
Supporting Parallel Updates with Bidirectional

Model Transformations

Yingfei Xiong1, Hui Song2, Zhenjiang Hu1,3, and Masato Takeichi1

1 Department of Mathematical Informatics
University of Tokyo, Tokyo, Japan

{Yingfei Xiong,takeichi}@mist.i.u-tokyo.ac.jp
2 Key Laboratory of High Confidence Software Technologies (Peking University)

Ministry of Education, Beijing, China
songhui06@sei.pku.edu.cn

3 GRACE Center
National Institute of Informatics, Tokyo, Japan

hu@nii.ac.jp

Abstract. Model-driven software development often involves several re-
lated models. When models are updated, the updates need to be propa-
gated across all models to make them consistent. A bidirectional model
transformation keeps two models consistent by updating one model in ac-
cordance with the other. However, it does not work when the two models
are modified at the same time.
In this paper we propose a new algorithm that wraps any bidirectional
transformation into a synchronizer with the help of a model difference
approach. The synchronizer enables parallel updates by taking the two
original models, the two updated models as input and producing two
new models where the updates are synchronized. We also examine the
requirements for synchronizing parallel updates, and demonstrate that
our algorithm satisfies the requirements if the bidirectional transforma-
tion satisfies the correctness property and the hippocraticness property.
Implementation of our algorithm showed that it works well in a runtime
management framework in practical cases.

1 Introduction

One central activity of model-driven software development is to transform high-
level models into low-level models through model transformation. For example,
Figure 1(a) shows a basic Unified Modeling Language (UML) model containing
a Book class with two attributes. To implement this UML design, we can write
a model transformation program to transform the model into a basic database
model, as shown in Figure 1(b). Each UML class whose persistent feature is
true is transformed into a database table of the same name. Each attribute
belonging to a persistent class is transformed into a column with the same
name. The database model also contains implementation-related information,
the owner feature, and this feature is set with default value "admin".



Fig. 1. Transforming a UML model into a database model

In an ideal situation, the target model is always obtained from a source model
and never needs to be modified. In reality, however, developers often need to
modify the target model directly. In such cases, the updates need to be reflected
back to the source model.

Bidirectional model transformation [1, 2] solves this maintenance problem
by providing a bidirectional model transformation language, which is used to
describe the relation between the two models symmetrically. Programs in these
languages are used not only to transform models from one format into another,
but also to update the other model automatically when a model is updated by
users.

Stevens [3] formalizes a bidirectional model transformation as two functions.
If M and N are meta models and R ⊆M ×N is the consistency relation to be
established between them, a bidirectional model transformation consists of two
functions:

−→
R : M ×N → N
←−
R : M ×N →M

Given a pair of models (m,n) ∈M×N , function
−→
R changes n to make it consis-

tent with m. Similarly,
←−
R changes m in accordance with n. Many bidirectional

model transformation languages fall into this model; typical languages include
Query/View/Transformation relations (QVT-R) [1] and TGGs [2].

However, in some cases, models m and n may be simultaneously updated
before a bidirectional transformation can be applied. For example, a designer
could be working on the design model at the same time a programmer is working
on the implementation model. Applying the transformation in either direction
will result in the loss of updates on the target side.

Because of the large number of available bidirectional transformation lan-
guages and existing transformation programs, it would be preferable if we could
synchronize parallel updates using existing bidirectional transformations. One
basic idea is to sequentially apply the two updates and interleave them with two
transformations. For example, suppose a user changes the price attribute into
"bookPrice" in the UML model and another user changes the title column
into "bookTitle" in the database model at the same time, as shown in Fig-
ure 2. We can assume that the title column in the database model is changed
first and perform a backward transformation to change the title attribute in
the UML model. Then, we change the price attribute into "bookPrice" in the
UML model and perform a forward transformation to change the price column
in the database model.



Fig. 2. Non-conflicting parallel updates

However, there are two problems in implementing this idea. First, as with
bidirectional transformation, we do not want to require users to track updates.
We thus need to identify which part of the updated UML model was changed so
that we can later apply the update to the result of the backward transformation.
Second, the updates applied to the two models can sometimes conflict. Figure 3
shows an example of conflicting updates where the title attribute and the title
column are changed to different values. If we transform backward and then go
forward again, we will lose the update to the database model. A preferable
synchronization procedure would detect such conflicts and advise the user.

