Program Optimization and Transformation in Calculational Form

## Zhenjiang Hu

University of Tokyo
July 4-5, 2005

## Clarity and Efficiency

## A Chinese Proverb <br> 魚和熊掌不可同時兼得 <br> （One cannot have both fishes and bear palms at the same time．）

－In Programming
Clearly written programs have the desirable properties of being easier to understand，show correct，and modify，but they are often（extremely） inefficient．
－In Software Engineering
Software with high modularity can lead to inefficiency，because of the overhead of communication between components，and because it may preclude potential optimizations across component boundaries．

## A Simple Programming Problem

Problem: Sum up all the bigger elements in an array.
An element is bigger if it is greater than the sum of the elements that follow it till the end of the array.

An Example:

$$
[\mathbf{3 1}, 4,1,5, \mathbf{9}, 2, \mathbf{6}] \Rightarrow 46
$$

## A Clear Solution in C :

```
/* copy all bigger elements from A[0..n-1] into B[] */
count = 0;
for (i=0; i<n; i++) {
    sumAfter = 0;
    for (j=i+1; j<n; j++) {
        sumAfter += A[j];
    }
    if (A[i] > sumAfter)
        B[count++] = A[i];
}
/* compute the sum of all elements in B[] */
sumBiggers = 0;
for (i=0; i<count; i++) {
    sumBiggers += B[i];
}
return sumBiggers;
```

A More Efficient Solution in C:

```
sumBiggers = 0;
sumAfter = 0;
for (i=n-1; i>=0; i--) {
        if (A[i] > sumAfter)
        sumBiggers += A[i];
    sumAfter += A[i];
}
return sumBiggers;
```


## Transformational Programming

## 魚和熊掌不可同時兼得

（One cannot have both fishes and bear palms at the same time．）

$$
\Downarrow
$$

## 魚和熊掌可不同時兼得

（One can have both fishes and bear palms not at the same time．）

We start by writing clean and correct programs，and then use program transformation techniques to transform them step－by－step to more efficient equivalents．

## Program Calculation

Program calculation is a kind of program transformation based on the theory of Constructive Algorithmics. (Bird:87, de Moor:91, Meijer:91, Fokkinga:92, Johan:93, Hu:96)


## What does it mean by calculation?

Recall the manipulation of formulas as in high school algebra.
The following example shows a calculation of the solution of $x$ for the equation $x^{2}-c^{2}=0$.

$$
\begin{aligned}
& \\
& \equiv \quad \begin{array}{c}
x^{2}-c^{2}=0 \\
\quad\left\{\text { by identity: } a^{2}-b^{2}=(a-b)(a+b)\right\} \\
(x-c)(x+c)=0
\end{array} \\
& \equiv \quad\{\text { by law: } a b=0 \Leftrightarrow a=0 \text { or } b=0\} \\
& \\
& \equiv \quad x-c=0 \text { or } x+c=0 \\
& \quad\{\text { by law: } a=b \Leftrightarrow a \pm d=b \pm d\} \\
& \\
& x=c \text { or } x=-c
\end{aligned}
$$

Bird-Meertens Formalism (Bird:87)
A program calculus designed for

- developing identities/laws/rules for calculating programs;
- deriving correct and efficient algorithms from specification based on developed identities/laws/rules.

> Proved to be Useful for Algorithm Derivation

## Program Optimization and Transformation in Calculational Form 10

Calculational approach is useful for automatic program optimization and transformation

- Fusion Transformation in Calculational Form

Gill\&Peyton Jones\&Launchbury:FPCA93, Takano\&Meijer:FPCA95, Hu\&Iwasaki\&Takeichi: ICFP96

- Tupling Transformation in Calculational Form Hu\&Iwasaki\&Takeichi: ICFP97, TOPLAS(97)
- Accumulation Transformation in Calculational Form Hu\&Iwasaki\&Takeichi: New Generation Computing (99)
- Parallelization Transformation in Calculational Form Hu\&Takeichi\&Chin: POPL98, Hu\&Takeichi\&Iwasaki: ESOP02
- Bidirectional Transformation in Calculational Form Hu\&Mu\&Takeichi: PEPM04, MPC04


## About this Tutorial

We demonstrate how to formalize program optimizations and transformations in calculational form, with two examples:

- program optimization by loop fusion
- parallelizing program transformation
to show that program transformation in calculational form
- has higher modularity;
- is more suitable for efficient implementation.


## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Conclusion

Yicho's Home Page:
http://www.ipl.t.u-tokyo.ac.jp/yicho/
(by Tetsuro Yokoyama)

## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Notation for writing programs and specifying calculation rules
- Fold/Unfold approach to program transformation
- Program calculation and program transformation in calculational form
- Loop Fusion in Calculational Form
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Conclusion


## Notation

Haskell is a popular functional language, which will be used for writing programs and specifying transformation laws/rules.

- It is good for writing clear and modular programs, because it supports a powerful and elegant programming style.
- It is good for performing transformation, because of its nice mathematical properties.


## Functions

Programs are a list of function definitions.

$$
\begin{aligned}
& \text { square } x=x * x \\
& \text { larger } x y=\text { if } x>y \text { then } x \text { else } y
\end{aligned}
$$

Lambda expressions are used to define a function without giving its name.

$$
\lambda x . x * x
$$

Functional application is denoted by a space and the argument.

$$
\begin{array}{lll}
\text { square } 5 & \Rightarrow & 25 \\
\text { larger } 32 & \Rightarrow & 3 \\
(\lambda x \cdot x * x) 5 & \Rightarrow & 25
\end{array}
$$

Functional application is regarded as stronger binding than any other operator.

$$
\text { square } 5+3=(\text { square } 5)+3 \neq \text { square }(5+3)
$$

Functional composition is denoted by a centralized circle o.

$$
(f \circ g) x=f(g x)
$$

Functional composition is an associative operator, and the identity function, denoted by $i d$, is its unit.

