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ABSTRACT
Generate-Test-Aggregate (GTA for short) is a novel programming
model for MapReduce, dramatically simplifying the development
of efficient parallel algorithms. Under the GTA model, a parallel
computation is encoded into a simple pattern: generate all candi-
dates, test them to filter out invalid ones, and aggregate valid ones
to make the result. Once users specify their parallel computations
in the GTA style, they get efficient MapReduce programs for free
owing to an automatic optimization given by the GTA theory.

In this paper, we report our implementation of a GTA library to
support programming in the GTA model. In this library, we pro-
vide a compact programming interface for hiding the complexity
of GTA’s internal transformation, so that many problems can be
encoded in the GTA style easily and straightforwardly. The GTA
transformation and optimization mechanism implemented inside is
a black-box to the end users, while users can extend the library
by modifying existing (or implementing new) generators, testers or
aggregators through standard programming interfaces of the GTA
library. This GTA programming library supports both sequential or
parallel execution on single computer and on-cluster execution with
MapReduce computing engines. We evaluate our library by giving
the results of our experiments on large data to show the efficiency,
scalability and usefulness of this GTA library.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel programming

General Terms
Algorithms, Design

Keywords
High-level Parallel Programming, Generate Test Aggregate Pro-
gramming Model, MapReduce, Optimization, Functional Program-
ming, Scala
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Google’s MapReduce is the de facto standard for large scale
data-intensive applications. Despite the popularity of MapReduce,
developing efficient MapReduce programs for some optimization
problems is usually difficult in practice.

As an example, consider the well-known 0-1 Knapsack problem:
fill a knapsack with items, each of certain value vi and weight wi,
such that the total value of packed items is maximal while adhering
to a weight restriction W of the knapsack. This problem can be
formulated as:

maximize ∑
n
i=1 vixi

subject to ∑
n
i=1 wixi ≤W , xi ∈ {0,1}

However, designing an efficient MapReduce algorithm for the Knap-
sack problem is difficult for many programmers because the above
formular does not match MapReduce model directly. Moreover,
designing one for the problem with additional conditions is more
difficult.

The Generate-Test-Aggregate (GTA for short) theory has been
proposed in the previous work [10, 11] to remedy this situation. It
synthesizes efficient MapReduce programs (i.e., parallel and scal-
able programs) for a general class of problems that can be specified
in terms of generate, test and aggregate in a naive way of
first generating all possible solution candidates, then keeping those
candidates that pass a test of certain conditions, and finally select-
ing the best solution or making a summary of valid solutions with
an aggregating computation. For instance, the Knapsack problem
could be specified by a GTA program like this: generating all pos-
sible selections of items, keeping those that satisfy the constraint
of total weight, and then selecting the one which has the maximum
sum of value. Note that directly implementing such an algorithm
by MapReduce is possible but not practical. Given n items, this
naive program will generate O(2n) possible selections. Suppose
there are 100 items and each item just takes 1 byte space, then the
generated data will be about 1018TB that is beyond any storage
system’s capability.

The GTA theory [10, 11] introduces a way to synthesize from
such a naive program an work efficiency O(n) and fully parallelized
MapReduce program of which run-time efficiency is guaranteed by
elimination of exponential blow-up, which is so-called the GTA
optimization.

Although the previous work [10, 11] theoretically gave the method-
ology, it has not mentioned the implementation: It is non-trivial to
implement the GTA theory with both the powerful optimization and
a nice programming interface because of the gap between mathe-
matical concepts and a practical programming language. Moreover,
more work on practical programming with GTA is necessary in or-
der to extract and indicate the real capability of the GTA theory,
which will guide new users to this new world.



In this paper we present our implementation of a lightweight
GTA library which is a functional programming platform allowing
users to write GTA programs and execute them on local machines
or large computer-clusters. Our main technical contributions are
two folds. First, we design a generic program interface for users
who don’t know details of the GTA theorem and parallel program-
ming, to let them use GTA in a black-box. Our library also shows
how the theoretical GTA fusion can be implemented and executed
on practical MapReduce engines. Second, we demonstrate the use-
fulness of our GTA library with some interesting examples, show-
ing that lots of application problems can be easily and efficiently
resolved by using our library.

The rest of the paper is organized as follows. After explaining
the background knowledge in Section 2, we show the design and
implementation of our library in Section 3. In Section 4 we intro-
duce more details of the implementation. Then, we demonstrate
the usefulness of our library using the Knapsack problem and other
examples, and report our experimental results in Section 5. The re-
lated work is discussed in Section 6. Finally, we conclude the paper
and highlight some future work in Section 7. The source code used
for our experiments is available online1.

2. BACKGROUND
In this section we briefly review the concepts of Generate-Test-

Aggregate (GTA for short) theory [10, 11], as well as its back-
ground knowledge, list homomorphism [4, 8, 16] and MapReduce [9].

The notation we use to formally describe algorithms is based on
the functional programming language Haskell [4]. Function appli-
cation can be written without parentheses, i.e., f a equals f (a).
Functions are curried and application associates to the left, thus,
f a b equals ( f a) b. Function application has higher precedence
than operators, so f a⊕b = ( f a)⊕b. We use the operator ◦ over
functions: by definition, ( f ◦g) x = f (g x) . The identity element
of a binary operator � is represented by ı�.

2.1 List Homomorphism
A list homomorphism is a special, useful recursive function on

lists. Naturally, it is a simple divide-and-conquer parallel compu-
tation [8, 16]. List homomorphisms have a close relationship with
parallel computing that have been studied intensively [8, 16, 18],
and

DEFINITION 1 (LIST HOMOMORPHISM). Function h is said
to be a list homomorphism, if and only if there is a function f , an
associative operator � and the identity element ı� of � such that
the following equations hold.

h [ ] = ı�
h [a] = f a
h (x++y) = h x�h y

Since h is uniquely determined by f and �, we write h = ([ f ,�]).

For instance, summation function sum on a list of integers can be
defined in this format as a list homomorphism, in which �, ı� and
f are replaced with +, 0 and the identity function λx.x :

sum [ ] = 0
sum [a] = a
sum (x++y) = sum x+ sum y.

