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Abstract. In many occasions would one encounter the task of maintaining
the consistency of two pieces of structured data that are related by some
transform — synchronising bookmarks in different web browsers, the source
and the view in an editor, or views in databases, to name a few. This paper
proposes a formal model of such tasks, basing on a programming language
allowing injective functions only. The programmer designs the transforma-
tion as if she is writing a functional program, while the synchronisation
behaviour is automatically derived by algebraic reasoning. The main ad-
vantage is being able to deal with duplication and structural changes. The
result will be integrated to our structure XML editor in the Programmable
Structured Document project.

1 Introduction

In many occasions would one encounter the task of maintaining consistency of two
pieces of structured data that are related by some transform. In some XML edi-
tors, for example [3, 15], a source XML document is transformed to a user-friendly,
editable view through a transform defined by the document designer. The editing
performed by the user on the view needs to be reflected back to the source docu-
ment. Similar techniques can also be used to synchronise several bookmarks stored
in formats of different browsers, to maintain invariance among widgets in an user
interface, or to maintain the consistency of data and view in databases.

As a canonical example, consider the XML document in Figure 1(a) representing
an article. When being displayed to the user, it might be converted to an HTML
document as in Figure 1(b), with an additional table of contents. The conversion is
defined by the document designer in some domain-specific programming language.
We would then wish that when the user, for example, adds or deletes a section in
(b), the original document in (a) be updated correspondingly. Further more, the
changes should also trigger an update of the table of contents in (a). We may even
wish that when an additional section title is added to the table of contents, a fresh,
empty section will be added to the article bodies in both (a) and (b). All these
are better done without too much effort, other than specifying the transform itself,
from the document designer,

View-updating [5, 7, 10, 14, 1] has been intensively studied in the database com-
munity. Recently, the problem of maintaining the consistency of two pieces of struc-
tured data was brought to our attention again by [12] and [11]. Though developed
separately, their results turn out to be surprisingly similar, with two important fea-
tures missing. Firstly, it was assumed that the transform is total and surjective,
which ruled out those transforms that duplicate data. Secondly, structural changes,
such as inserting to or deleting from a list or a tree, were not sufficiently dealt with.

In this paper we will address these difficulties using a different approach inspired
by previous studies of program inversion [2, 8]. We extend the injective functional



<article>

<title>Program inversion

</title>

<section>

<title>Our first effort</title>

<p>...</p>

</section>

<section>

<title>Our second effort</title>

<p>...</p>

</section>

</article>

<html>

<h1>Program inversion</h1>

<ol><li>Our first effort</li>

<li>Our second effort</li>

</ol>

<div>

<h3>Our first effort</h3>

<p>...</p></div>

<div>

<h3>Our second effort</h3>

<p>...</p></div>

</html>

(a) (b)

Fig. 1. An XML article and its HTML view with a table of contents.

language designed in [13], in which only injective functions are definable and there-
fore every program is trivially invertible. The document designer specifies the trans-
form as if she were defining an injective function from the source to the view. A
special operator for duplication specifies all element-wise dependency. To deal with
inconsistencies resulting from editing, however, we define an alternative semantics,
under which the behaviour of programs can be reasoned by algebraic rules. It will
be a good application of program inversion [8] and algebraic reasoning, and the
result will soon be integrated into our XML editor in the Programmable Structured
Document project [15].

In Section 2 we give a brief introduction of the injective functional language
in which the transforms are specified, and demonstrate the view-updating problem
more concretely. An alternative semantics of the language is presented in Section
3, where we show, by algebraic reasoning, how to solve the view-updating problem.
Section 4 shows some more useful transform, before we conclude in Section 5.

2 An Injective Language for Bi-directional Updating

Assume that a relation X , specifying the relationship between the source and the
view, is given. In [11], the updating behaviour of the editor is modelled by two
functions getX :: S → V and putX :: (S×V ) → S . The function getX transforms the
source to the view. The function putX , on the other hand, returns an updated source.
It needs both the edited view and the original source, because some information
might have been thrown away. For example, if the source is a pair and getX simply
extracts the first component, the second component is lost. The cached original
source is also used for determining which value is changed by the user. A more
symmetrical approach was taken in [12], where both functions take two arguments.
The relation X is required to be bi-total (total and surjective), which implies that
duplicating data, which would make the relation non-surjective, is not allowed.

In this paper we will explore a different approach. We make getX :: S → V and
putX :: V → S take one argument only, and the transform has got to be injective —
we shall lose no information in the source to view transform. A point-free language
allowing only injective functions has been developed in [13] with this as one of the
target applications. Duplication is an important primitive of the language.



Restricting ourselves to injective functions may seem like a severe limitation, but
this is not true. In [13], it was shown that for all possibly non-injective functions f ::
A → B , we can automatically derive an injective function f ′ :: A → (B ,H ) where
H records book-keeping information necessary for inversion. The extra information
can be hidden from the user (for example, by setting the CSS visibility if the output
is HTML). In fact, one can always make a function injective by copying the input to
the output, if duplication is allowed. Therefore, the key extension here is duplication,
while switching to injective functions is merely a change of presentation – rather
than separating the original source and the edited view as two inputs to putX , we
move the burden of information preserving to X . This change, however, allows putX
itself to be simpler, while making it much easier to expose expose its properties,
limitation, and possibly ways to overcome the limitation.