Fig. 3. Conflicting parallel updates

In this paper we propose a new approach based on the idea of sequentially
applying parallel updates. We use commonly used model difference approaches
[4–6] to solve the two problems above. We design an algorithm that use model
difference approaches to wrap any bidirectional transformation into a synchro-
nizer for parallel updates. The synchronizer takes the two original models and
two updated models as input and produces two new models in which the updates
are synchronized.

The main contributions of this work can be summarized as follows.

– We identify general requirements for synchronizing parallel updates. The
requirements mainly consist of three properties: consistency, stability and
preservation. These properties are adapted from previous work [7] on non-
symmetrical, language-specific synchronization. We significantly modify them
to make them appropriate for more general and symmetrical synchroniza-
tion.

– We propose an algorithm that can wrap any bidirectional model transfor-
mation and any model difference approach into a synchronizer supporting
parallel updates. It treats the bidirectional model transformation and the
model difference approach as black boxes and does not require the user to



write additional code. For any bidirectional transformation satisfying the
correctness and hippocraticness properties [3], the synchronizer satisfies the
consistency, stability, and preservation properties, ensuring correct and pre-
dictable synchronization behavior.

– We have implemented our algorithm and applied it to a runtime manage-
ment framework. The application showed that our algorithm works well in
practical cases.

The rest of the paper is organized as follows. Section 2 describes the bidi-
rectional model transformation properties introduced by Stevens [3]. Section 3
introduces our requirements for synchronizing parallel updates. Section 4 de-
scribes model difference approaches in our context and introduces how we use a
model difference approach to construct a three-way merger and a preservation
tester, which are used in our algorithm. Section 5 introduces our algorithm and
proves that bidirectional model transformation properties lead to model synchro-
nization properties. Section 6 describes its application and Section 7 discusses
related work. Finally, Section 8 concludes the paper and discusses a possible
future direction: conflict resolution.

2 Background: Properties of Bidirectional Model

Transformation

The definition of bidirectional transformation describes only the input and out-
put of a transformation; it does not constrain the behavior of the transformation.
Stevens [3] proposes three properties that a bidirectional transformation should
satisfy to ensure that models are transformed in a reasonable way. In this paper,
however, we require only that a bidirectional transformation satisfy two of them
(correctness and hippocraticness) because the last property, undoability, would
prohibit many practical transformations.

The first property, correctness, ensures that a bidirectional transformation
does something useful. Given two models, m and n, the forward and backward
transformations must establish consistency relation R between them.

Property 1 (Correctness).

∀m ∈M,n ∈ N : R(m,
−→
R (m,n))

∀m ∈M,n ∈ N : R(
←−
R (m,n), n)

The second property, hippocraticness, prevents a bidirectional transforma-
tion from doing something harmful. Given two consistent models m and n, if
neither model is modified, the forward and backward transformations should
modify neither model.

Property 2 (Hippocraticness).

R(m,n) =⇒
−→
R (m,n) = n

R(m,n) =⇒
←−
R (m,n) = m



The last property, undoability, means that a performed transformation can
be undone. Suppose there are two consistent models, m and n. A user, working
on the M side, updates m to m′ and performs a forward transformation to
propagate the updates to the N side. Immediately after the transformation, he
realizes that the update is a mistake. He modifies m′ back to m and performs
the forward transformation again. If the bidirectional transformation satisfies
undoability, the second transformation will produce the exact n to cancel the
previous modification on the N side.

Property 3 (Undoability).

∀m′ ∈M : R(m,n) =⇒
−→
R (m,

−→
R (m′, n)) = n

∀n′ ∈ N : R(m,n) =⇒
←−
R (
←−
R (m,n′), n) = m

While undoability makes sense in some situations, here we do not require
bidirectional transformations to satisfy this property because undoability im-
poses a strong requirement on the consistency relation, R, and prohibits many
useful transformations. One example is the UML-to-database transformation we
mentioned in Section 1. If we change the persistent property of a class to false

in the UML model, a forward transformation will delete the corresponding table
in the database model. However, if we modify the property back to true, it is
not possible for the forward transformation to recover the original table because
the value of the owner property has been lost. This problem cannot be solved
from the transformation alone. To satisfy undoability, we must change the meta
model of the database to store all deleted owner properties, which would be
impossible and unnecessary in many cases.