Another example is function sublists that given a list as input

1https://bitbucket.org/inii/gtalib

produces a bag (multi-set) of all sublists of the list:

sublists [ ] = *[ ]+
sublists [x] = *[ ]+] *[x]+
sublists (xs++ys) = sublists xs×++ sublists ys.

Here, *a1, . . . ,ak+ denotes a bag of elements a1, . . . ,ak, so *[x]+
is a singleton bag of singleton list [x], the operator ] denotes bag
union, and×++ denotes the cross concatenation of lists in two bags.
For example,

*[]+]*[1]+ = *[ ], [1]+
*[ ], [1]+×++ *[ ], [1]+ = *[ ], [1], [1], [1,1]+
sublists [1,1,2,3] = *[ ], [1], [1,2], [1,2,3], [1,3], [2], [2,3], [3],

[1], [1,1], [1,1,2], [1,1,2,3], [1,1,3], [1,2],
[1,2,3], [1,3]+.

Note that we may have duplications in a bag, and the order of elements are
ignored in a bag. We write *A+ to denote the type of bags whose elements
have type A.

Given a set M and an associative binary operator � on M with
its identity ı�, the pair (M,�) is called a Monoid. For example,
the set of integers with the usual plus operator forms a monoid
(Z,+). Given a monoid (M,�) and a function f :: A→ M, we
have a unique list homomorphism ([ f ,�]) :: [A]→M.

2.2 List Homomorphisms on MapReduce
Google’s MapReduce [9] is a popular programming model for

processing large data sets in a massively parallel manner. Nowa-
days, several free, realistic implementations of MapReduce are avail-
able. Hadoop [2] is a famous open-source implementations of MapRe-
duce using Java as its primitive language. Spark [31] is a fast in-
memory MapReduce cluster implementation on Scala [24].

List homomorphisms fit well with MapReduce, because their
input can be freely divided to sub-lists which can be distributed
among machines. Then on each machine the programs are com-
puted independently, and the final result can be got by a merging
procedure. In fact, it has been shown that list homomorphisms can
be efficiently implemented using MapReduce [20]. Therefore, if
we can derive an efficient list homomorphism to solve a problem,
we can solve the problem efficiently with MapReduce, enjoying its
advantages such as automatic load-balancing, fault-tolerance, and
scalability.

2.3 Generate, Test, and Aggregate
The GTA programming style and powerful fusion optimization [10,

11] have been proposed to synthesize MapReduce programs from
naive specifications (GTA programs) in the following form.

aggregate◦ test ◦generate

A GTA program consists of a generate that generates a bag of
intermediate lists, a test that filters out invalid intermediate lists,
and an aggregate that computes a summary of valid intermediate
lists. A GTA program in this form can be transformed into a single
list homomorphism , if these components meet the condition of
GTA fusion optimization. To understand the meaning, we review
several important concepts.

DEFINITION 2 (SEMIRING). Given a set S and two binary
operations ⊕ and ⊗, the triple (S,⊕,⊗) is called a semiring if and
only if

• ⊕ is an associative and commutative operator with identity
element ı⊕,

• ⊗ is associative with identity element ı⊗ and distributes over
⊕, and



• ı⊕ is a zero of ⊗.

For example, a set of bags of lists forms a semiring (*[A]+, ],×++ )
with the bag union and the cross concatenation for any element type
A. The distributivity plays an important role in the optimization in
the GTA theory.

Similar to the connection between a monoid and a list homo-
morphism, a semiring is naturally connected to a special recursive
function on bags of lists.

DEFINITION 3 (SEMIRING HOMOMORPHISM). Given arbitrary
semiring (S,⊕,⊗) and function f :: A→ S, function shom :: *[A]+→
S is a semiring homomorphism from (*[A]+,],×++ ) to (S,⊕,⊗), iff
the following hold.

shom (x] y) = shom x⊕ shom y
shom (x×++ y) = shom x⊗ shom y
shom *[a]+ = f a
shom *+ = ı⊕
shom *[ ]+ = ı⊗

Since shom is uniquely determined by f ,⊕ and⊗, we write shom=
({ f ,⊕,⊗}).

Since a semiring homomorphism consumes a bag of lists, it can
be used as an aggregator in the GTA program. Actually, semir-
ing homomorphisms in combination with generators and testers of
specific kinds have very powerful fusions.

An example of semiring homomorphisms is aggregator maxsum f
using semiring the max-plus semiring (Z,↑,+) to find the maxi-
mum among f -weighted sums of lists in a given bag:

maxsum f (x] y) = maxsum x ↑ maxsum y
maxsum f (x×++ y) = maxsum x+maxsum y
maxsum f *[a]+ = f a
maxsum f *+ =−∞

maxsum f *[ ]+ = 0

Here, ↑ is an operator to take the maximum of two operands. Read-
ers can check whether maxsum f actually computes the maximum
f -weighted sum of a given bag of lists, using the facts that every
bag can be decomposed into union of singleton bags, and that every
singleton bag of a list can be decomposed into cross-concatenation
of singleton bags of singleton lists. For example, *[1,2,3], [2,3]+=
*[1,2,3]+]*[2,3]+=(*[1]+×++ *[2]+×++ *[3]+)](*[2]+×++ *[3]+).

Now, we introduce a class of generators that have good fusability
with semiring homomorphisms.

DEFINITION 4 (SEMIRING POLYMORPHIC GENERATOR). A
function polymorphic over semirings (S,⊕,⊗)

generator⊕,⊗ :: (A→ S)→ [A]→ S

is called a semiring polymorphic generator.

Parameterised with semirings, a semiring polymorphic genera-
tor does different computation with different semirings. Particu-
larly, using the semiring (*[A]+,],×++ ) of bags of lists, function
generator],×++

(λa.*[a]+) :: [A]→ *[A]+ is a generator that can be
used in the GTA program. For example, abstracting the semiring
in generator sublists, we have sublists = sublists′],×++

(λa.*[a]+)
where

sublists′⊕,⊗ f [ ] = ı⊗
sublists′⊕,⊗ f [x] = ı⊗⊕ f x
sublists′⊕,⊗ f (xs++ys) = sublists′⊕,⊗ f xs⊗ sublists′⊕,⊗ f ys.