In this section we will introduce the language, Inv with some examples, and
review the view-updating problem in our context. Extensions to the language and
its semantics to deal with the view-updating problem will be discussed in Section
3. Some readers may consider the use of a point-free language as “not practical”.
We will postpone our defend to Section 5.

2.1 Views

The View datatype defines the basic types of data we deal with.

View ::= Int | String | ()
| (View ×View) | LView | R View
| List View | Tree View

List a ::= [ ] | a : List a
Tree a ::= Node a (List (Tree a))

The atomic types include integer, string, and unit, the type having only one value
(). Composite types include pairs, sum (LView and R View), lists and rose trees.
The (:) operator, forming lists, associates to the right. We also follow the common
convention writing the list 1 : 2 : 3 : [ ] as [1, 2, 3]. More extensions dealing with
editing will be discussed later. For XML processing we can think of XML documents
as rose trees represented by the type Tree. This very simplified view omits features
of XML which will be our future work. In fact, for the rest of this paper we will be
mostly talking about lists, since the techniques can easily be generalised to trees.

2.2 An Injective Language Inv

The syntax of the language Inv is defined as below. We abuse the notation a bit by
using XV to denote the union of X and the set of variable names V . The ∗ operator
denotes “a possibly empty sequence of”.

X ::= X ˘ | nil | zero | C
| δ | dup P | cmp B | inl | inr
| X ;X | id | X ∪X
| X ×X | assocr | assocl | swap
| µ(V : XV )

C ::= succ | cons | node
B ::= < | ≤ | 6= | ≥ | >
P ::= nil | zero | str String | (S ; )∗id
S ::= C˘ | fst | snd

The semantics of each Inv construct is given in Figure 2. A relation of type A → B
is a set of pairs whose first components have type A and second components type



B , while a function1 is one such that a value in A is mapped to at most one value
in B . A function is injective if all values in B are mapped to at most one value
in A as well. The semantics of every Inv program is an injective function from
View to View . That is, the semantics function [[ ]] has type Inv → View → View .
For example, nil is interpreted as a constant function always returning the empty
list, while zero always returns zero. Their domain is restricted to the unit type, to
preserve injectivity.

The function id is the identity function, the unit of composition. The semicolon
(;) is overloaded both as functional composition and as an Inv construct. It is defined
by (f ; g) a = g (f a).

Union of functions is simply defined as set union. To avoid non-determinism,
however, we require in f ∪g that f and g have disjoint domains. To ensure injectivity,
we require that they have disjoint ranges as well. The domain of a function f :: A →
B , written dom f , is the partial function (and a set) {(a, a) ∈ A | ∃b ∈ B :: (a, b) ∈
f }. The range of f , written ran f , is defined symmetrically. The product (f × g) is a
function taking a pair and applying f and g to the two components respectively. We
make composition bind tighter than product. Therefore (f ; g×h) means ((f ; g)×h).

The fixed-point of F , a function from Inv expressions to Inv expressions, is de-
noted by µF . We will be using the notation (X : expr) to denote a function taking
an argument X and returning expr .

The converse of a relation R is defined by

(b, a) ∈ R◦ ≡ (a, b) ∈ R

The reverse operator ˘ corresponds to converses on relations. Since all functions here
are injective, their converses are functions too. The reverse of cons, for example,
decomposes a non-empty list into the head and the tail. The reverse of nil matches
only the empty list and maps it to the unit value. The reverse operator distributes
into composition, products and union by the following rules, all implied by the
semantics definition [[f ˘]] = [[f ]]◦:

[[(f ; g)˘]] = [[g˘]]; [[f ˘]] [[f ˘˘]] = [[f ]]
[[(f × g)˘]] = [[(f ˘× g˘)]] [[(µF )˘]] = [[µ(X : (F X ˘)˘)]]
[[(f ∪ g)˘]] = [[f ˘]] ∪ [[g˘]]

The δ operator is worth our attention. It generates an extra copy of its argument.
Written as a set comprehension, we have δA = {(n, (n,n)) |n ∈ A}, where A is the
type δ gets instantiated to. We restrict A to atomic types (integers, strings, and
unit) only, and from now on use variable n and m to denote values of atomic types.
To duplicate a list, we can always use map δ; unzip, where map and unzip are to be
introduced in the sections to come. Taking its reverse, we get:

δA˘ = {((n,n),n) |n ∈ A}

That is, δ˘ takes a pair and lets it go through only if the two components are
equal. That explains the observation in [8] that to “undo” a duplication, we have
to perform an equality test.

In many occasions we may want to duplicate not all but some sub-component
of the input. For convenience, we include another Inv construct dup which takes
a sequence of “labels” and duplicates the selected sub-component. The label is
either fst , snd , cons˘, and node˘. Informally, think of the sequence of labels as the
composition of selector functions (fst and snd) or deconstructors, and dup can be
understood as:

[[dup f ]] x = (x , [[f ]] x )

1 For convenience, we refer to possibly partial functions when we say “functions”.



[[nil ]] () = [ ]
[[zero]] () = 0
[[succ]]n = n + 1
[[cons]] (a, x ) = a: x
[[node]] (a, x ) = Node a x
[[inl ]] a = La
[[inr ]] a = R a
[[id ]] a = a

[[swap]] (a, b) = (b, a)
[[assocr ]] ((a, b), c) = (a, (b, c))

[[assocl ]] (a, (b, c)) = ((a, b), c)

[[cmp �]] (a, b) = (a, b), if a � b
[[δ]] a = (a, a)

[[f ; g ]] x = [[g ]] ([[f ]] x )
[[f × g ]] (a, b) = ([[f ]] a, [[g ]] b)
[[f ∪ g ]] = [[f ]] ∪ [[g ]],

if dom f ∩ dom g = ran f ∩ ran g = ∅
[[f ˘]] = [[f ]]◦

[[µF ]] = [[F µF ]]

Fig. 2. Functional semantics of Inv constructs apart from dup.