Infix binary operators will often be denoted by $\oplus, \otimes$ and can be sectioned; an infix binary operator like $\oplus$ can be turned into unary functions as follows.

$$
(a \oplus) b=a \oplus b=(\oplus b) a
$$

What do the following functions denote?

$$
\begin{aligned}
& (1+) \\
& (/ 2) \\
& (==9) \circ(1+) \circ(* 2)
\end{aligned}
$$

## List (Array)

Lists are finite sequences of values of the same type. The type of the cons lists with elements of type $a$ is defined as follows.

$$
\operatorname{data}[a]=[] \mid a:[a]
$$

Abbreviation:

$$
\left[x_{1}, x_{2}, \ldots, x_{n}\right]=x_{1}:\left(x_{2}:\left(\ldots:\left(x_{n}:[]\right)\right)\right)
$$

List concatenation function $\#$ :

$$
[1,2,3]+[4,5,6]=[1,2,3,4,5,6]
$$

## Recursion

Functions may be defined recursively.

$$
\begin{array}{ll}
\operatorname{sort}[] & = \\
\operatorname{sort}(a: x) & = \\
& \text { insert } a(\text { sort } x) \\
\text { insert } a[] & = \\
\text { insert } a(b: x)= & {[a]} \\
& \text { if } a \geq b \text { then } a:(b: x) \\
& \text { else } b: \text { insert } a x
\end{array}
$$

## Higher-order Functions

Higher-order functions are functions which can take other functions as arguments, and may also return functions as results.

$$
\operatorname{map}(1+)[1,2,3,4,5]=[2,3,4,5,6]
$$

Can you understand the following Haskell program?
sumBiggers $=$ sum $\circ$ biggers
where
biggers [] = []
biggers $(a: x)=$ if $a>\operatorname{sum} x$ then $a$ : biggers $x$ else biggers $x$
sum [] $=0$
$\operatorname{sum}(a: x)=a+\operatorname{sum} x$

How about this?
sumBiggers $x=$ let $(b, c)=$ sumBiggers $^{\prime} x$ in $a$
where
sumBiggers' []$=(0,0)$
sumBiggers ${ }^{\prime}(a: x)=$ let $(b, c)=$ sumBiggers $^{\prime} x$
in if $a>c$ then $(a+b, a+c)$ else $(b, a+c)$

## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Notation for writing programs and specifying calculation rules
- Fold/Unfold approach to program transformation
- Program calculation and program transformation in calculational form
- Loop Fusion in Calculational Form
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Conclusion


## Fold/Unfold Approach to Program Transformation

Transform programs (basically) by repeatedly applying unfolding rules or folding rules.

For any function definition of a program:

$$
f x_{1} \ldots x_{n}=e
$$

we have a unfolding rule:

$$
f x_{1} \ldots x_{n} \Rightarrow e
$$

and a folding rule:

$$
f x_{1} \ldots x_{n} \Leftarrow e .
$$

## An Example of Fold/Unfold Transformations

A Programming Problem

Find a maximum element in a list.

A Naive Solution

Suppose that we already have sort. Then, a direct solution is to sort the input and to return the first element:

$$
\max x=h d(\operatorname{sort} x)
$$

where

$$
\begin{array}{ll}
h d[] & =-\infty \\
h d(a: x) & =a .
\end{array}
$$

## Optimization by Fold/Unfold Transformations

We aim to derive a new recursive definition for max.
For the base case, we have:

$$
\begin{array}{cc} 
& \max [] \\
= & \{\text { unfold } \max \} \\
& h d(\text { sort }[]) \\
= & \{\text { unfold sort }\} \\
& h d[] \\
= & \{\text { unfold } h d\} \\
& -\infty
\end{array}
$$

For the recursive case, we do unfolding similarly.

$$
\begin{array}{cc} 
& \max (a: x) \\
= & \{\text { unfold } \max \} \\
& h d(\operatorname{sort}(a: x)) \\
= & \{\text { unfold sort }\} \\
& h d(\text { insert } a(\text { sort } x))
\end{array}
$$

We get stuck; we can neither unfold insert because we do not know whether sort $x$ is empty or not, nor perform folding to get a recursive definition.
$\Rightarrow$ To instantiate $x$.

For the case where $x=[]$, we can easily obtain $\max [a]=a$.
For the case where $x$ is not empty, we unfold insert, by assuming $b: x^{\prime}=$ sort $x$, that is

$$
\begin{aligned}
b & =h d(\operatorname{sort} x) \\
x^{\prime} & =\operatorname{tail}(\operatorname{sort} x)
\end{aligned}
$$

## Program Optimization and Transformation in Calculational Form 30

Here is the detailed transformation.

```
    hd(insert a (b: x )}\mathrm{ )
    = { unfold insert }
    hd (if a\geqb then a:(b:x)' else b:insert a x')
    = { law: f(if b then }\mp@subsup{e}{1}{}\mathrm{ else }\mp@subsup{e}{2}{})=\mathrm{ if }b\mathrm{ then }f\mp@subsup{e}{1}{}\mathrm{ else }f\mp@subsup{e}{2}{}
    if a\geqb then hd (a:(b:x')) else hd (b: insert a x')
    = { unfold hd}
    if }a\geqb\mathrm{ then }a\mathrm{ else b
    = { unfold b }
    if a\geqhd (sort x) then a else hd (sort x)
    = { fold max }
```

    if \(a \geq \max x\) then \(a\) else \(\max x\)
    
## Derived Efficient Program

$$
\begin{array}{ll}
\max [] & =-\infty \\
\max [a] & =a \\
\max (a: x) & =\text { if } a \geq \max x \text { then } a \text { else } \max x
\end{array}
$$

Or it is simple as follow:

$$
\begin{array}{ll}
\max [] & =-\infty \\
\max (a: x) & =\text { if } a \geq \max x \text { then } a \text { else } \max x
\end{array}
$$

## Program Optimization and Transformation in Calculational Form

## Limitations of Fold/Unfold Transformations

It is general and powerful, but suffers from several problems which often prevent it from being used in practice.