Moreover, we have the following powerful result to fuse such a
generator with an aggregator of semiring homomorphisms.

THEOREM 1 (SEMIRING FUSION [10]). Given a semiring poly-
morphic generator generator⊕,⊗ :: (A→ S)→ [A]→ S and a semir-
ing homomorphism ({ f ,⊕,⊗}) to (S,⊕,⊗), the following holds.

({ f ,⊕,⊗})◦generator],×++
(λa.*[a]+) = generator⊕,⊗ f

The left-hand-side of the equation is a GTA program without testers,
in which generator],×++

(λa.*[a]+) is the generator and ({ f ,⊕,⊗})
is the aggregator. In this program, possibly an exponential num-
ber of intermediate lists are generated by the generator and then
consumed by the aggregator, so that the total cost would be ex-
ponential in the length of the input list. On the other hand, the
right-hand-side is usually an efficient program without such an ex-
ponential blow-up, because it does not use the heavy operator ×++

but uses (possibly) lightweight operator ⊗. For example, the the-
orem says that program maxsum (λa.a) ◦ sublists, which given a
list computes the maximum of sums of its all sublists, is equivalent
to program sublists′↑,+ (λa.a). This is easily verified because the
program computes a sum of all positive numbers and it is clearly
the maximum sum of all sublists.

Another important concept in GTA is filter embedding, which
fuses an aggregator of semiring homomorphisms and a tester of a
specific filter form:

DEFINITION 5 (HOMOMORPHIC TESTER). If a tester test is
a filter with a predicate defined with a function ok and list homo-
morphism ([ f ,�]), namely, test = filter (ok ◦ ([ f ,�])), we call it a
homomorphic tester.

For example, in a GTA program for the knapsack problem, the
tester to filter out item selections with too heavy total weights is
a homomorphic tester as follows.

removeInvalidSelection = filter ((≤ w)◦ ([getWeight,+]))

Here, the homomorphism ([getWeight,+]) computes the total weight
of the given list, and the judgment (≤ w) compares it with the
weight limit to find invalid ones.

Now, we are ready to introduce the filter embedding:

THEOREM 2 (FILTER EMBEDDING). Given a homomorphic
tester filter (ok ◦ ([ f ,�])) in which the list homomorphism is to
(M,�) and a semiring homomorphism ({ f ,⊕,⊗}) to (S,⊕,⊗), there
exists a lifted semiring (SM ,⊕M ,⊗M), a lifted function f M and
function postprocessok such that the following holds.

({ f ,⊕,⊗})◦filter (ok ◦ ([ f ,�])) = postprocessok ◦ ({ f M ,⊕M ,⊗M})

This filter embedding is useful because we can remove a tester be-
tween a generator and an aggregator so that we can fuse them by the
semiring fusion. Readers who are interested with these can reader
the paper [10, 11] for details.

Reasoned by the theory of GTA, i.e., the combination of the filter
embedding and the semiring fusion, a GTA program consisting of
those components is eventually transferred to an efficient program
postprocess◦generator⊕M ,⊗M f M . For example, the naive solution
of Knapsack problem will generate O(2n) intermediate candidates
and thus costs O(n2n), but the efficient final program only costs
O(n).

Note that, currently the GTA theory is an approach to construct-
ing list homomorphisms, so the input of generate (also aggregate,
and filter) is limited to lists but not trees or other data structures.
GTA for trees/graphs is on our schedule as a future work.

3. ARCHITECTURE AND PROGRAMMING
INTERFACE



trait MapReduceable[A,M,+R] extends ListHomo[A,M]{
override def f(a:A):M
override def combine(l:M,r:M):M
def postProcess(a:M):R

}

Listing 1: Almost List Homomorphism

In this section we introduce our GTA programming environment.
The GTA theory provides an approach to systematic derivation of
list homomorphisms, so that we can get efficient MapReduce com-
putation automatically once problems are specified GTA programs.
Our library provides GTA programming interface to form a GTA
program which produces an instance of so-called MapReduceable.
The instance of MapReduceable adapts the list homomorphism to
the MapReduce; its definition is shown in Listing 1. The MapReduceable
has three methods, f corresponding to the function f of the list ho-
momorphism, combine corresponding to the binary operator �,
and a newly introduced method postProcess which is applied
on the out put of the REDUCE processing as a final processing of
whole computation 2. MapReduceable can be used in any MapRe-
duce engine or parallel frameworks which provides MapReduce
style APIs. By passing GTA objects (instances of MapReduceable)
to such MapReduce engines’ programming interface we can con-
struct fully scalable MapReduce computation quite easily.

3.1 Target Environment
Our GTA library is targeted big scale distributed/parallel com-

putations on clusters which may have lots of computing nodes, but
it also works well on single machine in either sequential or multi-
threads model. Our implementation of GTA fusion is modular and
easy to be extends.

Currently, our library officially supports three execution models:
native, Spark and Hadoop. In native model, GTA works with Scala
collection framework, and in Spark or Hadoop model GTA works
with Spark or Hadoop, respectively.

3.2 GTA Programming Interface
There is a top level class named GTA for wrapping the GTA

programming environment. The user should extend this top class
to write his GTA program.

Usually a GTA expression (in Scala) is written like:

val gta= generate(...) filter(...) aggregate(...).

val gta is a GTA object (MapReducable) which can be executed
in parallel. For "(...)"s, the user should choose proper parameters
respectively to the generator, tester and aggregator.

Given proper parameters, the GTA expression produces an in-
stance of MapReducable corresponding to the efficient program
synthesized by the GTA optimization. Then, the instance can be
used in the supported execution models. To grasp an image of
the GTA programming, concrete example for computing the maxi-
mum sum of all segments (contiguous sublists) of an integer list is
shown in Listing 2. We will explain the details of the components
allSegments and maxSum used in the program later in Section 3.4.