If we invert it, (dup f )˘ becomes a partial function taking a pair (x ,n), and returns
x unchanged if f x equals n. The second component n can be safely dropped because
we know its value already. We write (dup f )˘ as eq f . For example, dup (fst ; snd) ((a,n), b)
yields (((a,n), b),n), while eq (fst ; snd) (((a,n), b),m) returns ((a,n), b) if n = m.
Formally, dup is defined as a function taking a list of function names and returns a
function:

dup id = δ
dup (fst ;P) = (dup P × id); subl
dup (snd ;P) = (id × dup P); assocl
dup (cons˘;P) = cons˘; dup P ; (cons × id)
dup (node˘;P) = node˘; dup P ; (node × id)

Here, [[subl ]] ((a, b), c) = ((a, c), b), whose formal definition is given in Section 2.3.
Another functionality of dup is to introduce constants. The original input is kept

unchanged but paired with a new constant:

[[dup nil ]] a = (a, [ ])
[[dup zero]] a = (a, 0)
[[dup (str s)]] a = (a, s)

Their reverses eliminates a constant whose value is known. In both directions we
lose no information.

The cmp construct takes a pair of values, and let them go through only if they
satisfy one of the five binary predicates given by non-terminal B .

2.3 Programming Examples in Inv

All functions that move around the components in a pair can be defined in terms
of products, assocr , assocl , and swap. We find the following functions useful:

subr = assocl ; (swap × id); assocr
subl = assocr ; (id × swap); assocl
trans = assocr ; (id × subr); assocl

Their semantics, after expanding the definition, is given below:

[[subr ]] (a, (b, c)) = (b, (a, c))
[[subl ]] ((a, b), c) = ((a, c), b)
[[trans]] ((a, b), (c, d)) = ((a, c), (b, d))



Many list-processing functions can be defined recursively on the list. The func-
tion map applies a function to all elements of a list; the function unzip takes a list
of pairs and splits it into a pair of lists. They can be defined by:

map f = µ(X : nil˘;nil ∪
cons˘; (f ×X ); cons)

unzip = µ(X : nil˘; δ; (nil × nil) ∪
cons˘; (id ×X ); trans; (cons × cons))

This is what one would expect when we write down their usual definition in a point-
free style. The branches starting with nil˘ are the base cases, matching empty lists,
while cons˘ matches non-empty lists. It is also provable from the semantics that
(map f )˘ = map f ˘.

The function merge takes a pair of sorted lists and merges them into one. How-
ever, by doing so we lose information necessary to split them back to the original
pair. Therefore, we tag the elements in the merged list with labels indicating where
they were from. For example, merge ([1, 4, 7], [2, 5, 6]) = [L 1,R 2,L 4,R 5,R 6,L 7].
It can be defined in Inv as below:

merge = µ(X : eq nil ;map inl ∪
swap; eq nil ;map inr ∪
(cons˘× cons˘); trans;
((leq × id); assocr ; (id × subr ; (id × cons);X ); (inl × id) ∪
((gt ; swap)× id); assocr ; (id × assocl ; (cons × id);X ); (inr × id));

cons)

where leq = cmp (≤) and gt = cmp (>).
As a final example, the program in Figure 3 performs the transform from Figure

1(a) to Figure 1(b). It demonstrates the use of map, unzip and dup. For brevity,
the suffixing id in dup (fst ; id) will be omitted.

mktoc = denode article; cons˘; (h1× cont); cons; ennode html
h1 = denode title; ennode h1
cont = extract ; (enlist × body); cons
extract = map (denode section; cons˘; (denode title× id); dup fst ; swap); unzip
enlist = map (ennode li); ennode ol
body = map ((ennode h3× id); cons; ennode div)

denode s = node˘; swap; eq (str s)
ennode s = (denode s)˘

Fig. 3. An Inv program performing the transform from Figure 1(a) to Figure 1(b). String
constants are written in typewriter font.

2.4 The View-Updating Problem

Now consider the scenario of an editor, where a source document is transformed,
via an Inv program, to a view editable by the user. Consider the transform toc =
map (dup fst); unzip, we have:

toc [(1, “a”), (2, “b”), (3, “c”)] = ([(1, “a”), (2, “b”), (3, “c”)], [1, 2, 3])

Think of each pair as a section and the numbers as their titles, the function toc is
a simplified version of the generation of a table of contents, thus the name.



Through a special interface, there are several things the user can do: change the
value of a node, insert a new node, or delete a node. Assume that the user changes
the value 3 in the “table of contents” to 4:

([(1, “a”), (2, “b”), (3, “c”)], [1, 2, 4])

Now we try to perform the transformation backwards. Applying the reverse operator
to toc, we get (map (dup fst); unzip)˘ = unzip˘;map (eq fst). Applying it to the
modified view, unzip˘ maps the modified view to:

[((1, “a”), 1), ((2, “b”), 2), ((3, “c”), 4)]

pairing the sections and the titles together, to be processed by map (eq fst). However,
((3, “c”), 4) is not in the domain of eq fst because the equality check fails. We wish
that eq fst would return (4, “c”) in this case, answering the user’s wish to change
the section title.