- It is difficult to decide when unfolding steps should stop while guaranteeing exposition of enough information for later folding steps.
- It is expensive to implement, because it requires keeping records of all possible folding patterns and have them checked upon any new subexpressions produced during transformation.
- Each transformation step is very small, but an effective way is lacking to group and/or structure them into bigger steps.


## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Notation for writing programs and specifying calculation rules
- Fold/Unfold approach to program transformation
- Program calculation and program transformation in calculational form
- Loop Fusion in Calculational Form
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Conclusion


# Program Transformations in Calculational Form 

Fold-free Program Transformations

Transformations are based on a set of calculation laws but exclude the use of folding steps.

The challenge is how to formalize necessary folding steps by means of calculation laws.

## Three-Step Formalization Procedure

1. Define a specific form of programs that are best suitable for the transformation and can be used to describe a class of interesting computations.
2. Develop calculational rules (laws) for implementing the transformation on programs in the specific form.
3. Show how to turn more general programs into those in the specific form and how to apply the newly developed calculational rules systematically.

## Program Optimization and Transformation in Calculational Form 36

## Homomorphisms: A Generic Recursive Form

It is known that goto is considered harmful to write clear programs and to optimize programs.

Loop (recursion) should be structured for efficient manipulation!

$$
\begin{aligned}
f[] & = \\
f(a: x)= & \cdots f x \cdots f(g x) \cdots f(f x) \cdots \\
& \\
& \Downarrow
\end{aligned}
$$

Composition of recursive functions in simpler form.

$$
\begin{aligned}
\operatorname{hom}_{l}[] & =e \\
\text { hom }_{l}(a: x) & =a \oplus h o m_{l} x . \\
h o m_{l} & =\left([e, \oplus)_{l}\right.
\end{aligned}
$$

## Examples of (List) Homomorphisms

$$
\begin{array}{rll}
\text { sum } & =([0,+] & \\
\text { prod } & =(1, \times]) & \\
\text { maxlist } & =(-\infty, \uparrow] & \\
\text { where } a \uparrow r=\text { if } a \geq r \text { then } a \text { else } r \\
\text { reverse } & =([], \oplus]) & \text { where } a \oplus r=r+[a] \\
\text { inits } & =([[]], \oplus]) & \text { where } a \oplus r=[]: \text { map }(a:) r \\
\text { map } f & =([], \oplus]) & \text { where } a \oplus r=f a: r \\
& & \\
\text { sort } & =([[], \text { insert }] &
\end{array}
$$

Compositions of homomorphisms can describe complicated computation concisely.

$$
\text { mis }=\text { maxlist } \circ(\text { map sum }) \circ \text { inits }
$$

## Promotion: A Generic Calculation Law

$$
\text { promotion: } \frac{f(a \oplus x)=a \otimes f x}{f \circ([e, \oplus])=([f e, \otimes])}
$$

Revisit max: Program Calculation without Folding Steps

$$
\max =h d \circ \text { sort }
$$

We may calculate as follows.

```
            max
    = { define max in terms of hom }
        hd\circ ([[], insert])
= { promotion: }\foralla,x.hd(\mathrm{ insert a x) =a@hdx}
    ([hd [], \otimes])
```


## Program Optimization and Transformation in Calculational Form 40

The $\otimes$ that satisfies

$$
\forall a, x . h d(\text { insert } a x)=a \otimes h d x
$$

may be obtained via a higher order matching algorithm. Here, we show another concise calculation.

$$
\left.\begin{array}{rl}
a \otimes b= & \{\text { let } x \text { be any list; by inversion }\} \\
= & a \otimes h d(b: x) \\
= & \quad\{\text { the condition in the promotion rule }\} \\
= & \{\text { insert } a(b: x)) \\
& h d \text { definition of insert }\} \\
= & \{\text { if property }\} \\
& \text { if } a \geq b \text { then } h d(a:(b: x)) \text { else } h d(b: \text { insert } a x) \\
= & \{\text { definition of } h d\}
\end{array}\right\}
$$

## How to Obtain Homomorphisms?

Generally, the promotion rule can do this.

$$
f=f \circ i d=f \circ(\mathbb{C}],(:) \mathbb{D}
$$

In practice, we may need to find more efficient and systematic way.

- Warm fusion (Sheard\&Launchbury:FPCA95)
- Deriving Hylomorphisms (Hu\&Iwasaki\&Takeichi:ICFP96)


## A Note on Genericity

The framework discussed so far applies to any algebraic data types like lists and trees. We focus on lists in this tutorial.

## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Notation for writing programs and specifying calculation rules
- Fold/Unfold approach to program transformation
- Program calculation and program transformation in calculational form
- Loop Fusion in Calculational Form
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Conclusion


## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Loop Fusion
- Structured Recursive Form for Loop Fusion
- Calculational Rules for Loop Fusion
- A Calculational Algorithm for Loop Fusion
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Conclusion


## Program Optimization and Transformation in Calculational Form 45

## Loop Fusion

Loop fusion, a well-known optimization technique in compiler construction, is to fuse some adjacent loops into one loop to reduce loop overhead and improve run-time performance.

There are basically three cases for two adjacent loops:

1. one loop is put after another and the result computed by the first is used by the second;
2. one loop is put after another and the result computed by the first is not used by the second;
3. one loop is used inside another.