3 Requirements of Synchronizing Parallel Updates

As discussed above, the interface of the bidirectional transformation functions
do not allow parallel updates and we need a new interface. Suppose M and N

are meta models and R ⊆ M ×N is the consistency relation to be established.
A synchronization procedure for parallel updates is a partial function of the
following type.

sync : R× (M ×N)→M ×N

This definition describes the input and output of the synchronization proce-
dure. The input includes four models: the two original models satisfying consis-
tency relation R, and the two updated models. The output is two new models
for which the updates are synchronized.

This definition already implies some requirements for synchronizing parallel
updates. First, the synchronization procedure is a function, which means that
this procedure must be deterministic. Second, the function is partial, which
implies detection of conflicts in updates. If the updates to the two models conflict,
the function should be undefined for these input.

However, like bidirectional transformations, this definition alone does not im-
pose much constraint on the behavior of the synchronization. We introduce three



properties to ensure the synchronization procedure behaves in a reasonable way.
These properties were first proposed in previous work [7], and are significantly
modified for the synchronization of parallel updates.

Similar to the properties of bidirectional transformation, our first property,
consistency4, requires that the synchronization procedure to do something use-
ful. It ensures that consistency relation R is established on the output models.

Property 4 (Consistency).
sync(m,n,m′, n′) is defined =⇒ R(sync(m,n,m′, n′))

The second property, stability, prevents the synchronization procedure from
doing something harmful. If neither of the two models has been updated, the
synchronization procedure should update neither of them.

Property 5 (Stability).
R(m,n) =⇒ sync(m,n,m, n) = (m,n)

The last property, preservation, is more interesting. Consider the updates
shown in Figure 2. The easiest way to achieve consistency is to change the
attribute name from "bookPrice" back to "price" and change "bookTitle"

back to "title". However, this is not the behavior we want. What we want is
that the updates are propagated from the modified parts to the unmodified parts,
rather than changing back the modified parts. To prevent the unwanted behavior,
we require that the user updates be preserved in the output models. If the user
changes the name of the price attribute to "bookPrice", the synchronization
procedure should not change the attribute to any other value.

Formally, let PM ∈ M ×M ×M be a preservation relation over M , in the
sense that PM (mo,ma,mc) implies that the update from mo to ma is preserved
in mc. Similarly, let PN ∈ N ×N ×N be a preservation relation over N .

Property 6 (Preservation).
sync(m,n,m′, n′) = (m′′, n′′) =⇒ PM (m,m′,m′′)
sync(m,n,m′, n′) = (m′′, n′′) =⇒ PN (n, n′, n′′)

Note that we do not define a universal preservation relation for all meta mod-
els. Instead, we allow different preservation relations to be defined for one meta
model, and a synchronization procedure should satisfy a specific preservation
relation. This is because there may be multiple modification sequences from one
model to another, and a different choice of modification sequences leads to a
different preservation result.

For example, in Figure 3(a), we change the name feature of the Attribute

object from "title" to "bookName". However, we can also consider the update as
deleting the Attribute element "title" and adding a new Attribute element
"bookName". The same dilemma applies to the database model. As a result, if
we adopt the feature-changing update, the updates on the two models conflict
and we cannot find a consistent model that preserves both updates. However, if
we adopt the object-deleting-adding update, the updates to the two models do

4 This was called propagation in the previous publication [7].



not conflict, and the model in Figure 4 preserves the updates. As a result, the
preservation relation depends on what update operations we consider and how
we recover updates from models. In the next section we will define a preservation
relation from a model difference approach.

Fig. 4. Updates to both models are preserved

The previous work [7] also introduces a fourth property: composability. How-
ever, this property has the same problem as undoability: it constrains the consis-
tency relation too much and prohibits many useful transformations. Therefore,
we do not require the synchronization procedure to satisfy this property.

4 Model Difference, Three-Way Merger and Preservation

As introduced in Section 1, we use model difference approaches [4–6] to iden-
tify updates and detect conflicts. In this section we describe model differences
in our context. We will also show how we use a model difference approach to
define a three-way merger and a preservation relation, which will be used in our
algorithm.