Now assume that the user inserts a new section title in the table of contents:

([(1, “a”), (2, “b”), (3, “c”)], [1, 2, 4, 3])

This time the changed view cannot even pass unzip˘, because the two lists have
different lengths. We wish that unzip˘ would somehow know that the two 3’s should
go together and the zipped list should be

[((1, “a”), 1), ((2, “b”), 2), (⊥, 4), ((3, “c”), 3)]

where ⊥ denotes some unconstrained value, which would be further constrained by
map (dup fst) to (4,⊥). The Inv construct eq fst should also recognise ⊥ and deal
with it accordingly.

In short, we allow the programmer to write Inv transforms that are not surjective.
Therefore it is very likely that a view modified by the user may fall out of the range
of the transform. This is in contrast of the approach taken in [12] and [11]. The two
problems we discussed just now are representative of the view-updating problem.
There are basically two kinds of dependency we have to deal with: element-wise
dependency, stating that two pieces of primary-typed data have the same value,
and structural dependency, stating that two pieces of data have the same shape.

One possible solution is to provide an alternative semantics that extends the
ranges of Inv constructs in a reasonable way, so that the unmodified, or barely
modified programs can deal with the changes. We will discuss this in detail in the
next section.

3 Alternative Semantics

We will need some labels in the view, indicating “this part has been modified by
the user.” We extend the View data type as described below:

View ::= . . . | ∗Int | ∗String
List a ::= . . . | a ⊕ List a | a 	 List a

Here the ∗ mark applies to atomic types only, indicating that the value has been
changed. The view a ⊕ x denotes a list a: x whose head a was freshly inserted by
the user, while a 	 x denotes a list x which used to have a head a but was deleted.
The deleted value a is still cached for future use. The two operators associate to
the right, like the cons operator (:). A similar set of operators can be introduced
for Tree but they are out of the scope of this paper.

The original semantics of each Inv program is an injective function. When the
tags are involved, however, we lost the injectivity. Multiple views may be mapped



to the same source. For example, the value 1 is mapped to (1, 1) by δ. In the reverse
direction, (n, ∗1) and (∗1,n), for all numerical n, are all mapped to 1. Similarly, all
these views are mapped back to [1, 2, 3] when the transform is map succ: [2, 3, 4],
a 	 [2, 3, 4], 2 : a 	 [3, 4], 2⊕ [3, 4], 2 : 3⊕ [4] for all a.

We define two auxiliary functions notag? and ridtag . The former is a partial
function letting through the input view unchanged if it contains no tags. The latter
gets rid of the tags in a view, producing a normal form. Their definitions are trivial
and omitted. The behaviour of the editor, on the other hand, is specified using two
functions getX and putX , both parameterised by an Inv program X:

getX = notag?; [[X ]]
putX ⊆̇ [[X ˘]]; ridtag

The function getX maps the source to the view by calling X . The function putX , on
the other hand, maps the (possibly edited) view back to the document by letting
it go though X ˘ and removing the tags in the result. Here ⊆̇ denotes “functional
refinement”, defined by f ⊆̇g if and only if f ⊆ g and dom f = dom g . In general
[[X ˘]]; ridtag is not a function since [[X ˘]] may leave some values unspecified. How-
ever, any functional refinement of [[X ˘]]; ridtag would satisfy the properties we want.
The implementation can therefore, for example, choose an “initial value” for each
unspecified value according to its type. The initial view is obtained by a call to
getX . When the user performs some editing, the editor applies putX to the view,
obtaining a new source, before generating a new view by calling getX again.

In the original semantics of Inv, the ˘ operator is simply relational converse. In
the extended semantics, the ˘ operator deviates from relational converse for three
constructs: δ, cons and sync, to be introduced later. For other cases we still have
[[f ˘]] = [[f ]]◦. The distributivity rules of ˘ given in Section 2.2 are still true.

In the next few sub-sections we will introduce extensions to the original seman-
tics in the running text. A summary of the resulting semantics will be given in the
end of Section 3.2.

3.1 Generalised Equality Test

The simple semantics of δĂ, where A is an atomic type, is given by the set {((n,n),n) |n ∈
A}. To deal with editing, we generalise its semantics to:

[[δ˘]] (n,n) = n [[δ˘]] (∗n, ∗n) = ∗n
[[δ˘]] (∗n,m) = ∗n [[δ˘]] (m, ∗n) = n

When the two values are not the same but one of them was edited by the user, the
edited one gets precedence and goes through. Therefore (∗n,m) is mapped to ∗n.
If both values are edited, however, they still have to be the same. Note that the
semantics of δ does not change. Also, we are still restricted to atomic types. One
will have to call map δ; unzip to duplicate a list, thereby separate the value and
structural dependency.

The syntax of dup can be extended to allow, a possibly non-injective function.
The results of the non-injective function, and those derive from them, are supposed
to be non-editable. It is a useful functionality but we will not go into its details.

3.2 Insertion and Deletion

Recall unzip defined in Section 2.3. Its reverse, according to the distributivity of ˘,
is given by:

unzip˘ = µ(X : (nil˘× nil˘); δ˘;nil ∪
(cons˘× cons˘); trans; (id ×X ); cons)



The puzzle is: how to make it work correctly with the presence of 	 and ⊕ tags?
We introduce several new additional operators and types:

– two new Inv operators, del and ins, both parameterised by a view. The function
del a :: [A] → [A] introduces an (a 	 ) tag, while ins a :: [A] → [A] introduces
an (a ⊕ ) tag.