## A C Program with Multiple Loops

```
/* copy all bigger elements from A[0..n-1] into B[] */
count = 0;
for (i=0; i<n; i++) {
    sumAfter = 0;
    for (j=i+1; j<n; j++) {
        sumAfter += A[j];
    }
    if (A[i] > sumAfter)
        B[count++] = A[i];
}
/* compute the sum of all elements in B[] */
sumBiggers = 0;
for (i=0; i<count; i++) {
    sumBiggers += B[i];
}
return sumBiggers;
```

An Efficient C Program after Loop Fusion

```
sumBiggers = 0;
sumAfter = 0;
for (i=n-1; i>=0; i--) {
        if (A[i] > sumAfter)
            sumBiggers += A[i];
    sumAfter += A[i];
}
return sumBiggers;
```

Multiple Loops (Recursion) in Haskell

$$
\begin{array}{ll}
\text { sumBiggers } & =\text { sum } \circ \text { biggers } \\
\text { biggers }[] & =[] \\
\text { biggers }(a: x) & =\text { if } a \geq \text { sum } x \text { then } a: \text { biggers } x \text { else biggers } x \\
\operatorname{sum}[] & =[] \\
\operatorname{sum}(a: x) & =a+\operatorname{sum} x
\end{array}
$$

An Efficient Haskell Program after Loop Fusion

```
sumBiggers \(x=\) let \((b, c)=\) sumBiggers \(^{\prime} x\) in \(a\)
    where
        sumBiggers' []\(=(0,0)\)
        sumBiggers \({ }^{\prime}(a: x)=\) let \((b, c)=\) sumBiggers \(^{\prime} x\)
        in if \(a>c\) then \((a+b, a+c)\) else \((b, a+c)\)
```


## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Loop Fusion
- Structured Recursive Form for Loop Fusion
- Calculational Rules for Loop Fusion
- A Calculational Algorithm for Loop Fusion
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Conclusion


## Program Optimization and Transformation in Calculational Form 51

## Mutumorphism: A Structured Form for Loop Fusion

A function $f_{1}$ is said to be a list mutumorphism with respect to other functions $f_{2}, \ldots, f_{n}$ if each $f_{i}(i=1,2, \ldots, n)$ is defined in the following form:

$$
\begin{array}{ll}
f_{i}[] & =e_{i} \\
f_{i}(a: x) & =a \oplus_{i}\left(f_{1} x, f_{2} x, \ldots, f_{n} x\right)
\end{array}
$$

where $e_{i}(i=1,2, \ldots, n)$ are given constants and $\oplus_{i}(i=1,2, \ldots, n)$ are given binary functions. We represent $f_{1}$ as follows.

$$
f_{1}=\llbracket\left(e_{1}, \ldots, e_{n}\right),\left(\oplus_{1}, \ldots, \oplus_{n}\right) \rrbracket .
$$

Note:

$$
(\lfloor e, \oplus])=\llbracket(e),(\oplus) \rrbracket
$$

## An Example

From

$$
\begin{array}{ll}
\operatorname{biggers}[] & =[] \\
\operatorname{biggers}(a: x) & =\text { if } a \geq \operatorname{sum} x \text { then } a: \text { biggers } x \text { else biggers } x \\
\operatorname{sum}[] & =[] \\
\operatorname{sum}(a: x) & =a+\operatorname{sum} x
\end{array}
$$

we have

$$
\begin{aligned}
\text { biggers }= & \llbracket([], 0),\left(\oplus_{1}, \oplus_{2}\right) \rrbracket \\
\text { where } & a \oplus_{1}(r, s)=\text { if } a \geq s \text { then } a: r \text { else } r \\
& a \oplus_{2}(r, s)=a+s
\end{aligned}
$$

## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Loop Fusion
- Structured Recursive Form for Loop Fusion
- Calculational Rules for Loop Fusion
- A Calculational Algorithm for Loop Fusion
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Conclusion


## Calculational Rules for Loop Fusion

Flatten: dealing with nested loops

$$
\begin{aligned}
& \llbracket\left(e_{1}, e_{2}, \ldots, e_{n}\right),\left(\oplus_{1}, \oplus_{2}, \ldots, \oplus_{n}\right) \rrbracket=f s t \circ\left(\llbracket\left(e_{1}, e_{2}, \ldots, e_{n}\right), \oplus \rrbracket\right) \\
& \quad \text { where } a \oplus r=\left(a \oplus_{1} r, a \oplus_{2} r, \ldots, a \oplus_{n} r\right)
\end{aligned}
$$

Here, $f s t$ is a projection function returning the first element of a tuple.

## An Example

Consider to apply the flattening rule to biggers to flatten the nested loop.
biggers
$=\quad\{$ mutumorphism for biggers $\}$
$\llbracket([], 0),\left(\oplus_{1}, \oplus_{2}\right) \rrbracket$
$=\quad\{$ flattening rule $\}$
fst $\circ([([], 0), \oplus])$
where $a \oplus(r, s)=($ if $a \geq s$ then $a: r$ else $r, a+s)$

Inlining the homomorphism in the derived program gives the following readable recursive program, which consists of a single loop.

$$
\begin{aligned}
& \text { biggers } x=\operatorname{let}(r, s)=\text { hom } x \text { in } r \\
& \text { where } \operatorname{hom}[]=([], 0) \\
& \qquad \operatorname{hom}(a: x)=\operatorname{let}(r, s)=h o m x \\
& \quad \operatorname{in}(\text { if } a \geq s \text { then } a: r \text { else } r, a+s)
\end{aligned}
$$

Tupling: dealing with adjacent independent loops

$$
\begin{gathered}
f\left(\left(\left[e_{1}, \oplus_{1}\right]\right) x,\left(\left[e_{2}, \oplus_{2}\right) x\right)=f\left(\left(\left[\left(e_{1}, e_{2}\right), \oplus\right]\right) x\right)\right. \\
\quad \text { where } a \oplus\left(r_{1}, r_{2}\right)=\left(a \oplus_{1} r_{1}, a \oplus_{2} r_{2}\right)
\end{gathered}
$$

## An Example

The following program is to compute the average of a list:

$$
\text { average } x=\text { sum } x / \text { length } x
$$

which has two loops can be merged into a single loop by applying the tupling rule.

$$
\begin{aligned}
& \text { average } x=\text { let }(s, l)=\text { tup } x \text { in } s / l \\
& \quad \text { where tup }=([(0,0), \lambda a(s, l) \cdot(a+s, 1+l)])
\end{aligned}
$$

