program
f :: [a] → R
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Parallelization of List Functions (Cont)

A hint from Constructive Algorithmics:
The control structure of a program should be determined by the data
structure the program is to manipulate.

A Sequential Program
f :: SeqList a → R

⇒ A Parallel Program
f ′ :: ParaList a → R
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Data Refinement

A sequential view of lists:

ConsList a = [] | a : ConsList a

A parallel view of lists:

JoinList a = [] | [.] a | JoinList a ++ JoinList a

An Example
Given a list [1, 2, 3, 4, 5, 6], we may represent it in the following two ways:

1 : (2 : (3 : (4 : (5 : (6 : [])))))
([1] ++ [2] ++ [3]) ++ ([4] ++ [5] ++ [6])
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A Simple Example of Parallelization

Programs defined on cons lists inherit sequentiality from cons lists, while
programs defined on join lists gain parallelism from join lists.

sumS [] = 0
sumS (a : x) = a + sumS x

⇓
sumP [] = 0
sumP [a] = a

sumP (x ++ y) = sumP x + sumP y
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Running Example: the Maximum Segment Sum Problem

Compute the maximum of the sums of contiguous segments within a list of
integers. For example,

mss [3,−4, 2,−1, 6,−3] = 7

A Sequential Program:

mss [] = 0
mss (a : x) = a ↑ (a + mis x) ↑ mss x

mis [] = 0
mis (a : x) = a ↑ (a + mis x)



Program Optimization and Transformation in Calculational Form 73
'

&

$

%

Outline

• Introduction

• Program Calculation vs Fold/Unfold Program Transformation

• Loop Fusion in Calculational Form

• Parallelization in Calculational Form

– Parallelization Transformation

– J-Homomorphism: A Parallel Form for List Functions

– A Parallelizing Rule

– A Calculation Algorithm for Parallelization

• Implementing Program Calculation in Yicho

• Conclusion



Program Optimization and Transformation in Calculational Form 74
'

&

$

%

J-Homomorphism: A Parallel Form for List Functions

J-homomorphisms (Homomorphisms on JoinList) are functions defined in the
following form:

h (x ++ y) = h x⊕h y

where ⊕ is an associative operator.
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A Calculation Rule for Parallelization

We aim at a way of expressing a homomorphism in terms of
J-homomorphisms. The challenge is how to obtain an associative operator
required in J-homomorphism.

Composition-closed Functions

Let xi
n
1 denote a sequence x1 x2 · · · xn. A function f xi

n
1 r is said to be

composition-closed if there exist n functions gi (i = 1, · · · , n), so that

f xi
n
1 (f yi

n
1 r) = f (gi xi

n
1 yi

n
1 )

n

1 r
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Example: a composition-closed function

f x1 x2 r = x1 ↑ (x2 + r)

because

f x1 x2 (f y1 y2 r)
= { definition of f }

x1 ↑ (x2 + (y1 ↑ (y2 + r)))
= { since a + (b ↑ c) = (a + b) ↑ (a + c) }

x1 ↑ ((x2 + y1) ↑ (x2 + (y2 + r)))
= { associativity of + and ↑ }

(x1 ↑ (x2 + y1)) ↑ ((x2 + y2) + r)
= { define g1 x1 x2 y1 y2 = (x1 ↑ (x2 + y1), g2 x1 x2 y1 y2 = x2 + y2 }

(g1 x1 x2 y1 y2) ↑ (g2 x1 x2 y1 y2 + r)
= { definition of f }

f (g1 x1 x2 y1 y2) (g2 x1 x2 y1 y2) r
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A Parallelization Rule [POPL98]

Given a homomorphism ([e,⊕]), if there exists a composition-closed function f

with respect to g1, g2, . . . , gn, such that

a⊕ r = f ei
n
1 r

then
([e,⊕]) x = let (a1, a2, . . . , an) = h x in f a1 a2 · · · an e

h [a] = (e1, e2, . . . , en)
h(x ++ y) = h x⊗ h y

where xi
n
1 ⊗ yi

n
1 = gi x1

n
1 yi

n
1

n

1 )
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Example: parallelization of mis