– two kinds of pairs in View : positive (a, b)+ and negative (a, b)-. They are merely
pairs with an additional label. They can be introduced only by the reverse of
fst±b and snd±a functions to be introduced below. The intention is to use them
to denote pairs whose components are temporary left there for some reason.

– six families of functions fst2
a and snd2

a , where 2 can be either +, −, or nothing,
defined by

fst2
b (a, b)2 = a

snd2
a (a, b)2 = b

That is, fst+
b eliminates the second component of a positive pair only if it equals

b. Otherwise it fails. Similarly, snda eliminates the first component of an ordi-
nary pair only of it equals a. When interacting with existing operators, they
should satisfy the algebraic rules in Figure 4. In order to shorten the presen-
tation, we use 2 to match +, − and nothing, while ± matches only + and −.
The 2 and ± in the same rule must match the same symbol.

With the new operators and types, an extended unzip capable of dealing with
deletion can be extended from the original unzip by (here “. . .” denotes the original
two branches of unzip):

unzip˘ = µ(X : . . .∀a, b·
((ins a)˘× (ins b)˘);X ; ins (a, b) ∪
((ins a)˘× isList);X ; ins (a, b) ∪
(isList × (ins b)˘);X ; ins (a, b) ∪
((del a)˘× (del b)˘);X ; del (a, b) ∪
((del a)˘× cons˘; snd -

b);X ; del (a, b) ∪
(cons˘; snd -

a × (del b)˘);X ; del (a, b))

where a and b are universally quantified, and isList = nil˘;nil ∪ cons˘; cons, a
subset of id letting through only lists having no tag at the head.

Look at the branch starting with ((ins a)˘× (ins b)˘). It says that, given a pair
of lists both starting with insertion tags a ⊕ and b⊕ , we should deconstruct them,
pass the tails of the lists to the recursive call, and put back an ((a, b)⊕) tag. If only
the first of them is tagged (matching the branch starting with ((ins a)˘× isList)),
we temporarily remove the a⊕ tag, recursively process the lists, and put back a tag
((a, b)⊕) with a freshly generated b. The choice of b is non-deterministic and might
be further constrained when unzip is further composed with other relations. The
situation is similar with deletion. In the branch starting with (del a × snd+

b
◦; cons)

where we encounter a list with an a deleted by the user, we remove an element in
the other list and remember its value in b. Here universally quantified b is used to
match the value — all the branches with different b’s are unioned together, with
only one of them resulting in a successful match.

It would be very tedious if the programmer had to explicitly write down these
extra branches for all functions. Luckily, these additional branches can be derived
automatically using the rules in Figure 4. In the derivations later we will omit the
semantics function [[ ]] and use the same notation for the language and its semantics,
where no confusion would occur. This is merely for the sake of brevity.

In place of ordinary cons, we define two constructs addressing the dependency
of structures. Firstly, the bold cons is defined by::

cons = cons ∪
⋃

a::A(snd -
a ; del a) ∪

⋃
a::A(snd+

a ; ins a)



(f × g); fst2
(g b) = fst2

b ; f , if g total

(f × g); snd2
(f a) = snd2

a ; g , if f total

swap; snd2
a = fst2

a

snd2
a ˘; eq nil = (λ [ ] → a)

assocl ; (fst2
b × id) = (id × snd2

b )

assocl ; (snd2
a × id) = (snd2

a ∪ snda)

assocl ; snd2
(a,b) = snd2

a ; (snd2
b ∪ sndb)

Fig. 4. Algebraic rules. Here (λ [ ] → a) is a function mapping only empty list to a. Only
rules for assocl are listed. The rules for assocr can be obtained by pre-composing assocr
to both sides and use asscor ; assocl = id . Free identifiers are universally quantified.

Secondly, we define the following sync operator:

sync = (cons × cons)
sync˘ = (cons˘× cons˘)

∪
⋃

a,b∈A(((del a)˘; snd -
a˘× (del b)˘; snd -

b˘)
∪ ((del a)˘; snd -

a˘× cons˘; sndb ; snd -
b˘)

∪ (cons˘; snda ; snd -
a˘× (del b)˘; snd -

b˘))
∪

⋃
a,b∈A(((ins a)˘; snd+

a ˘× (ins b)˘; snd+
b ˘)

∪ ((ins a)˘; snd+
a ˘× isList ; snd+

b ˘)
∪ (isList ; snd+

b ˘× (ins b)˘; snd+
b ˘))

In the definition of unzip, we replace every singular occurence of cons with cons,
and every (cons × cons) with sync. The definition of sync˘ looks very complicated
but we will shortly see its use in the derivation. Basically every product corresponds
to one case we want to deal with: when both the lists are cons lists, when one or
both of them has a 	 tag, or when one or both of them has a ⊕ tag.