Fusion: dealing with adjacent dependent loops

$$
\begin{aligned}
& ([e, \oplus]) \circ \text { build } g=g(e, \oplus) \\
& \quad \text { where build } g=g([],(:))
\end{aligned}
$$

Here the build-form can be obtained by promotion:

$$
([d, \otimes])=\text { build }(\lambda(c, \odot) \cdot([c, \odot]) \circ([d, \otimes]))
$$

## An Example

Recall that we have obtained the following definition for biggers.

$$
\begin{aligned}
& \text { biggers }=f \text { st } \circ(\mathbb{(}([], 0), \oplus\rceil) \\
& \quad \text { where } a \oplus(r, s)=(\text { if } a \geq s \text { then } a: r \text { else } r, a+s)
\end{aligned}
$$

We can obtain the following build form:

$$
\begin{aligned}
& \text { biggers }=\text { build }\left(\lambda(c, \odot) \text {.fst } \circ\left(\left[(c, 0), \oplus^{\prime}\right\rceil\right)\right) \\
& \quad \text { where } a \oplus^{\prime}(r, s)=(\text { if } a \geq s \text { then } a \odot r \text { else } r, a+s)
\end{aligned}
$$

Now applying the shortcut fusion rule to

$$
\text { sumBiggers }=([0,+]) \circ \text { bigger }
$$

soon yields the following single-loop program for sumBiggers:

$$
\begin{aligned}
& \text { sumBiggers }=f \text { st } \circ([(0,0), \otimes) \\
& \quad \text { where } a \otimes(r, s)=(\text { if } a \geq s \text { then } a+r \text { else } r, a+s)
\end{aligned}
$$

which is actually the same as that in the introduction if we inline it.

## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Loop Fusion
- Structured Recursive Form for Loop Fusion
- Calculational Rules for Loop Fusion
- A Calculational Algorithm for Loop Fusion
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Conclusion


## A Calculational Algorithm for Loop Fusion

1. Represent as many recursive functions on lists by mutumorphisms as possible.
2. Apply the flattening rule to transform all mutumorphism to homomorphisms.
3. Apply the promotion rule and shortcut fusion rule as much as possible.
4. Apply the tupling rule to merge independent homomorphisms.
5. Inline homomorphism/mutumorphism to output transformed program in a friendly manner.

Note: A similar algorithm was implemented in Glasgow Haskell Compiler (The Hylo System by Onoue, 1997); References: ICFP'96, ICFP'97.

Example:

$$
\begin{aligned}
& \text { sumBiggers }=\text { sum○biggers } \\
& =\{\text { represent list functions by mutumorphism/homomorphism \}} \\
& ([0,+]) \circ \llbracket([], 0),\left(\oplus_{1}, \oplus_{2}\right) \rrbracket \\
& \text { where } a \oplus_{1}(r, s)=\text { if } a \geq s \text { then } a: r \text { else } r \\
& a \oplus_{2}(r, s)=a+s \\
& =\quad\{\text { flatten: } a \otimes(r, s)=(\text { if } a \geq s \text { then } a+r \text { else } r, a+s)\} \\
& ([0,+]) \circ f s t \circ([(0,0), \otimes]) \\
& =\quad\{\text { make "build" form \}} \\
& ([0,+\rceil) \circ \text { build }\left(\lambda(c, \odot) . f s t \circ\left(\left[(c, 0), \oplus^{\prime}\right\rceil\right)\right) \\
& \text { where } a \oplus^{\prime}(r, s)=(\text { if } a \geq s \text { then } a \odot r \text { else } r, a+s) \\
& =\quad\{\text { fusion }\} \\
& f s t \circ([(0,0), \otimes]) \\
& \text { where } a \otimes(r, s)=(\text { if } a \geq s \text { then } a+r \text { else } r, a+s)
\end{aligned}
$$

## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Loop Fusion
- Structured Recursive Form for Loop Fusion
- Calculational Rules for Loop Fusion
- A Calculational Algorithm for Loop Fusion
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Conclusion


## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Parallelization in Calculational Form
- Parallelization Transformation
- J-Homomorphism: A Parallel Form for List Functions
- A Parallelizing Rule
- A Calculation Algorithm for Parallelization
- Implementing Program Calculation in Yicho
- Conclusion


## Program Optimization and Transformation in Calculational Form 67

## Parallelization

Parallelization is a transformation for automatically generating parallel code from high level sequential description.


It is a big challenge to clarify

- what kind of sequential programs can be parallelized
- how they can be systematically parallelized.


## Parallelization of List Functions

Parallelization is a transformation for automatically generating parallel code from high level sequential description manipulating lists.

$$
\begin{gathered}
\text { A Sequential Program } \\
f::[a] \rightarrow R
\end{gathered} \Rightarrow \quad \begin{gathered}
\text { A Parallel Program } \\
f::[a] \rightarrow R
\end{gathered}
$$

## Parallelization of List Functions (Cont)

A hint from Constructive Algorithmics:
The control structure of a program should be determined by the data structure the program is to manipulate.

$$
\begin{array}{c|}
\text { A Sequential Program } \\
\quad f:: \text { SeqList } a \rightarrow R
\end{array}|\Rightarrow| \begin{aligned}
& \text { A Parallel Program } \\
& f^{\prime}:: \text { ParaList } a \rightarrow R
\end{aligned}
$$

## Data Refinement

A sequential view of lists:

$$
\text { ConsList } a=[] \mid a: \text { ConsList } a
$$

A parallel view of lists:

$$
\text { JoinList } a=[]|[.] a| \text { JoinList } a+\text { JoinList } a
$$

## An Example

Given a list $[1,2,3,4,5,6]$, we may represent it in the following two ways:

$$
\begin{aligned}
& 1:(2:(3:(4:(5:(6:[]))))) \\
& ([1]+[2]+[3])+([4]+[5]+[6])
\end{aligned}
$$

## A Simple Example of Parallelization

Programs defined on cons lists inherit sequentiality from cons lists, while programs defined on join lists gain parallelism from join lists.