The initial program:

mis [] = 0
mis (a : x) = a ↑ (a + mis x)

which is in fact a homomorphism:

mis = ([0,⊕]) where a⊕ r = a ↑ (a + r)

The difficulty is to find a composition-closed function from ⊕. In fact, such
function f is

f x1 x2 r = x1 ↑ (x2 + r)

whose composition-closed property has been shown. Now we have

a⊕ r = f a a r.
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Applying the parallelization rule to mis gives the following parallel program:

mis x = let (a1, a2) = h x in a1 ↑ (a2 + e)

where

h [a] = (a, a)
h (x ++ y) = h x⊗ h y

where (x1, x2)⊗ (y1, y2) = (x1 ↑ (x2 + y1), x2 + y2).
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A Calculation Algorithm for Parallelization

1. Apply the loop fusion calculation to the program to obtain a compact
program defined in terms of homomorphisms.

2. Derive composition-closed functions from homomorphisms [APLAS04].

3. Apply the parallelizing rule to map homomorphisms to J-homomorphisms.
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Example: parallelizing mss

mss [] = 0
mss (a : x) = a ↑ (a + mis x) ↑ mss x

mis [] = 0
mis (a : x) = a ↑ (a + mis x)
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Step 1: Loop fusion calculation

mss = fst ◦mss mis

where mss mis is the homomorphism defined below:

mss mis = ([(0, 0),⊕])
where a⊕ (s, i) = (a ↑ (a + i) ↑ s, a ↑ (a + i)).
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Step 2: Derivation of composition-closed functions [APLAS04]

a⊕ (s, i) = f a a 0 a a (i, s)

where f is a composition-closed function defined by

f x1 x2 x3 x4 x5 (s, i) = (x1 ↑ (x2 + i) ↑ (x3 + s), x4 ↑ (x5 + i))

with respect to g1, g2, g3, g4, g5:

g1 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x1 ↑ (x2 + y4) ↑ (x3 + y1)
g2 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = (x2 + y5) ↑ (x3 + y2)
g3 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x3 + y3

g4 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x4 ↑ (x5 + y4)
g5 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x5 + y5
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Step 3: Application of the parallelization rule

mss mis x = let (a1, a2, a3, a4, a5) = h x in f a1 a2 a3 a4 a5 (0, 0)

where h is a J-homomorphism defined as follows.

h [a] = (a, a, 0, a, a)
h(x ++ y) = h x⊗ h y

where (x1, x2.x3.x4.x5)⊗ (y1, y2, y3, y4, y5)
= (x1 ↑ (x2 + y4) ↑ (x3 + y1),

(x2 + y5) ↑ (x3 + y2),
x3 + y3,

x4 ↑ (x5 + y4),
x5 + y5)
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Yicho

Yicho is designed and implemented for supporting

direct and efficient implementation of calculation rules in Haskell

with
deterministic higher-order patterns .

It is built upon Template Haskell, and implemented by Tetsuro Yokoyama.
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Yicho Website:

http://www.ipl.t.u-tokyo.ac.jp/yicho/
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Program Representation in Template Haskell

Quote and Unquote

sum :: [Int] -> Int

[| sum |] :: Q Exp

$ ([| sum |]) :: [Int] -> Int
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Representation of Function Definitions

def =

[d|

max = hd . sort

sort [] = []

sort (a:x) = insert a (sort x)

insert a [] = b

insert a (b:x) = if a >= b then a : (b : x)

else b : insert a x

|]
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Basic Combinators for Programming Calculations

Calculation Monad Y

To capture updating of transformation environments and to handle exceptions
that occur during transformation.