After the substitution, all the branches can be derived by algebraic reasoning.
The rules we need are listed in Figure 4. To derive the first branch for insertion, for
example, we reason:

unzip˘
⊇ {fixed-point}

sync˘; trans; (id × unzip); cons

⊇ {since sync˘ ⊇ ((ins a)˘; snd+
a ˘× (ins b)˘; snd+

b ˘) for all a, b}
((ins a)˘× (ins b)˘); (snd+

a ˘× (ins b)˘); trans; (id × unzip); cons

⊇ {claim: (snd+
a ˘× snd+

b ˘); trans ⊇ (snd+

(a,b))˘}

((ins a)˘× (ins b)˘); (snd+

(a,b))˘; (id × unzip); cons

= {since (f × g); snd+
f a = snd+

a ; g for total f }
((ins a)˘× (ins b)˘); unzip; (snd+

(a,b))˘; cons

⊇ {since cons ⊇ snd+

(a,b); ins (a, b)}

((ins a)˘× (ins b)˘); unzip; (snd+

(a,b))˘; snd+

(a,b); ins (a, b)

= {since snd+
x ˘; snd+

x = id}
((ins a)˘× (ins b)˘); unzip; ins (a, b)

We get the first branch. The claim that trans˘; (snd2
a × snd2

b ) = snd2
(a,b) can be

verified by the rules in Figure 4 and is left as an exercise. The introduction of
two kinds of pairs was to avoid the suffix being reduced to (del (a, b))˘ in the last
two steps. To derive one of the branches for deletion, on the other hand, one uses



the inclusion sync˘ ⊇ ((del a)˘; snd -
a˘ × cons˘; sndb ; snd -

b˘) for the first step, and
cons ⊇ snd -

(a,b); del (a, b) and (snd -
(a,b))˘; snd -

(a,b) = id fort the last step. All the
branches can be derived in a similar fashion.

[[nil ]] () = [ ]
[[zero]] () = 0
[[succ]]n = n + 1
[[cons]] (a, x ) = a: x
[[node]] (a, x ) = Node a x
[[inl ]] a = La
[[inr ]] a = R a
[[id ]] a = a

[[swap]] (a, b)2 = (b, a)2

[[assocr ]] ((a, b)±, c)± = (a, (b, c)±)±

[[assocr ]] ((a, b)±, c) = (a, (b, c)±)
[[assocr ]] ((a, b), c)± = (a, (b, c))±

assocl = assocr˘

(f ˘)˘ = f

[[δ]]n = (n,n)
[[δ˘]] (n,n)2 = n
[[δ˘]] (∗n, ∗n)2 = ∗n
[[δ˘]] (∗n,m)2 = ∗n
[[δ˘]] (m, ∗n)2 = ∗n

[[dup nil ]] a = (a, [ ])
[[(dup nil)˘]] (a, [ ])2 = a
[[dup zero]] a = (a, 0)
[[(dup zer0)˘]] (a, 0)2 = a
[[dup (str s)]] a = (a, s)
[[(dup (str s))˘]] (a, s)2 = a

cons = cons
∪

⋃
a::A

(snd -
a ; del a)

∪
⋃

a::A
(snd+

a ; ins a)

[[cmp �]] (a, b)2 = (a, b)2, if a � b
[[f ; g ]] x = [[g ]] ([[f ]] x )
[[f × g ]] (a, b)2 = ([[f ]] a, [[g ]] b)2

[[f ∪ g ]] = [[f ]] ∪ [[g ]],
if dom f ∩ dom g = ran f ∩ ran g = ∅

[[µF ]] = [[F µF ]]

[[f ˘]] = [[f ]]◦

[[f ; g˘]] = [[g˘]]; [[f ˘]]
[[(f × g)˘]] = [[(f ˘× g˘)]]
[[(f ∪ g)˘]] = [[f ˘]] ∪ [[g˘]]
[[µF˘]] = [[µ(X → (F X ˘)˘]]

[[fst2
a ]] (a, b)2 = b

[[snd2
b ]] (a, b)2 = a

[[del a]] (a 	 x ) = (a, x )-

[[ins a]] (a ⊕ x ) = (a, x )+

dup id = δ
dup (fst ;P) = (dup P × id); subl
dup (snd ;P) = (id × dup P); assocl
dup (cons˘;P) = cons˘; dup P ; (cons × id)
dup (node˘;P) = node˘; dup P ; (node × id)

sync = (cons × cons)
sync˘ = (cons˘× cons˘)
∪

⋃
a,b∈A

(((del a)˘; snd -
a˘× (del b)˘; snd -

b˘)

∪ ((del a)˘; snd -
a˘× cons˘; sndb ; snd -

b˘)
∪ (cons˘; snda ; snd -

a˘× (del b)˘; snd -
b˘))

∪
⋃

a,b∈A
(((ins a)˘; snd+

a ˘× (ins b)˘; snd+
b ˘)

∪ ((ins a)˘; snd+
a ˘× isList ; snd+

b ˘)
∪ (isList ; snd+

b ˘× (ins b)˘; snd+
b ˘))

Fig. 5. Summary of the alternative semantics. The patterns should be matched from the
top-left to bottom-left, then top-right to bottom-right.

3.3 The Put-Get-Put Property and Galois Connection

A valid Inv program is one that does not use fst2
a and snd2

b apart from in cons and
sync. The domain of getX , for a valid X , is restricted to tag-free views, so is its range.
In fact, notag?; [[X ]] reduces to the injective function defined by the original seman-
tics. Therefore, getX ; getX ◦ = dom getX . Furthermore, notag?; ridtag = notag?. As
a result, for all valid Inv programs X we have the following get-put property:

getX ; putX = dom getX (1)

This is a desired property for our editor: mapping an unedited view back to the
source always gives us the same source document.



On the other hand, putX ; getX ⊆ id is not true. For example, (putδ; getδ) (∗a, b) =
(a, a) 6= (∗a, b). This is one of the main differences between our work and that of
[12] and [11]. They both assume the relation X to be bi-total, and that the put-get
property putX ; getX = id holds. It also implies that duplication cannot be allowed
in the language.