To make the programming easier, the GTA library predefined
common generators, testers and aggregators. Users can choose
them to compose various of programs. We list some useful genera-
tors, testers, and aggregators in Table 1. There are four generators,
which, given a list, can generate all sublists (sublists), all prefix

2Such an extended list homomorphism is called an almost list ho-
momorphism [6, 17]

package Examples
import GTAS._

object userApp extends GTA[Int] with App {
/* Spark job configuration */
def ctx(contex:SparkContext ,input:spark.RDD[Int])
= {
/* GTA expression */
val gta=generate(allSegments) aggregate (maxSum)
/* compute result. alist is the input list */
val rst=alist.map(gta.f). reduce(gta.combine(_, _))
println("rst")

}
}

Listing 2: GTA Example: Maximum Segments Sum (Spark)

class AllSegments[I] extends
GeneratorCreater[I,I,T4] {

def makeGenerator[S](s: Aggregator[I, S])
= new MapReduceable[I,T4[S],S]

{
override def f(i: I) =
new T4(s.f(i), s.plus(s.id, s.f(i)),

s.plus(s.id,s.f(i)),s.plus(s.zero ,s.f(i)))
override def combine(l: T4[S], r: T4[S]): T4[S] =
{
val ss = s.plus(s.plus(l._1, r._1),

s.times(l._2, r._3))
val tails = s.plus(r._2, s.times(l._2, r._4))
val inits = s.plus(l._3, s.times(l._4, r._3))
val all = s.times(l._4, r._4)
/* T4 is a type of four -tuple: (T,T,T,T)*/
new T4( ss , tails , inits , all)
}
override val id: T4[S] =

new T4(s.zero ,s.zero ,s.zero , s.id)
/*The 1st element of the four -tuple is segments */
override def postProcess(a: T4[S]): S = a._1
}

}

Listing 3: Generator of "All Segments"

lists (prefixes), all continuous segments (segments), and paint col-
ors (attaching some informations) to each element (coloring), re-
spectively. Each tester in the table tests whether the sum (length,
or its mod of some k) of a list is equal to (or less / more than) a
constant value c. The aggregaters are for aggregating the generated
lists to compute the maximum summation (maxSum), minimum
summation (minSum) , maximum probability or the list which is
the solution of above aggregations (select), respectively.. Here we
just list the generic names for them, and the details will be ex-
plained by concrete examples (using more appropriate names of
them, according to the context) in the following sections.

Defining aggregators, testers, and generators.
For advanced users, we provide Scala trait/classes as program-

ming interface to implement their own generators, testers and ag-

Table 1: Some Predefined Generators, Testers, and Aggrega-
tors

G T A
sublists sum =, ≥, ≤ c maxSum
prefixes length =, ≥, ≤ c minSum
segments sum % k = c maxProbablity
coloring length % k =c select



trait Aggregator[A,S] {
def plus(l: S, r: S)
def times(l: S, r: S)
def f(a: A): S
val id: S
val zero: S

}

Listing 4: SemiringHomomorphism

abstract class MaxSum[T] extends Aggregator[T, Int] {
def plus(l: Int , r: Int) = l max r
def times(l: Int , r: Int) = l + r
def f(a: T): Int
val id: Int = 0
//zero is -infty
val zero: Int = Int.MinValue

}

Listing 5: MaxSum

gregators.
In our library, an aggregator is a semiring homomorphism, and

its base class Aggregator[A,S] is provided to implement user-defined
aggregators by extending it. Here, the type parameter A is a type of
elements in lists of the input bag, and S is a type of the carrier set
of the semiring. Its methods plus and times correspond to the op-
erators of a semiring, and zero and id are their identity elements,
respectively. Listing 4 shows Scala code of the base class. For ex-
ample, abstract class MaxSum (Listing 5) is an aggregator that finds
the maximum among weighted3 sums of lists in the given bag.

The library accepts homomorphic testers, which can be speci-
fied by the list homomorphism ([ f ,⊕]) and the judgment function
ok. Thus, a tester is represented by a specialized MapReduceable

named Predicate of which postProcess method always returns
Boolean value as shown in Listing 6 4. For example, WeightLimit
shown in Listing 7 is an implementation of a tester to check whether
a given list of items has total weight less than or equal to the weight
limit w. We can check this condition by computing the sum of
weights by a list homomorphism with the usual plus operator +
and then comparing the result with the limit w. Since we do not
need an exact value of total weight greater than w, the implemen-
tation uses the cut-off by min(w+1). The reason why we use the
cut-off will be explained later in Section 4.1.

In our library, a generator has to be a list homomorphism param-
eterized by a semiring as shown in Definition 4. How to implement
it in the context of object-oriented language is a very interesting
problem. We define a generic class named GeneratorCreater

(shown in Listing 8) which has a generic (polymorphic) function to
produce an instance of MapReducable:

gen[S](s : Aggregator[A,S]) : MapReduceable[I,S,P[S]].

It takes an aggregator as its parameter, to produce a concrete in-
stance of MapReduceable.

There are four type parameters in this gen function. The type pa-
rameter I is the type of elements of the input list, A and S are type
parameters of aggregator, which we have explained. In addition to
these input/output types, the function has the third type parameter P
for its intermediate result, i.e., the result of its homomorphism part.
This type can be parameterized by S, e.g, it can be Id[S] (equiva-

3The weights are determined by method f.
4In Listing 6 there are some other traits for extending the
Predicate and they will be explained in Section 4.1

/*
* Predicate is an almost -listhomomorphism
* whose postProcess returns Boolean */

trait Predicate[M,T]
extends MapReduceable[M,T,Boolean]

trait Countable[T] extends {def count:Int}

trait Finite[T] extends Iterable[T] with Countable[T]
/* FinitePredicate is Predicate on finite monoid */
trait FinitePredicate[M,T] extends Predicate[M,T]

with Finite[T]

Listing 6: Predicate and FinitePredicate

/*
* tests if the total weight is <= the limit w
*/

object WeightLimit (w : Int)
extends Predicate[KnapsackItem , Int]{

def postProcess(t: Int) = t <= w
def combine(l: Int , r : Int) = (l + r) min (w+1)
def f(i: KnapsackItem) = (i.weight) min (w+1)
val id = 0

}

Listing 7: Example of Predicate (WeightLimit)

lent to S), Pair[S] (equivalent to (S,S)), Triple[S] (equivalent to
(S,S,S)), etc.