4.1 Model Difference

Following the definitions of Diskin [8], we consider the space of models in the
meta model M as a directed graph; its nodes are models, and its arrows are
updates. We call the starting node of update δ the pre-model of δ (denoted as
δ.pre) and the end node of δ the post-model (denoted as δ.post). There may be
different updates leading from one model to another, so the graph is a multi-
graph, meaning that there can be more than one arrow between two nodes. In
addition, any model in M should be updatable to any model, so the graph is
a complete graph. This definition is different from that in other work [9, 10] in
which updates are considered to be functions. In our definition, each update has
only one associated pre-model and only one associated post-model, and cannot
be directly applied to other models. We use ∆M to denote the set of updates in
the model space of M .

We consider that a model difference approach should provide at least two
operations. The first operation is used to identify the updates in two models.



We call it the difference operation. Formally, a difference operation is a function,
diff ∈M ×M → ∆M , that takes two models, m and m′, and produces update δ,
where δ.pre = m and δ.post = m′. We define a difference operation as a function
to require the procedure to be deterministic. A difference operation should choose
one update from all possible updates using predefined criteria. For example, in
Alanen et al.’s approach [4], the result is a set of insertions and deletions that
preserve the longest common subsequence when comparing two ordered features.

The second operation, the union operation, also known as “parallel composi-
tion” in some publications [9], is used to merge different updates to be applied
to the same model. This operation is useful in distributed development environ-
ments where several developers may simultaneously work on the same model, and
their updates need to be merged. Given updates δ1 and δ2 where δ1.pre = δ2.pre,
we denote their union as δ1 + δ2, where (δ1 + δ2).pre = δ1.pre = δ2.pre and
(δ1 + δ2).post is a model that is considered to have both δ1 and δ2 applied. The
union operation should be commutative, that is, δ1 + δ2 = δ2 + δ1. In addition,
we do not require the union operation to be total. If δ1 and δ2 conflict, δ1 + δ2 is
undefined. The techniques to implement this operation can be found in existing
approaches [4, 9].

For example, given the model in Figure 1(a) and the model in Figure 2(a),
a difference operation may return the update (intuitively) “change the price

attribute in Figure 1(a) to bookPrice”. Similarly, for Figure 1(a) and Figure 3(a)
it may return “change the title attribute in Figure 1(a) to bookName”. The
union of the two updates may be a new update that changes both attributes in
Figure 1(a).

One special case in the model difference function and the union operation
is the identity update, which means nothing is changed. We require that the
difference operation always returns the identity update when comparing two
identical models and that computing the union of arbitrary update δ with the
identity update results in δ. Formally, we require that the diff function and the
“+” operator satisfy the following property.

Property 7 (Stability of Model Difference).
∀δ ∈ ∆M : δ + diff(δ.pre, δ.pre) = δ

4.2 Three-Way Merger

With the model difference function and the union operator, we can construct
a three-way merger of models. A three-way merger takes one original model
and two independently updated copies of the model and produces a new model
in which the updates to the two copies are merged. Three-way mergers are
widely used in many distributed systems, like the Concurrent Versions System
(CVS), and in the diff3 command [11] in Unix. Given an original model mo and
two independently modified copies, ma and mb, a three-way merger is a partial
function defined as the following.

merge(mo,ma,mb) = (diff(mo,ma) + diff(mo,mb)).post



If (diff(mo,ma) + diff(mo,mb)) is not defined, merge is not defined, indicting
there are conflicts between ma and mb.

4.3 Preservation

In Section 3 we have mentioned that there are multiple preservation relations for
one meta model if there are multiple updates from a pair of models. As model
difference approaches identify an update using certain criteria, we can define
a preservation relation in accordance with the semantics of a model difference
approach.

Definition 1. Given a difference operation diff and a union operator “+”, we
say mc preserves the update from mo to ma if and only if there exists an update
δ where (diff(mo,ma) + δ).post = mc.

One natural result is that a three-way merger will always preserve the updates
in both models.

Theorem 1. If mc = merge(mo,ma,mb), then mc preserves the update from
mo to ma and the update from mo to mb.