Instead, we have a weaker property. First of all, for all valid X we have dom getX ⊆
ran putX . That is, every valid source input to getX must be a result of putX for at
least one view, namely, the view the source get mapped to under the original seman-
tics. Pre-composing put X to (1) and use putX ; dom getX ⊆ putX ; ran putX = putX ,
we get the following put-get-put property:

putX ; getX ; putX ⊆ putX (2)

When the user edits the view, the editor calls the function put X to calculate an
updated source, and then calls getX to update the view as well. For example, (∗a, b)
is changed to (a, a) after putδ; getδ. With the put-get-put property we know that
another putX is not necessary, because it is not going to change the view — the
result of putX ; getX ; putX , if anything, is the same as that of putX .

It is desirable to have putX ; getX ; putX = putX . However, this is not true, and
dom getX 6= ran putX . For a counter-example, take X = (δ × id); assocr ; (id × δ).
The function getX takes only pairs with equal components and returns it unchanged.
Applying putX to (∗b, a) results in (b, a), which is not in the domain of getX .
Such a result is theoretically not satisfactory, but does not cause a problem for
our application. The editor can signal an error to the user, saying that such a
modification is not allowed, when the new source is not in the domain of getX . The
domain check is not an extra burden since we have to call getX anyway.

A Galois connection is a pair of functions f :: A → B and g :: B → A satisfying

f x � y ≡ x � g y (3)

Galois connected functions satisfy a number of properties, including f ; g ; f = f . For
those X that dom getX = ran putX do hold, getX and putX satisfy (3), if we take �
to be equality on tag-free Views and � to be (putX ; getX )◦. That is, s � s ′ if and
only if the two sources s and s ′ are exactly the same, while a view v is no bigger
than v ′ under � if there exists a source s such that v = getX s and s = put v ′. For
example, (n,n) is no bigger than (∗n,m), (m, ∗n), (∗n, ∗n), and (n,n) itself under
�, when the transform is δ. The only glitch here is that � is not reflexive! In fact
it is reflexive only in the range of getX — the set of tag-free views. However, this is
enough for getX and putX to satisfy most properties of a Galois connection.

3.4 Implementation Issues

In our experimental implementation, we have a simple interpreter for Inv. One way
to incorporate the algebraic rules in the previous section in the implementation is
to call a pre-processor before the program is interpreted. Another possibility is to
build the rules implicitly in the interpreter. In this section we will talk about how.

The abstract syntax tree of Inv is extended with new constructs cons and sync.
The “intermediate” functions introduced in the last section, namely ins,del , fst±s
and snd±s, are not actually represented in the abstract syntax. Instead, we extend
the value domain View with additional constructs:

View ::= . . . | (View , +View) | (+View ,View)
| (View , -View) | (-View ,View)
| ⊥ | NilTo View

Conceptually, after we apply snd+
a ˘ to a value b, we get (+a, b), while (-a, b) is the

result of applying snd -
a˘ to b. The reader can think of them as a note saying “the



value should have been b only, but we temporarily pair it with an a, just to allow the
computation to carry on.” Or one can think of it as a pending application of snd+

a

or snd -
a . The ⊥ symbol denotes an unconstrained value. Finally, NilTo a denotes a

function taking only [ ] and returns a.
To implement the sync operator, we add the following definitions (some cases

are omitted):

[[sync˘]] (a: x , b: y) = ((a, x ), (b, y)) [[sync˘]] (a ⊕ x , y) = ((+a, x ), (+⊥, y))
[[sync˘]] (a 	 x , b: y) = ((-a, x ), (-b, y)) [[sync˘]] (x , b ⊕ y) = ((+⊥, x ), (+b, y))
[[sync˘]] (a: x , b 	 y) = ((-a, x ), (-b, y))

The first clause is simply what (cons×cons)◦ would do. The second clause shows
that when there is a deletion in the first list, we throw away an element in the
second list as well, while keeping note of the fact by the (- , ) tag. It corresponds to
the (del a◦; snd -

a
◦× cons◦; snd -

b ; snd -
b
◦) branch of (cons×̂cons)◦. The fourth branch,

on the other hand, corresponds to ((ins a)◦; snd+
a
◦ × isList ; snd+

b
◦). The newly in-

troduced, unconstrained value b is represented by ⊥.
Now we build in some extra rules for cons and cons˘:

[[cons]] (-a, x ) = a 	 x [[cons˘]] (a 	 x ) = (-a, x )
[[cons]] (+a, x ) = a ⊕ x [[cons˘]] (a ⊕ x ) = (+a, x )

They correspond to the fact that snd˘; cons = del and snda˘; cons = ins a. Also,
some additional rules for assocr :

[[assocr ]] ((a, +b), c) = (a, (+b, c)) [[assocr ]] (+(a, b), c) = (+a, (+b, c))
[[assocr ]] ((+a, b), c) = (+a, (b, c))

The three clauses correspond to the rules for assocl in the left column of Figure 4.
Finally we need some rules for dup nil and its inverse eq nil :

[[(eq nil)]] (-a, [ ]) = NilTo a [[(dup nil)]] (NilTo a) = (-a, [ ])

which corresponds to the rule snd2
a ˘; eq nil = (λ [ ] → a) in Figure 4.

4 More Examples

In this section we will show more transforms defined in Inv that do satisfy dom getX =
ran putX and how they react to user editing.