Extending the GeneratorCreater, one can define a semiring
polymorphic generator of the almost list homomorphism form by
implementing the function gen. Notice that the function gen is
a generic function such that the instance of MapReduceable can
only be produced by methods of s whose type is Aggregator[A,S].
Therefore, this class is functionally equal to the class of functions
generator⊕,⊗ :: (A→ S)→ [A]→ S. The Scala codes are showed in
Listing 8. The generator sublists (actually, sublists′) can be
implemented as the scala object allSelects shown in Listing 9,
which simply implements the definition.

The function gen has slightly different type compared to the
definition in Definition 4 5, because we are focusing on genera-
tors whose computation patterns are suitable for the MapReduce
model, while the original definition has no assumption on compu-
tation patterns. The generic function gen returns an instance of
MapReduceable[I,P[S],S] of which computation consists of a list
homomorphism from [I] to P[S] and a postProcess from P[S] to S.
We design such interface so that users can feel more comfortable to
write generators like Prefixes shown in Listing 10, in which the
homomorphism part computes pairs of type (S,S) while its final
result is of type S.

Generator Surfixes to produce all suffixes can be implemented
similarly. Combined with various of testers and aggregators, these
generators can express a lot of problems. More examples can be
found in the source code of our library.

3.3 GTA Expression
As we described, GTA programming is to choose or define gen-

erators, testers and aggregators to write GTA expressions. Here,
we give the formal definition of GTA expression in the EBNF for
better understanding.

5The equivalent of this gen is actually generator′⊕,⊗ :: (A→ S)→
[A]→ P[S]



trait GeneratorCreater[I,A,P[_]] extends BaseType{
def gen[S](s:Aggregator[A,S]): MapReduceable[I,P[S],Any]

}

Listing 8: Polymorphic Generator

object allSelects extends GeneratorCreater[Int ,Int ,Id]{
def makeGenerator[S](s: Aggregator[Int , S])

= new MapReduceable[Int ,Id[S],S] {
override def f(i: Int):Id[S] =

Id(s.plus(s.f(i), s.id))
override def combine(l: Id[S], r: Id[S]): Id[S] =

Id(s.times(l, r))
override def postProcess(a: Id[S]): S = a
override val id: Id[S] = s.id

}
}

Listing 9: Generator of "All Selects"

expr ::= GenTerm FiltTerms AggTerm
GenTerm ::= generate ′(′ GeneratorCreater ′)′

FiltTerms ::= ε | filter ′(′ Predicate ′)′ FiltTerms
AggTerm ::= aggregate ′(′ Aggregator ′)′.

Where the generate, filter and aggregate are the three key-
words (actually, functions). Each of them has an argument which is
an instance of GeneratorCreater, Predicate or Aggregator,
appropriately. Note that one GTA expression may have multiple
testers in this library. (Because we do implementation in Scala, ans
Scala allows a single-line GTA expression being written in multiple
lines that each line is one or more terms and with a ’.’ between any
two terms.)

3.4 Solving Problems with GTA
We use three examples to show how to use the GTA library.

Knapsack problem and its variants.
First, recall the 0-1 Knapsack problem in the introduction. Simi-

larly, we can firstly generate all possible candidates, then filter them
using the predicate of weight limitation, finally, compute the total
value on every remained candidate and choose the one which has
the maximum total value. This problem can be programmed by us-
ing the allSelects, maxTotalValue extending the maxSum and
the WeightLimit, as shown in Listing 11. If we want get the solu-
tion of knapsack items but not the maximum summation, a select
aggregator can be performed here instead of maxSum (the details of
select aggregator can be found in the library).

At a glance, the cost of the algorithms is exponential in the num-
ber of items. However, the GTA library optimizes it by using the
GTA Fusion Theorem [10, 11] so that we can get an efficient al-
gorithm whose cost is linear in the number of items (and quadratic
with respect to the capacity of the knapsack).

A more complex example of multi-constraints Knapsack prob-
lem is shown in Listing 15. A new constraint on the maximum
number of items in a knapsack is given in this case: the predicate
LengthLimit checks the length of the given list in a similar way
to WeightLimit. Not only check the exact length but also we can
check whether the length (or summation) is less/more than a con-
stant value c, or the length mod k is equal/less/more than c. Con-
ceptually, arbitrary numbers of testers can be used. For example,
we can add another constraint on the minimum number of items in a
knapsack to extend the problem more. In these examples, we only

class Prefixes[K] extends GeneratorCreater[K,K,Pair] {
def makeGenerator[S](s: Aggregator[K,S]) =

new MapReduceable[K, Pair[S], S] {
def f(i: K) =

Pair[S](s.plus(s.id, s.f(i)),
s.plus(s.zero , s.f(i)))

def combine(l: Pair[S], r: Pair[S]): Pair[S]=
Pair[S](s.plus(l.l, s.times(l.r, r.l)),

s.times(l.r, r.r))
val id: Pair[S] = Pair[S](s.zero , s.id)
def postProcess(a: Pair[S]): S = a.l

}
}

Listing 10: Generator of "All Prefixes"

...
val allSelects = new AllSelects[KnapsackItem]
val withLimit_100 = new WeightLimit (100)
object maxTotalVal extends MaxSum[KnapsackItem] {

def f(a: KnapsackItem ): Int = a.value
}

/* define a GTA */
val gta = generate(allSelects) .

filter (withLimit_100) .
aggregate (maxTotalValue)

println( /* x is the input list*/
gta.postProcess(x.map(gta.f). reduce(gta.combine ))

)

Listing 11: 0-1 Knapsack Problem

find the best solutions (the maximum/minimum one), but also we
can extend them to kth−best solutions.