$$
\left.\begin{array}{ll}
\operatorname{sumS}[] & =0 \\
\operatorname{sumS}(a: x) & =a+\operatorname{sumS} x \\
& \Downarrow \\
& =0 \\
\operatorname{sumP}[] & =a \\
\operatorname{sumP}[a] & =\operatorname{sumP}(x+y)
\end{array}\right)
$$

## Running Example: the Maximum Segment Sum Problem

Compute the maximum of the sums of contiguous segments within a list of integers. For example,

$$
m s s[3,-4, \underline{2,-1,6},-3]=7
$$

A Sequential Program:

$$
\begin{array}{ll}
\operatorname{mss}[] & =0 \\
\operatorname{mss}(a: x) & =a \uparrow(a+\operatorname{mis} x) \uparrow \operatorname{mss} x \\
\operatorname{mis}[] & =0 \\
\operatorname{mis}(a: x) & =a \uparrow(a+\operatorname{mis} x)
\end{array}
$$

## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Parallelization in Calculational Form
- Parallelization Transformation
- J-Homomorphism: A Parallel Form for List Functions
- A Parallelizing Rule
- A Calculation Algorithm for Parallelization
- Implementing Program Calculation in Yicho
- Conclusion


## J-Homomorphism: A Parallel Form for List Functions

J-homomorphisms (Homomorphisms on JoinList) are functions defined in the following form:

$$
h(x+y)=h x \oplus h y
$$

where $\oplus$ is an associative operator.

## Program Optimization and Transformation in Calculational Form 75

## A Calculation Rule for Parallelization

We aim at a way of expressing a homomorphism in terms of J-homomorphisms. The challenge is how to obtain an associative operator required in J-homomorphism.

## Composition-closed Functions

Let $\overline{x_{i}}{ }_{1}^{n}$ denote a sequence $x_{1} x_{2} \cdots x_{n}$. A function $f \overline{x_{i}}{ }_{1}^{n} r$ is said to be composition-closed if there exist $n$ functions $g_{i}(i=1, \cdots, n)$, so that

## Program Optimization and Transformation in Calculational Form 76

## Example: a composition-closed function

$$
f x_{1} x_{2} r=x_{1} \uparrow\left(x_{2}+r\right)
$$

because

$$
\begin{aligned}
& f x_{1} x_{2}\left(f y_{1} y_{2} r\right) \\
& =\quad\{\text { definition of } f\} \\
& x_{1} \uparrow\left(x_{2}+\left(y_{1} \uparrow\left(y_{2}+r\right)\right)\right) \\
& =\quad\{\text { since } a+(b \uparrow c)=(a+b) \uparrow(a+c)\} \\
& x_{1} \uparrow\left(\left(x_{2}+y_{1}\right) \uparrow\left(x_{2}+\left(y_{2}+r\right)\right)\right) \\
& =\quad\{\text { associativity of }+ \text { and } \uparrow\} \\
& \left(x_{1} \uparrow\left(x_{2}+y_{1}\right)\right) \uparrow\left(\left(x_{2}+y_{2}\right)+r\right) \\
& =\quad\left\{\text { define } g_{1} x_{1} x_{2} y_{1} y_{2}=\left(x_{1} \uparrow\left(x_{2}+y_{1}\right), g_{2} x_{1} x_{2} y_{1} y_{2}=x_{2}+y_{2}\right\}\right. \\
& \left(g_{1} x_{1} x_{2} y_{1} y_{2}\right) \uparrow\left(g_{2} x_{1} x_{2} y_{1} y_{2}+r\right) \\
& =\quad\{\text { definition of } f\} \\
& f\left(g_{1} x_{1} x_{2} y_{1} y_{2}\right)\left(g_{2} x_{1} x_{2} y_{1} y_{2}\right) r
\end{aligned}
$$

## A Parallelization Rule [POPL98]

Given a homomorphism $(\lfloor e, \oplus\rceil$, if there exists a composition-closed function $f$ with respect to $g_{1}, g_{2}, \ldots, g_{n}$, such that

$$
a \oplus r=f \overline{e_{i}}{ }_{1}^{n} r
$$

then

$$
\begin{aligned}
&([e, \oplus]) x=\operatorname{let}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=h x \text { in } f a_{1} a_{2} \cdots a_{n} e \\
& h[a] \quad=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \\
& h(x+y)= h x \otimes h y \\
&\text { where } \left.{\overline{x_{i 1}}}^{n} \otimes{\overline{y_{i 1}}}^{n}={\overline{g_{i}}{\overline{x_{1}}}_{1}^{n}{\overline{y_{i}}}_{1}^{n}}^{n}\right)
\end{aligned}
$$

Example: parallelization of mis
The initial program:

$$
\begin{array}{ll}
\operatorname{mis}[] & =0 \\
\operatorname{mis}(a: x) & =a \uparrow(a+\text { mis } x)
\end{array}
$$

which is in fact a homomorphism:

$$
\text { mis }=([0, \oplus]) \text { where } a \oplus r=a \uparrow(a+r)
$$

The difficulty is to find a composition-closed function from $\oplus$. In fact, such function $f$ is

$$
f x_{1} x_{2} r=x_{1} \uparrow\left(x_{2}+r\right)
$$

whose composition-closed property has been shown. Now we have

$$
a \oplus r=f a a r
$$

Applying the parallelization rule to mis gives the following parallel program:

$$
\text { mis } x=\text { let }\left(a_{1}, a_{2}\right)=h x \text { in } a_{1} \uparrow\left(a_{2}+e\right)
$$

where

$$
\begin{aligned}
h[a]= & (a, a) \\
h(x++y)= & h x \otimes h y \\
& \quad \text { where }\left(x_{1}, x_{2}\right) \otimes\left(y_{1}, y_{2}\right)=\left(x_{1} \uparrow\left(x_{2}+y_{1}\right), x_{2}+y_{2}\right)
\end{aligned}
$$

## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Parallelization in Calculational Form
- Parallelization Transformation
- J-Homomorphism: A Parallel Form for List Functions
- A Parallelizing Rule
- A Calculation Algorithm for Parallelization
- Implementing Program Calculation in Yicho
- Conclusion


## A Calculation Algorithm for Parallelization

1. Apply the loop fusion calculation to the program to obtain a compact program defined in terms of homomorphisms.
2. Derive composition-closed functions from homomorphisms [APLAS04].
3. Apply the parallelizing rule to map homomorphisms to J-homomorphisms.