Proof. From the definition of merge we get (diff(mo,ma) + diff(mo,mb)).post =
mc. From the commutativity of +, we get (diff(mo,mb) + diff(mo,ma)).post =
mc. Because there exists diff(mo,mb), from the first formula, we have that mc

preserves the update from mo to ma. Similarly, from the second formula, we
have that mc preserves the update from mo to mb.

This definition of preservation gives us a basic method for testing whether
three models (mo,ma, and mc) satisfy the preservation relation. However, to
actually test it, we must iterate all possible updates starting from mo, which
is not possible in practice. What we need is an efficient procedure for quickly
testing the preservation of three models. Such an efficient testing procedure is
difficult to find in general. However, given a specific model difference approach,
it is often possible to define an efficient testing procedure in accordance with
the update operations considered in the difference approach. In the following we
show how to efficiently test preservation for Alanen et al.’s [4] model difference
approach as an example.

Testing Preservation in Alanen et al.’s Approach Alanen et al. consider
an update as a sequence of update operations, and they define seven types of
operations, as shown in Table 1. In their work, they assume that each element
has a universally unique identifier (UUID) that does not change across versions.
Under this assumption, we can easily identify and match model elements in dif-
ferent versions of objects. In addition, they consider limited types of features on
the models. Features can be classified as attributes that store primitive values
and references that store links to other model elements. They assume that all



Table 1. Modification Operations

Operation Description

new(e, t) create a new element e of type t

delete(e, t) delete element e of type t

set(e, f, vo, vn) set an attribute f of element e from vo to vn

insert(e, f, et) add a link from e.f to et for an unordered reference f

remove(e, f, et) remove a link from e.f to et for an unordered reference f

insertAt(e, f, et, i) add a link from e.f to et at index i for an ordered reference f

removeAt(e, f, et, i) remove a link from e.f to et at index i for an ordered reference f

Table 2. Testing of Preservation

Operation in δoa Preservation condition

new(e, t) e exists in mc, and all features of e are the same as ma

delete(e, t) e does not exist in mc

set(e, f, vo, vn) e exists in mc, and e.f is the same value as vn

insert(e, f, et) e exists in mc, and a link to et exists in e.f

remove(e, f, et) e does not exist in mc, or a link to et does not exist in e.f

insertAt(e, f, et, i) e exists in mc, a link to et exists in e.f , and the inserted links
have their order in ma preserved in mc for all insertAt operations
on the feature

removeAt(e, f, et, i) always preserved (as deleted links can be inserted back)

attributes are single features (can contain only one value) and that all refer-
ences are multiple features (can contain more than one feature, either ordered
or unordered).

To test whether an update from mo to ma is preserved in mc, we first use
the difference operation to get the update δoa = diff(mo,ma). Then we examine
mc for each update operation in δoa. If we find that an operation such that the
union of any operation and this operation cannot reach mc from mo, we report a
violation of preservation. The detailed rules for examining the update operations
can be found in Table 2.

For example, suppose the price attribute in Figure 1(a), the bookPrice

attribute in Figure 2(a), and the price attribute in Figure 3(a) share UUID
ep. The difference of Figure 1(a) and Figure 2(a) is thus an update containing
one update operation: set(ep, name, "price", "bookPrice"). This update is not
preserved in Figure 3(a) because the rule for set(e, f, vo, vn) is violated: ep.name

has a value of "price" and is different from "bookPrice" in Figure 3(a).

5 Algorithm

Now we have a three-way merger and can test the preservation of updates. Let us
use them to wrap a bidirectional transformation into a synchronizer for parallel
updates. The basic idea is to first convert the model from the N side to the M

side using backward transformation, then use the three-way merger to reconcile



the updates, and transform back using the forward transformation. The detailed
algorithm is shown in Figure 5.

mo

ma

mb

mab

no

nb

nab

1.
←−
R

2. merge 3.
−→
R

4. test
preservation

1. mb :=
←−
R (mo, nb)

2. mab := merge(mo, ma, mb)

3. nab :=
−→
R (mab, nb)

4. check if nab preserves diff(no, nb)

Fig. 5. Synchronization algorithm

We explain the algorithm using the example in Section 1. Initially, we have
the two models in Figure 1, which correspond to mo and no in our algorithm.
Users modify the two models into the models in Figure 2, which correspond
to ma and nb in our algorithm. We use different subscripts to show different
updates, where a represents the update on mo and b represents the update on
no. The four models together comprise the algorithm input.