ret :: Q Exp→ Y (Q Exp)

runY :: Y (Q Exp)→ Q Exp

Note: ExpQ = Q Exp, ExpY = Y ExpQ.
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Useful Combinators for Coding Calculation

Match (<==) :: ExpQ -> ExpQ -> Y ()

Rule (==>) :: ExpQ -> ExpQ -> RuleY

Sequence (>>) :: Y () -> Y () -> Y ()

Choice (<+) :: ExpY -> ExpY -> ExpY

Case casem :: ExpQ -> [RuleY] -> ExpY
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Match

The most essential combinator used to match a pattern with a term and
produce a substitution (embedded in monadic Y).

An Example

[| \a x -> $oplus a (biggers x, sum x) |]

<== [| \a x -> if a >= sum x then a : biggers x

else biggers x

|]

This will yield the following substitution embedded in Y .

{ $oplus := \x (b,s) ->

if x >= s then x : b else b }.
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Rule

Used to create a calculation rule mapping from one program pattern to
another.

An Example

[| hom $e $oplus . build $g |] ==> [| g $e $oplus |]

Note: Rule can be defined by Match.

(==>) :: ExpQ -> ExpQ -> RuleY

(lhs ==> rhs) term = do lhs <== term

ret rhs
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Choise & Casem

Used to express deterministic choice.

(rule1 e) <+ (rule2 e)

casem :: ExpQ -> [RuleY] -> ExpY

casem sel (r:rs) = r sel <+ casem sel rs
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Code Calculation Rules in Yicho

Code the promotion rule

promotion:
f(a⊕ x) = a⊗ f x

f ◦ foldr (⊕) e = foldr (⊗) (f e)

⇓
promotion :: ExpQ -> ExpY

promotion exp = do

[f,oplus,e,otimes] <- pvars ["f","oplus","e","otimes"]

[| $f . foldr $oplus $e |] <== exp

[| \a x -> $otimes a ($f x) |]

<== [| \a x -> $f ($oplus a x) |]

ret [| foldr $otimes ($f $z) |]
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Enhance the promotion with an additional rule

promotionWithRule :: RuleY -> ExpQ -> ExpY

promotionWithRule rule exp = do

[f,oplus,e,otimes] <- pvars ["f","oplus","e","otimes"]

[| $f . foldr $oplus $e |] <== rule exp

[| \a x -> $otimes a ($f x) |]

<== rule [| \a x -> $f ($oplus a x) |]

ret [| foldr $otimes ($f $z) |]
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Run it!

oldExp = [| sum . foldr (\x y -> 2 * x : y) [] |]

newExp = runY (promotionWithRule rule oldExp)

⇒
GHCi> prettyExpQ newExp

foldr (\x_1 -> (+) (2 * x_1)) 0

GHCi> $oldExp (take 100000 [1..])

10000100000

(0.33 secs, 21243136 bytes)

GHCi> $newExp (take 100000 [1..])

10000100000

(0.27 secs, 19581216 bytes)
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Try it!

• Step 1: Download Yicho

• Step 2: Uncompress the source

• Step 3: Add to your module Import Yicho

All the calculations in this tutorial has been implemented in Yicho.

> ghci -fglasgow-exts Examples/Main.hs

...

GHCi> all_examples
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Conclusion

Important Points

• Program calculation is a fold free program transformation.

• To formalize a program transformation in calculational form, one may
first define a suitable form for the program, then develop calculation rules
to capture the essence of the transformation, and finally construct a
calculation algorithm.

• Program calculation can be implemented directly and efficiently.
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Advantages of Program Transformations in Calculational Form

• Modularity: local analysis, local rule application

• Generality: polytypic, extendability

• Cheap Implementation: simple rule application

• Compatibility: all based on constructive algorithmics

We believe that more optimizations and transformations can be formalized in
calculational form to gain the advantages discussed above, and we are looking
forward to see more practical applications.
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Thank You!