Example: parallelizing mss

$$
\begin{array}{ll}
\operatorname{mss}[] & =0 \\
\operatorname{mss}(a: x) & =a \uparrow(a+\operatorname{mis} x) \uparrow \operatorname{mss} x \\
\operatorname{mis}[] & =0 \\
\operatorname{mis}(a: x) & =a \uparrow(a+\operatorname{mis} x)
\end{array}
$$

## Step 1: Loop fusion calculation

$$
m s s=f s t \circ \text { mss_mis }
$$

where mss_mis is the homomorphism defined below:

$$
\begin{aligned}
& \text { mss_mis }=(\llbracket(0,0), \oplus]) \\
& \quad \text { where } a \oplus(s, i)=(a \uparrow(a+i) \uparrow s, a \uparrow(a+i)) .
\end{aligned}
$$

## Step 2: Derivation of composition-closed functions [APLAS04]

$$
a \oplus(s, i)=f a a 0 a a(i, s)
$$

where $f$ is a composition-closed function defined by

$$
f x_{1} x_{2} x_{3} x_{4} x_{5}(s, i)=\left(x_{1} \uparrow\left(x_{2}+i\right) \uparrow\left(x_{3}+s\right), x_{4} \uparrow\left(x_{5}+i\right)\right)
$$

with respect to $g_{1}, g_{2}, g_{3}, g_{4}, g_{5}$ :

$$
\begin{aligned}
g_{1} x_{1} x_{2} x_{3} x_{4} x_{5} y_{1} y_{2} y_{3} y_{4} y_{5} & =x_{1} \uparrow\left(x_{2}+y_{4}\right) \uparrow\left(x_{3}+y_{1}\right) \\
g_{2} x_{1} x_{2} x_{3} x_{4} x_{5} y_{1} y_{2} y_{3} y_{4} y_{5} & =\left(x_{2}+y_{5}\right) \uparrow\left(x_{3}+y_{2}\right) \\
g_{3} x_{1} x_{2} x_{3} x_{4} x_{5} y_{1} y_{2} y_{3} y_{4} y_{5} & =x_{3}+y_{3} \\
g_{4} x_{1} x_{2} x_{3} x_{4} x_{5} y_{1} y_{2} y_{3} y_{4} y_{5} & =x_{4} \uparrow\left(x_{5}+y_{4}\right) \\
g_{5} x_{1} x_{2} x_{3} x_{4} x_{5} y_{1} y_{2} y_{3} y_{4} y_{5} & =x_{5}+y_{5}
\end{aligned}
$$

Step 3: Application of the parallelization rule

$$
\text { mss_mis } x=\text { let }\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=h x \text { in } f a_{1} a_{2} a_{3} a_{4} a_{5}(0,0)
$$

where $h$ is a J-homomorphism defined as follows.

$$
\begin{aligned}
& h[a]=(a, a, 0, a, a) \\
& h(x+y)=h x \otimes h y \\
& \text { where }\left(x_{1}, x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5}\right) \otimes\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right) \\
& =\left(x_{1} \uparrow\left(x_{2}+y_{4}\right) \uparrow\left(x_{3}+y_{1}\right)\right. \\
& \left(x_{2}+y_{5}\right) \uparrow\left(x_{3}+y_{2}\right) \\
& x_{3}+y_{3} \\
& x_{4} \uparrow\left(x_{5}+y_{4}\right) \\
& \left.x_{5}+y_{5}\right)
\end{aligned}
$$

## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Parallelization in Calculational Form
- Parallelization Transformation
- J-Homomorphism: A Parallel Form for List Functions
- A Parallelizing Rule
- A Calculation Algorithm for Parallelization
- Implementing Program Calculation in Yicho
- Conclusion


## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Overview of Yicho
- Program Representation
- Basic Combinators for Programming Calculations
- Programming Calculation Rules in Yicho
- Conclusion


## Yicho

Yicho is designed and implemented for supporting
direct and efficient implementation of calculation rules in Haskell
with
deterministic higher-order patterns

It is built upon Template Haskell, and implemented by Tetsuro Yokoyama.

## Yicho Website：

| Yicho：A Combinator Library for Program Calculation |  |  |
| :---: | :---: | :---: |
| 4 ハー C＋ | Onttp：／／www．ipl．t．u－cokyo．ac．jp／yicho／ | －Q－Google |
|  | アッフル Mac Amazon．co．jp Yahool IAPAN | ＊行＊ニュース＊living＊ |

## Yicho：A Combinator Library for Program Calculation

｜Overview
Yicho is a monadic combinator library for supporting declarative specification of program transformation in Haskell．The combinator library uses higher－order patterms as first－class values which can be passed as parameters，constructed by smaller ones in compositional way，and returned as values．As a result，our library provides more flexible binding than simple ones，and enables more abstract and modular description of program transformation．Our library is developed by Template Haskell．a meta extension to Haskell 98
｜Documents
http：／／www．ipl．t．u－tokyo．ac．jp／yicho／
－Hierarchical Module Structure
User＇s manual（under construction）
－Q\＆A（under construction）

## Download

－Version 0．1．0：Source distribution（tar．gz）（requires GHC version 6.4 or later to compile）．
｜Reference papers
1．Zhenjiang Hu．Tetsuo Yokoyama，and Masato Takeichi．Program Optimizations and Transformations in
Calculational Form（Tutorial Paner）．Summer School on Generative and Tran aformational Technioues in Soffware