Maximum segments sum problem.
Next, let us consider the famous Maximum segments sum (mss

for short) problem [3, 7, 17, 21, 23, 26]: Given a list of integers,
find the maximum of sums of its all segments (contiguous sublists).
This is a simplified problem of finding an optimal period in a his-
tory of changing values.

Under GTA programming model, the approach is simple: First,
choose the allSegments generator that generates all the segments
[17] of input list. Then choose the maxSum as the aggregator, that
means to compute the maximum sum among all sums of segments.
Listing 2 shows the GTA solution. This problem only need to write
a few lines of Scala code. More additional predicates can be added
to extending the mss, e.g., the segment should only contain at most
one negative number, or maximum sum has to be divisible by 3.
The allSegments as shown in Listing 3 is similar to allSelects

and allPrefixes but more complex on data structures. We need a
four-tuple type T4[T] = (T,T,T,T) as the type of intermediate data
structure. The details of how to construct such a list homomor-
phism can be found in [17].

Viterbi algorithm.
More complex problems can also be encoded by GTA. Hidden

markov model (HMM) is known for its applications in temporal
pattern recognition. The Viterbi algorithm [30]] is to find the most
likely sequence of hidden states, i.e.,the Viterbi path , from the
given sequence of observed events. In detail, given a sequence of
observed events (x1,x2, ...,xn), a set of states in a HMM model
S = (z1,z2, ...,zk), probabilities Pyield(xi | z j) of events xi being
caused by states z,, and probabilities Ptrans(zi | z j) of states zi ap-
pearing immediately after states zj, to compute the most likely se-
quence of (z1,z2, ...,zn) is formalized as:



class MarkingGen[EV,ST](val states:Set[ST]) extends
GeneratorCreater[E,Tuple2[EV ,(ST, ST)],Id]{

val marks=for(x <- states ; y <-states) yield (x,y)
type Marked=Tuple2[EV, (ST, ST)]
def makeGenerator[S](s:Aggregator[Marked ,S])=

new MapReduceable[E,Id[S],S] {
def f(i:E): Id[S]=(s.zero /: marks)

{(z:S,mk:Mark)=>s.plus(z, s.f((i, mk)))}
def combine(l:Id[S],r:Id[S]):Id[S]=s.times(l,r)
val id:Id[S]=s.id
def postProcess(a:Id[S]):S=a

}
}

Listing 12: MarkingGenerator

argmax
Z∈Sn+1

(
n

∏
i=1

Pyield(xi | zi)Ptrans(zi | zi−1))

In [11], the approach of using GTA to compute above specifica-
tion is introduced as: Firstly, we need to remove the index i−1 in
the specification. To this end, we let the expression range over pairs
of hidden states in S×S and introduce a predicate trans to restrict
the considered lists of state pairs. Intuitively, trans(p) is true if and
only if the given sequence p of state pairs describes consecutive
transitions

((z0,z1),(z1,z2), . . . ,(zn−2,zn−1),(zn−1,zn))

and false otherwise. Introducing the function

prob(x,(s, t)) = Pyield(x | t)Ptrans(t | s)

the expression above can be transformed into the following equiv-
alent expression.

argmax
p∈(S×S)n

trans(p)=True

( n
∏
i=1

prob(xi, pi)
)

Now, we are ready for building a Generate-Test-Aggregate algo-
rithm. Given a set of marks, the generator MarkingGenerator in
Listing 12 associates all possible mark to each element of the given
list. For the Viterbi algorithm, the mark is the product set S×S. For
example, given S = {s1,s2} and x = [x1,x2], it can generate

* [(x1,(s1,s1)),(x2,(s1,s1))],
[(x1,(s2,s1)),(x2,(s1,s1))],
[(x1,(s1,s2)),(x2,(s1,s1))],
...
[(x1,(s2,s2)),(x2,(s2,s2))] +.

The implementation of MarkingGenerator is almost the same
as the SublistGenerator. The difference is that the method f

sums up all possible associations of the marks, in which the type
Marked[Elem,Mark] is the pair of the list element and the mark
(Like painting colors on the input, so that the MarkingGenerator
can be seen as a coloring generator.).

Among those associations of pairs of states to the input, we want
to take only ones with valid transitions. To this end, trans is im-
plemented as ViterbiTest shown in Listing 13. The method f

extracts the mark, i.e., the associated pair of states, in which the
pair has the type Trans[State] (a pair of states corresponds to
a transition between states). The method combine appends two
valid transitions (s, t) and (u,v) to make a new valid transition (s,v)
if t = u. It returns a special value for invalid transitions otherwise.

abstract class ViterbiTest[E, Mark]
extends Predicate [(E,Mark), Mark] {

type MarkedTs = (E,Mark)
def isTrans(a: Mark): Boolean
def postProcess(a: Mark) = isTrans(a)
def combine(l: Mark , r: Mark): Mark
def f(a: MarkedTs ): Option[Mark] = Some(a._2)
val id: Mark
...//omit others

}

Listing 13: MarkingGenerator

abstract class MaxProdAggregator[T]
extends Aggregator[T, Double] {

def plus(l: Double , r: Double) = l max r
def times(l: Double , r: Double) = l * r
def f(a: T): Double
val id: Double = 1.0
val zero: Double = 0.0

}

Listing 14: ViterbiMaxProdAggregator

The method postprocess finally checks whether the input list had
a valid transition or not.

The aggregator ViterbiMaxProdAggregator shown in List-
ing 14 implements the aggregator for computing the maximum prob-
ability, using the semiring ([0,1],max,×) about the real numbers
between 0 and 1. For simplicity, it computes not the Viterbi path
but the Viterbi score (the maximum probability). The method f ex-
tracts the value from the marked element. Other parts are straight-
forward implementation of the semiring.

Finally, the composition of above components gives a GTA al-
gorithm as

val vbGta = generate (vbGen) f ilter (vbTest) aggregate (vbAgg),

where vbGen, vbTest and vbAgg are instances of MarkingGener-
ator, ViterbiTest, and MaxProdAggregator respectively.