Fig. 6. Execution of algorithm

The first step of our algorithm is to invoke backward transformation
←−
R to

propagate the updates made to nb to mo, resulting in mb. The result is shown
in Figure 6(a). The attribute name is changed from "title" to "bookTitle".

Now we have model ma containing update a and model mb containing update
b. The second step is to use the three-way merger we constructed in the last
section to merge the two updates and produce synchronized model mab on the
M side. The result is shown in Figure 6(b). The model has both attributes
changed; i.e., it contains updates from both sides. If the updates to the two
models conflict, the three-way merger detects the conflict and reports an error.



The third step is to use forward transformation
−→
R to produce synchronized

model nab on the N side. The result is shown in Figure 6(c). This model also
contains updates from both sides, with both columns changed.

Now we have two synchronized models to which the updates have propagated.
It looks as if we have performed enough steps to finish the algorithm. However,
the above steps do not ensure the detection of all conflicts and may lead to
violation of preservation due to the heterogeneousness of the two models.

Fig. 7. Violating preservation

To see how this can happen, let us consider
the example in Figure 7. Initially we have only
one class and one table, and they are consis-
tent. Then suppose that a user changes the
persistent feature of the class to false and
changes the owner of the table to "xiong".
Because the owner feature is not related to
the UML model, the backward transformation
changes nothing, and mb is the same as mo.
The three-way merger detects no updates in
mb and produces a model that is the same as
ma. Finally, we perform the forward transfor-
mation, and the table is deleted because of the
change to the persistent feature. However,
as the user has modified a feature of the table,
so he or she will expect to see the existence of
the table in the final result. The input models
contain conflicting updates, but the synchro-
nization process does not detect them.

This kind of violation is caused by the heterogeneity of M and N . Due to the
heterogeneity, not all updates to N are visible on the M side. As the three-way
merger only works on the M side, it cannot detect such invisible conflicts.

To capture such conflict, we add an additional step, preservation testing, to
the end of the algorithm. It is shown as the fourth step in Figure 5. This step uses
the preservation testing procedure described in Section 4 and checks whether the
update from no to nb is preserved in nab. If not, the algorithm reports an error.

The models used in Figure 6 and Figure 7 are simply examples. The actual
execution depends on the bidirectional transformation and the model difference
approach used in the synchronization and may differ from the above execution.
Nevertheless, whatever bidirectional transformation and model difference ap-
proach we choose, our algorithm ensures the three synchronization properties:
consistency, stability, and preservation.

Theorem 2. If the bidirectional transformation satisfies correctness, the syn-
chronization algorithm satisfies consistency.

Proof. Because
−→
R (mab, nb) = nab, we have R(mab, nab).



Theorem 3. If the bidirectional transformation satisfies hippocraticness and
the model difference approach satisfies stability of model difference, the synchro-
nization algorithm satisfies stability.

Proof. If we have mo = ma and no = nb, we have R(mo, nb). Because of hip-

pocraticness, we have mb =
←−
R (mo, nb) = mo. Because of stability of model

difference, mab = merge(mo,ma,mb) = (diff(mo,ma) + diff(mo,mb)).post =

(diff(mo,mo)+diff(mo,mo)).post = mo. On the other hand, nab =
−→
R (mab, nb) =

−→
R (mo, no) = no, and the preservation testing always passes because of the exis-
tence of identity update.

Theorem 4. The synchronization algorithm always satisfies preservation.

Proof. Because of Theorem 1, the update on the M side is preserved. Because
of the last preservation test, the update on the N side is preserved.

It is worth noting that our algorithm works even if the bidirectional transfor-
mation does not satisfy correctness or hippocraticness. This has practical value
because many bidirectional transformation languages in practice do not guar-
antee the properties [3]. In such cases, the algorithm still produces output but
does not guarantee the corresponding synchronization properties (consistency or
stability).