## Program Representation in Template Haskell

Quote and Unquote

```
sum :: [Int] -> Int
[| sum l] :: Q Exp
$ ([| sum |]) :: [Int] -> Int
```

Representation of Function Definitions

```
def =
    [d|
        max = hd . sort
        sort [] = []
        sort (a:x) = insert a (sort x)
        insert a [] = b
        insert a (b:x) = if a >= b then a : (b : x)
                        else b : insert a x
    I]
```


## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Overview of Yicho
- Program Representation
- Basic Combinators for Programming Calculations
- Programming Calculation Rules in Yicho
- Conclusion


## Basic Combinators for Programming Calculations

## Calculation Monad $Y$

To capture updating of transformation environments and to handle exceptions that occur during transformation.

$$
\begin{aligned}
& \text { ret } \quad:: \quad \mathrm{Exp} \rightarrow Y(Q \operatorname{Exp}) \\
& \text { runY }:: \quad Y(Q \operatorname{Exp}) \rightarrow Q \operatorname{Exp}
\end{aligned}
$$

Note: $\operatorname{Exp} Q=Q \operatorname{Exp}, \operatorname{Exp} Y=Y \operatorname{Exp} Q$.

Program Optimization and Transformation in Calculational Form 94

Useful Combinators for Coding Calculation

| Match | (<==) | :: ExpQ -> ExpQ -> Y () |
| :---: | :---: | :---: |
| Rule | (==>) | :: ExpQ -> ExpQ -> RuleY |
| Sequence | (>>) | :: Y () -> Y () -> Y () |
| Choice | (<+) | :: ExpY -> ExpY -> ExpY |
| Case | casem | :: ExpQ -> [RuleY] -> ExpY |

## Program Optimization and Transformation in Calculational Form 95

## Match

The most essential combinator used to match a pattern with a term and produce a substitution (embedded in monadic Y ).

## An Example

```
[| \a x -> \$oplus a (biggers \(x\), sum \(x\) ) |]
        <== [| \a x -> if a >= sum \(x\) then a : biggers \(x\)
        else biggers x
        I]
```

This will yield the following substitution embedded in $Y$.

```
{ $oplus := \x (b,s) ->
        if x >= s then x : b else b }.
```


## Rule

Used to create a calculation rule mapping from one program pattern to another.

## An Example

[| hom \$e \$oplus . build \$g |] ==> [| g \$e \$oplus |]

Note: Rule can be defined by Match.

$$
\begin{gathered}
(==>): \text { ExpQ }->\text { ExpQ }->\text { RuleY } \\
(\text { lhs }==>\text { rhs }) \text { term }=\text { do lhs }<==\text { term } \\
\text { ret rhs }
\end{gathered}
$$

## Choise \& Casem

Used to express deterministic choice.

```
(rule1 e) <+ (rule2 e)
casem :: ExpQ -> [RuleY] -> ExpY
casem sel (r:rs) = r sel <+ casem sel rs
```


## Code Calculation Rules in Yicho

Code the promotion rule

$$
\begin{array}{cc}
\text { promotion: } & \frac{f(a \oplus x)=a \otimes f x}{f \circ \text { foldr }(\oplus) e=\text { foldr }(\otimes)(f e)} \\
\Downarrow
\end{array}
$$

```
promotion :: ExpQ -> ExpY
promotion exp = do
    [f,oplus,e,otimes] <- pvars ["f","oplus","e","otimes"]
    [| $f . foldr $oplus $e |] <== exp
    [| \a x -> $otimes a ($f x) |]
        <== [| \a x -> $f ($oplus a x) |]
    ret [| foldr $otimes ($f $z) |]
```

Enhance the promotion with an additional rule

```
promotionWithRule :: RuleY -> ExpQ -> ExpY
promotionWithRule rule exp = do
    [f,oplus,e,otimes] <- pvars ["f","oplus","e","otimes"]
    [| $f . foldr $oplus $e |] <== rule exp
    [| \a x -> $otimes a ($f x) |]
        <== rule [| \a x -> $f ($oplus a x) |]
    ret [l foldr $otimes ($f $z) |]
```


## Run it!

```
    oldExp = [| sum . foldr (\x y -> 2 * x : y) [] |]
    newExp = runY (promotionWithRule rule oldExp)
#
    GHCi> prettyExpQ newExp
    foldr (\x_1 -> (+) (2 * x_1)) 0
    GHCi> $oldExp (take 100000 [1..])
    10000100000
    (0.33 secs, 21243136 bytes)
    GHCi> $newExp (take 100000 [1..])
    10000100000
    (0.27 secs, 19581216 bytes)
```

Try it!

- Step 1: Download Yicho
- Step 2: Uncompress the source
- Step 3: Add to your module Import Yicho

All the calculations in this tutorial has been implemented in Yicho.
> ghci -fglasgow-exts Examples/Main.hs

GHCi> all_examples

## Outline

- Introduction
- Program Calculation vs Fold/Unfold Program Transformation
- Loop Fusion in Calculational Form
- Parallelization in Calculational Form
- Implementing Program Calculation in Yicho
- Overview of Yicho
- Program Representation
- Basic Combinators for Programming Calculations
- Programming Calculation Rules in Yicho
- Conclusion


# Program Optimization and Transformation in Calculational Form103 

## Conclusion

## Important Points

- Program calculation is a fold free program transformation.
- To formalize a program transformation in calculational form, one may first define a suitable form for the program, then develop calculation rules to capture the essence of the transformation, and finally construct a calculation algorithm.
- Program calculation can be implemented directly and efficiently.


## Advantages of Program Transformations in Calculational Form

- Modularity: local analysis, local rule application
- Generality: polytypic, extendability
- Cheap Implementation: simple rule application
- Compatibility: all based on constructive algorithmics

We believe that more optimizations and transformations can be formalized in calculational form to gain the advantages discussed above, and we are looking forward to see more practical applications.

Thank You!