4.1 Snoc and List Reversal

The function snoc :: (a,List a) → List a, appending an element to the end of a list,
can be defined recursively as:

snoc = µ(X : eq nil ; dup nil ; cons ∪
(id × cons◦); subr ; (id ×X ); cons)

For example [[snoc]] (4, [1, 2, 3]) = [1, 2, 3, 4]. Conversely, snoc˘ extracts the last ele-
ment of a list. But what is the result of extracting the last element of a list whose
last element was just removed? We expand the base case:

snoc˘
⊇ {fixed-point}

cons˘; eq nil ; dup nil
⊇ {specialising cons ⊇ snd -

a ; del a}
(del a)˘; snd -

a˘; ea nil ; dup nil



= {since snd -
a˘; eq nil = (λ[ ] → a)}

(del a)˘; (λ[ ] → a); dup nil
= {since snd -

a˘; eq nil = (λ[ ] → a) ⇒ snd -
a˘ = (λ[ ] → a); dup nil}

(del a)˘; snd -
a˘

That is, for example, eval snoc˘ (4	[ ]) = (-4, [ ]). Inductively, we have eval snoc˘ (1 :
2 : 3 : 4	 [ ]) = (-4, 1 : 2 : 3 : [ ]), which is reasonable enough: by extracting the last
element of a list whose last element, 4, is missing, we get a pair whose first element
should not have been there.

The ubiquitous fold function on lists can be defined by

fold f g = µ(X : nil˘; g ∪ cons˘; (id ×X ); f )

The function reverse, reverting a list, can be defined in terms of fold as reverse =
fold snoc nil . Unfolding its definition, we can perform the following refinement:

reverse˘
⊇ {unfolding the definitions}

snoc˘; (id × reverse˘); cons

⊇ {by the reasoning above, snoc˘ ⊇ (del a)˘; snd -
a˘}

(del a)˘; snd -
a˘; (id × reverse˘); cons

= {since (f × g); snd -
f a = snd -

a ; g for total f }
(del a)˘; reverse˘; snd -

a˘; cons

⊇ {since cons ⊇ snd -
a ; del a and snd -

a˘; snd -
a = id}

(del a)˘; reverse˘; del a

which shows that reverse˘ regenerates the 	 tags (and, similiarly, ⊕ tags) upon
receipt of the “partial” pairs returned by snoc. For example, we have eval reverse (1 :
2 : 3 	 4 : [ ]) = 4 : 3 	 2 : 1 : [ ] which is exactly what we want. A lesson is that to
deal with lists, we have to first learn to deal with pairs.

4.2 Merging and Filtering

Recall the function merge defined in Section 2.3, merging two sorted lists into one,
while marking the elements with labels remembering where they were from:

merge ([1, 4, 7], [2, 5, 6]) = [L 1,R 2,L 4,R 5,R 6,L 7]

Filtering is an often needed feature. For example, in a list of (author , article)
pairs we may want to extract the articles by a chosen author. The Haskell Prelude
function filter :: (a → Bool) → List a → List a, returning only the elements in the
list satisfying a given predicate, however, is not injective because it throws away
some items. A common scenario of filtering is when we have a list of sorted items
to filter. For example, the articles in the database may be sorted by the date of
creation, and splitting the list retains the order. If we simplify the situation a bit
further, it is exactly the converse of what merge does, if we think of L and R as
true and false!

To make merge work with editing tags, we simply replace every occurrence of
cons with cons, including the cons in (cons × cons). This time the latter shall not
be replaced by sync because we certainly do not want to delete or invent elements
in one list when the user edits the other! This merge does behave as what we would
expect. For example, when an element is added to the split list:

merge (1 : 3⊕ 4 : 7 : [ ], [2, 5, 6]) = L 1 : R 2 : L 3⊕ [L 4,R 5,R 6,L 7]

the new element is inserted back to the original list as well.



5 Conclusion

Bi-directional updating, though an old problem[5, 7, 10, 14, 1], has recently attracted
much interests, each took a slightly different approach according to their target
application. We have developed a formalisation of bi-directional updating which is
able to deal with duplication and structural changes like insertion and deletion.
From a specification X , written as an injective function, we induce two functions
getX and putX that satisfy the important get-put and put-get-put properties. To find
out how putX reacts to user editing, one can make use of algebraic reasoning, which
also provides a hint how the formalisation can be implemented in an interpreter.

Our formalisation deals with duplication and structural changes at the cost of
introducing editing tags, which is okay for our application — to integrate it to our
structural editor in [15]. The complementary approach taken by [11], on the other
hand, chooses not to use any information how the new view was constructed. Upon
encountering inconsistency, the system generates several possible ways to resolve
the inconsistency for the user to choose from. It would be interesting to see whether
there is a general framework covering both approaches.

Another feature of our work is the use of an injective language, and various
program derivation and inversion techniques. The injective language Inv has been
introduced in [13], where it is also described how to automatically derive an injective
variant for every non-injective program. So far we have a primitive implementation.
For an efficient implementation, however, the techniques described in [9] based on
parsing may be of help.

The history of point-free functional languages many be traced to Backus’s FP
[4], although our style in this paper is more influenced by [6]. Readers who tend to
equate the use of point-free languages with being “not practical” should probably
be apprised of the existence of a number of well-established libraries that adopt a
point-free style, such as the XML processing library HaXml [16]. Furthermore, there
is a tedious, uninteresting way of converting a certain class of pointwise functional
programs into Inv. The class of programs is essentially the same as the source lan-
guage in [9], that is, first-order functional programs with disjoint, linear patterns in
case expressions.
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