Similar to the knapsack problem, the program is optimized into
a linear-cost parallel algorithm, although it looks an exponential
algorithm at a glance. It is worth noting that we can compute the
Viterbi path by replacing the aggregator with another aggregator
based on a semiring to compute the path [14].

4. IMPLEMENTING THE GENERATE-TEST-
AGGREGATE LIBRARY

We choose Scala to implement our library not only because it is
a functional language with flexible syntax and strong type system,
but also because of its performance and portability (Scala is JVM
based so it is compatible with most of popular Java systems). We
use Spark [31] and Hadoop [2] as MapReduce engines without any
modification on them. To run a GTA program on a new MapReduce
engine, the only thing we need to do is writing a Scala adapter for
the engine, so that the MapReduce API can be invoked from the
user’s GTA program.

Design philosophy.
On implementation, we mainly concern the following three key

points. The first is how to make an expressive, easy-to-use pro-
gramming interface. We want to hide the complexity of interme-
diate computation and data structures, so that users only need to
focus on how to convert their problems to the GTA style. Once



...
val allSelects =new AllSelects[KnapsackItem]
val withLimit_100 =new WeightLimit (100)
val lessThan_10_items =LengthLimit[KnapsackItem ](9)
object maxTotalVal extends MaxSum[KnapsackItem] {

def f(a: KnapsackItem ): Int = a.value
}
/* define a GTA */
val gta = generate(allSelects) .

filter (withLimit_100) .
/* add a new filter */
filter (lessThan_10_items) .
aggregate (maxTotalValue)

println(
/* x is input , postProcess returns the result */
gta.postProcess(x.map(gta.f). reduce(gta.combine ))

)

Listing 15: Extended 0-1 Knapsack Problem

users simply map their problems to navie GTA programs, they get
scalable and efficient MapReduce programs.

The second is correctness and efficiency of the GTA fusion. As
a practical problem, user’s input and output data may have com-
plex structures, and also generators, filters and aggregators chosen
by the user may have a variety of combinations. Our library has to
consider about such situations, and set constraints in the program-
ming interface to prevent as many errors as possible. In addition,
we make the fusion mechanism being type-safe (at library level,
thanks to the type system of Scala), so that users can find semantic
errors at compile time. The details of how to implement the fusion
will be discussed in Section 4.1

The last one is compatibility and portability. It is important to
clarify how our GTA can work together with other libraries/frame-
works. Conceptually, our GTA can be used together with any MapRe-
duce or other parallel frameworks which provide the standard MapRe-
duce API , in Scala or Java. We also need to define a proper scope
of our system so that adapters between GTA and execution engines
can be easily made. Currently, we only provide unidirectional in-
vocation: APIs of MapReduce engines can be used from GTA pro-
grams, but not the converse. This lets GTA expressions be easily
defined, although it also requires the user’s main MapReduce pro-
gram being written in Scala. Since Scala is highly compatible with
Java, this model works most of the time (most popular MapReduce
engines provide Java or Scala API).

4.1 Semiring Fusion and Filter Embedding
The GTA fusion process can be described as a deterministic au-

tomaton shown in Figure 1. When generate function is invoked
(by given a polymorphic generator as the parameter), an instance of
GEN is created. GEN has two methods: filter and aggregate and
keeps the polymorphic generator. When filter is invoked, it just
composes new Predicate with previous one. When aggregate

method is invoked, it embeds the Predicate into Aggregator to
form another Aggregator with the lifted semiring, which is the
filter embedding, and substitutes it to the polymorphic generator
to produce a final MapReduceable instance, which is the semiring
fusion.

The semiring fusion is quite clearly introduced in the previous
work [10, 11]: It is just to substitute an efficient semiring to the
polymorphic generator. However, the filter embedding needs more
work to do in practice. Here, we discuss how the filter embedding
is implemented.

Filters tupling.

Figure 1: Automaton of GTA Fusion

Figure 2: Finite Predicate

Every filter clause in a GTA expression introduce a Predicate
that is to be involved in the fusion. We can combine all the list ho-
momorphisms together and create a new one that computes all at
once.

Usually, tupling two list homomorphisms into one is simple. Let
hh = ( ([ f1,�1]),([ f2,�2]) ). We have:

hh [ ] = (ı�1 , ı�2)
hh [a] = ( f1 a , f2 a)
hh (x++y) = hh x�hh y

where (hx1,hx2)� (hy1,hy2) = (hx1�1 hy1 , hx2�2 hy2) .

By the tupling, multiple filter clauses can be merged to one.
We fuse this composed filter (a Predicate) together with genera-
tor and aggregator, to form the final GTA MapReduceable object.

Lifted semiring.
In the filter embedding, the carrier set M of monoid (M,�) should

be finite, to guarantee the efficiency of the final program that uses
the semiring lifted by M. The key point of implement the lifted
semiring is to define a Scala class that can wrap the finite monoid
and semiring. In order to define the operators ⊕M ,⊗M , the ele-
ments of the set M must be enumerated in constant time. Thus,
we defined FinitePredicate to resolve this problem. In order to
guarantee that the final GTA program is efficiently computable, the
composed filters must be a (or subtype of) FinitePredicate.

Finite monoid and finite predicate.
In our implementation, a finite monoid is a monoid whose do-

main is a finite set. Using Scala to define such a set we can use
the Countable and Iterable traits. An object that inherits from
Countable must implement a count method. And Iterable re-
quires all its concrete subclasses to implement an iterator. We de-
fined a Scala class named FinitePredicate (Listing 6). It is a
Predicate with a finite domain. Figure 2 shows the class inheri-
tance.

To guarantee the linear cost of the final program, filter clauses in
a GTA expression have to be under the constraint: all the filters



Figure 3: Execution Time of GTA Programs on Single CPU

Figure 4: Execution Time of GTA Programs on Spark Clusters

take FinitePredicate as the parameters. Otherwise the compu-
tational cost of the final program is not guaranteed.