Bidirectional transformations are symmetrical, so we can also implement this
algorithm in the opposite direction. We can start a forward transformation first,
merge models on the N side, perform a backward transformation, and check
preservation on the M side. Implementing the algorithm in both directions can
guarantee the three properties. However, due to the heterogeneity of M and N , it
is possible that different directions may produce different results for some input.
The difference is related to the specific bidirectional transformation approach
and the difference approach used in the algorithm, and we do not discuss it in
this paper.

6 Application

Fig. 8. Structure of runtime
management system

We implemented our algorithm in a runtime man-
agement framework [12], as shown in Figure 8.
We used our algorithm to wrap a QVT-R pro-
gram [1] (executed in mediniQVT [13]) and a
Beanbag-based model difference approach [10]
into a synchronizer for parallel updates, and used
our synchronizer to synchronize a runtime man-
agement user interface and a running system.

A high-level management user interface (UI)
is often provided in a runtime management sys-
tem for monitoring the state of the running sys-
tem and for reconfiguring it. Because the high-level management UI often ab-
stracts away many low-level details, the high-level UI and the running system



are heterogeneous and need to be synchronized. Because the system state is con-
stantly changing during runtime, any modification to the management UI will
cause parallel updates. In our implementation, we captured both the manage-
ment UI and the running system as models and used our algorithm to synchronize
them.

The bidirectional transformation used to synchronize the two models is a
QVT-R program. The QVT-R language [1] enables rapid development of bidi-
rectional transformations. However, it does not always guarantee correctness and
hippocraticness. If a program has complex interaction with the constraints on
the meta models, it may produce inconsistent result. In our implementation, we
manually check the consistency of our program and the constraints on the meta
models to ensure correctness and hippocraticness.

The model difference approach we used is extracted from the Beanbag system
[10]. We first convert models into the Beanbag data types and then use operations
provided by Beanbag to merge the models. In the conversion, we assume each
model element has a unique identifier and do not consider ordered multiple
features. The situation is simpler than those considered by most model difference
approaches, but it is sufficient for models in runtime management. The details
of the Beanbag data types and model conversion can be found in the technical
report of Beanbag [10].

When there is a conflict between updates to the running system and those to
the management UI, our synchronization algorithm reports an error and halts.
The user needs to manually resolve the conflict and resynchronize again. How-
ever, as the system is constantly changing, it is often impossible for users to
resolve all conflicts. We solve this problem by giving precedence to the updates
made to the management UI. In a runtime management system, updates to the
management UI are in fact control operations that the user want to perform
on the system, so it is always safe to overwrite an update made to the running
system with one made to the management UI. To implement this, we change the
difference algorithm so that it overwrites an update made to the running system
with one made to the management UI if the two updates conflict. In addition,
we remove the final preservation test.

We performed a set of experiments using our runtime management frame-
work, and the results showed that our algorithm works well. The details of the
runtime management framework and the experiments can be found else where
[12].

7 Related Work

Several other approaches also target synchronizing parallel updates on hetero-
geneous data. Typical ones include Harmony [14] and Beanbag [10].

The goal of Harmony is similar to ours: use bidirectional transformations to
construct synchronizers for parallel updates. Compared to our approach, Har-
mony uses an asymmetrical form of bidirectional transformation, where the tar-
get is an abstract of the source. Users must design a common replica and write



two transformation programs to map the replicas to be synchronized to the com-
mon replica. Our approach does not require users to design an extra model, so
users can better reuse existing transformation programs. In addition, we adopt
the symmetrical form of bidirectional transformation, which is more frequently
used in the model transformation community.

Beanbag is a general language for synchronizing parallel updates. Different
from this paper, Beanbag uses an operation-based approach: users need to tell the
synchronizer what update operations have been applied, and the synchronizer
returns more update operations to make the data consistent. The approach in
this paper is state-based: whole copies of models (the current states of models)
are taken as input and new copies of these models are returned.

Another related branch of research is detecting and fixing inconsistencies in
models [15, 16]. The methods developed can also be used to synchronize parallel
updates but from a different perspective: only the updated models are exam-
ined, and the inconsistencies are resolved by human intervention or heuristic
rules. This is very different from our objective of fully automatic, predictable
synchronization behavior. Compared to them, our approach is fully automatic,
and the synchronization behavior is predicable through the three properties.