The rest of implementing filter embedding, is to use the tupled
tester and together with the aggregator to construct the lifted
semiring (Definition 2) which is introduced in the previous work [10,
11]. We use a Map data structure to denote the domain of monoid
(SM ,�M) where the keys (index) of the Map are elements in set M
and thus �M can be defined. Readers who are interested with this
could find details in our source code.

4.2 Serialization
For MapReduce frameworks like Spark and Hadoop, Java ob-

jects used as output of MAP and REDUCE need to be serialized
for saving in file system or being transfered through networks. The
intermediate data produced by GTA also need to be serialized in
some way. Currently, our GTA library uses different serializations
for Spark and Hadoop. For Spark, the serialization is done by us-
ing Java serialization, and for Hadoop we use the Hadoop Writable
interface.

There are some universal data serialization frameworks, such as
Avro [1] and Protocol Buffers [29], which provide common proto-
cols and supporting multiple languages. We are considering apply
such approaches in future.

5. EXPERIMENTS
We evaluate our GTA library on both sequential and parallel (dis-

tributed) ways and show the efficiency and scalability of it.

Figure 5: Speedup of GTA-Knapsack on Spark Clusters

Figure 6: Speedup of GTA Programs on Spark Clusters (size of
input=108)

5.1 Algorithmic Efficiency and Scalability

Algorithmic efficiency.
We test the algorithmic efficiency of our GTA library by running

a GTA-Knapsack program in local environment. In all the follow-
ing test cases, the knapsack item’s weight is in range (0, 10] and
the capacity of the knapsack is 100. The machine we used has a 2
GHz Intel Core Duo CPU (two cores) with 2 GB RAM and the Java
VM heap size was set as: "JAVA_OPTS=-Xmx1024m -Xms256m".
The Scala version is 2.9.2 final.

The first test case is comparing the GTA-Knapsack program to
a Knapsack program in a naive algorithm (brute-force) which gen-
erates all sublists, then filters them and make max-sum on the rest
ones. Table 2 shows the comparison of running time. Obviously,

Table 2: Comparison of Naive and GTA Knapsack Programs
length naive (ms) GTA (ms)
8 47 24
12 106 27
16 271 53
20 6838 65
24 OutOfMemoryError 52



the GTA-Knapsack is much faster than the naive one. Optimized
dynamic programming solution for 0-1 Knapsack problem can runs
in O(nW) time, which is theoretically faster than our GTA-Knapsack
(O(nW2) time). But without carefully optimizing the program, a
dynamic programming solution could be even slower. An notable
superior of our GTA library is that optimization is transparent to
programmers.

The second experiment tests the GTA-Knapsack program with
different size of input data. The running time of GTA-Knapsack
is linear with the increasing of input data size (from 10× 103 to
10× 104). Figure 3 shows the linear algorithmic efficiency of our
GTA-Knapsack.

Evaluation on MapReduce clusters.
Our MapReduce clusters are built on the Edubase-Cloud (at Na-

tional Institute of Informatics, Japan). It is a cloud computing en-
vironment like Amazon EC2. We have authority to use up to 32
virtual-machine (VM) nodes. We configured Mapreduce (Spark
and Hadoop) clusters with 4, 8, 12, 16, 20, 24, 28, and 32 nodes.
Each VM has one single-core CPU, 3 GB RAM and 8-9 GB avail-
able hard disk space. We prepared three sets of randomly generated
items for the Knapsack programs: 1× 106, 1× 107 and 1× 108

items. Experiments on Vitirbi Algorithm and Maximum segments
sum are evaluated in similar manner (we use programs randomly
generated all input data). The results are given in Figure 4 , 5 and 6.
When input data size is too small (in case of using data set of size
1× 106), the system overhead takes heavier ratio on the timing-
results. For data with appropriate size, the results show that all the
GTA programs gained near-liner speedup when increase the com-
puting nodes. The evaluation of GTA programs on Hadoop clus-
ters also shows the similar speedup though absolute performance is
slower on same dataset, because of higher system overhead.

6. RELATED WORK
The research on parallelization via derivation of list homomor-

phisms has gained great interest since [8, 28, 32]. The main ap-
proaches include the function composition based method [5, 12,
19], the third homomorphism theorem based method [15, 22], and
the matrix multiplication based method [27]. It has been shown
that homomorphism-based approaches can be used on systematic
programming of MapReduce [20].

GTA [10, 11] is a new approach to systematic development of
efficient parallel programs and/or list homomorphisms, in which
feaures of semirings are maximally exploited to connect naive de-
sign and efficient impementation, so that it dramatically simplifies
the development of efficient parallel algorithms. However, there
lacks of implementations which can support practical MapReduce
programming. Our work is a continuation of previous research on
GTA and making it work for common MapReduce frameworks.

There are also several high-level domain specific languages build
upon MapReduce (Hadoop), such as Google’s Sawzall [25], Apache
Pig Latin [13], and so on. They wrap MapReduce (Hadoop) and
provide optimization functionalities to optimize users’ programs.
Currently, they do not have optimizations similar to the GTA fu-
sion. We believe that GTA can also be imported into the design of
these languages as a primitive optimization choice.

7. CONCLUSIONS
In this paper, we show that the Generate-Test-Aggregate the-

ory for systematic derivation of efficient parallel programs can be
implemented on MapReduce in a concise and effective way. Our
framework on Scala provides a convenient GTA programming in-

terface for users to specify their problems in the GTA pattern easily,
and to run them efficiently on multi-thread, Spark and Hadoop en-
vironments. Our initial experimental results on several interesting
examples indicate its usefulness in solving practical problems.

Currently, the GTA theory is based on the list homomorphisms,
and our GTA library is concentrated on covering problems which
are based on the list data structure. A very attractive future work is
to apply the GTA style programming to problems based on trees/-
graphs, which is not supported by our GTA library yet.

We are now investigating interesting applications in the GTA
framework, and challenging to extend our library from lists to trees
and graphs so that GTA style algorithms can be efficiently imple-
mented for processing large trees/graphs such as data from social
networks.
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