Some researchers build frameworks for classifying synchronization approaches.
Antkiewicz and Czarnecki [17] classifies synchronization approaches using differ-
ent design decisions. Under their classification schema, our synchronization algo-
rithm can be classified as a “bidirectional, non-incremental, and many-to-many
synchronizer using artifact translation, homogeneous artifact comparison, and
reconciliation with choice”. Diskin [8] builds a more formal framework for bidi-
rectional model synchronization, in which bidirectional transformation is classi-
fied into lenses, di-systems, and tri-systems on the basis of the relation between
models and the number of input models. Our definition of a synchronizer for
parallel updates can be considered a supplement to his framework, where we
add quadruple-systems, in the sense that our synchronizer takes four models as
input.

8 Conclusion and Future work

In this paper we have proposed an approach that wraps a bidirectional transfor-
mation program and a model difference approach into a synchronizer for parallel
updates. Our approach is general and predictable. It is general in the sense that
it allows the use of any bidirectional transformation and any model difference
approach, and it is predictable because it satisfies three model synchronization
properties: consistency, stability and preservation.

Currently, our approach only reports the existence of conflicts; it does not
support conflict resolution. A preferable synchronization procedure would re-
port the features and model elements involved in the conflicts and give a list of
solutions for the user to choose from. However, such a resolution procedure is
difficult to define in general because the reason for a conflict is related to the
specific bidirectional transformation and the model difference approach used.



We plan to design a resolution procedure based on a specific transformation lan-
guage and a specific model difference approach. One idea is to use QVT-R as the
transformation language and exploit the trace information recorded by QVT-R.
This remains for future work.

References

1. Object Management Group: MOF query / views / transformations specification
1.0. http://www.omg.org/docs/formal/08-04-03.pdf (2008)

2. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Proc. of the 4th
International Conference on Graph Transformation. (2008) 411–425

3. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and
open questions. In: Proc. 10th MoDELS. (2007) 1–15

4. Alanen, M., Porres, I.: Difference and union of models. In: Proc. 6th UML. (2003)
2–17

5. Mehra, A., Grundy, J., Hosking, J.: A generic approach to supporting diagram
differencing and merging for collaborative design. In: Proc. 20th ASE. (2005)
204–213

6. Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B., Garlan, D.: Differencing and
merging of architectural views. In: Proc. 21st ASE. (2006) 47–58

7. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: Proc. 22nd ASE. (2007)
164–173

8. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: Proc.
11th MoDELS. (2008) 21–36

9. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: Managing model conflicts in dis-
tributed development. In: Proc. 11th MoDELS, Springer (2008) 311–325

10. Xiong, Y., Hu, Z., Zhao, H., Takeichi, M., Hui, S., Mei, H.: Beanbag: Operation-
based synchronization with intra-relations. Technical Report GRACE-TR-2008-04,
GRACE Center, National Institute of Informatics, Japan (December 2008)

11. Khanna, S., Kunal, K., Pierce, B.C.: A formal investigation of diff3. In Arvind,
Prasad, eds.: Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS). (December 2007) 485–496

12. Song, H., Xiong, Y., Hu, Z., Huang, G., Mei, H.: A model-driven framework
for constructing runtime architecture infrastructures. Technical Report GRACE-
TR-2008-05, GRACE Center, National Institute of Informatics, Japan (December
2008)

13. ikv++ technologies: medini QVT homepage. http://projects.ikv.de/qvt
14. Pierce, B.C., Schmitt, A., Greenwald, M.B.: Bringing Harmony to optimism: A

synchronization framework for heterogeneous tree-structured data. Technical Re-
port MS-CIS-03-42, University of Pennsylvania (2003)

15. Egyed, A.: Fixing inconsistencies in UML design models. In: Proc. 29th ICSE.
(2007) 292–301

16. Kolovos, D., Paige, R., Polack, F.: Detecting and repairing inconsistencies across
heterogeneous models. In: ICST ’08: Proceedings of the International Conference
on Software Testing, Verification, and Validation. (2008) 356–364

17. Antkiewicz, M., Czarnecki, K.: Design space of heterogeneous synchronization. In:
Proc. 2nd GTTSE. (2007) 3–46


