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Abstract—Goal-oriented adaptation provides a powerful mech-
anism to develop self-adaptive systems, enabling systems to keep
satisfying user goals in a dynamically changing environment. The
goal-oriented approach normally reduces the adaptation planning
as a global optimization process and leaves the system the task of
determining the actions required to achieve the goals. However,
the high computation cost of global optimization prevents a self-
adaptive system from quickly adjusting itself to the dynamically
changing environment at runtime, which is intolerable since
efficiency of planning is of utmost importance in most self-
adaptive systems. On the other hand, rule-based adaptation has
the advantage of efficient planning process since it predefines the
adaptation logic by rules instead of leaving the system the task
of reasoning. To combine the advantages of both approaches, we
propose a novel adaptation framework that can integrate goal
model into rule-based adaptation to make user goals to be better
satisfied efficiently. We have applied the framework to design a
self-adaptive e-commerce website. Our experimental results show
that the proposed framework outperforms both the traditional
goal-oriented approach and the traditional rule-based approach
in terms of adaptation efficiency and effectiveness.

I. INTRODUCTION

Goal-oriented adaptation ([1], [2], [3], [4]) provides a

powerful mechanism to develop self-adaptive systems, enabling

systems to keep satisfying goals in a dynamically changing

environment. It normally reduces the dynamic adaptation as an

optimization process and leaves the system the task to reason

on the actions required to achieve high-level goals, and can

be well combined with online learning process to improve the

accuracy of adaptation decisions ([5], [6]).

Thanks to the automatic optimization and the learning

process, goal-oriented adaptation is capable of dealing with

uncertainty and keeping making optimal adaptation decisions

even when unforeseen conditions occur. However, searching

for optimal decisions is often computationally expensive and

encounters less-efficiency problems. For a big system with

very large searching space, the optimization process would

become impossible since consumed time grows exponentially

with the increases of system features. For example, the online

e-commerce system in Figure 1b (adapted from [2]) has 26
configurable features, which would yield more than ten billion

possible configurations in the searching space. If we would

like to take all 26 features together with their enum values

into account in the optimization process, it would take hours

to search for optimal solutions for each adaptation.

Such less-efficiency problem would prevent a self-adaptive

system from reacting timely to arising situations at run-time,

which is not tolerable since efficiency of planning is of

utmost importance in most self-adaptive systems ([7], [8]). For

example, if the aforementioned e-commerce website cannot

react timely when it suddenly encounters a traffic peak, its

goal of “response in time” will fail and its customers might

leave.

Moreover, too many features would make the learning

process difficult. A self-adaptive system needs to learn from

runtime behaviors to cope with the changing environment, and

this process requires large numbers of observed data to infer

an accurate model to support the optimization process. The

more features are involved in the learning process, the more

observed data is needed. For a sizable system with too many

features, it is often difficult to collect sufficient observed data

timely.

To overcome these limitations, we propose to shrink the

searching space in the optimization process and the amount of

data needed in the learning process by reducing the number of

features. Our idea is to divide the whole features into two sets,

so that the features in one set can be quickly handled by the

goal-oriented adaptation to guarantee certain degree of goal

satisfaction, while the features in the other will be handled

by the rule-based adaptation ([9], [10], [11]) (which has the

advantage of efficient planning process) based on the results

got from the goal-oriented adaptation.

To this end, we should (1) find an effective way to divide the

features so that the subset of the features we have chosen for

the goal-oriented adaptation will lead to good goal satisfaction,

and (2) guarantee that propagating the adaptation results to the

rest features by the rule-based adaptation will do better, not

bringing any bad effect on the results we have got.

Recall that an adaptation rule typically takes the form of

“condition ⇒ action” where condition specifies the trigger of

the rule, which is often fired as a result of a set of monitoring

operations, and action specifies an operation sequence to

perform in response to the trigger. For instance, in the e-

commerce system, we may have the following rule

VerificationType = Strict ∧ Workload = High
⇒ PayLog := None; PayEncryption := None
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saying that when “verification is strict” and “workload is high”,

we should turn off logging and encryption. Generally, the action

of an adaptation rule might be conflict with user goals when the

environments are changed, so it is not easy to combine the goal-

oriented adaptation and the rule-based adaptation. Now which

features shall be involved in the goal-oriented optimization?

How can we guarantee that each individual rule preserves
user goals with synergy between the goal-oriented and the

rule-based adaptations?

Inspired by the idea in bidirectional model transformation

[12] that is originated from the view updating mechanism

in the database community [13], we propose a novel view-

based adaptation framework that can seamlessly integrate these

two adaptation approaches. Here view denotes the planning

results of goal-oriented adaptation that will be preserved by

rule-based adaptation. The main contribution of our research

is summarized as follows:

• We present a novel view-based adaptation framework that

can combine the advantages of both learning-based goal-

oriented adaptation and the rule-based adaptation.

• The framework 1 has been implemented with a newly

developed algorithm for automatic division of the whole

feature sets.

• We have applied the framework to design a self-adaptive e-

commerce website. Our experimental results show that our

framework works more efficiently than the traditional goal-

oriented approach, yielding comparative or even better

goal-satisfaction degrees.

The rest of this paper is structured as follows. Section II in-

troduces some preliminaries required before Section III presents

our framework. Section IV and Section V detail the learning-

based analyzing process and the integrated planning process

respectively. Section VI evaluates the proposed framework.

Section VII introduces and compares some related work before

Section VIII draws our conclusions.

II. PRELIMINARIES

In this section, we will introduce the models used in our

framework.

A. Feature Model

The proposed framework captures the environment and sys-

tem information using environment feature model (e.g., Figure

1a) and system feature model (e.g., Figure 1b) respectively.

A feature in the environment feature model specifies an

environment characteristic, e.g., f1 in Figure 1a specifies the

workload level, while a feature in the system feature model

specifies a system characteristic, for example, f24 in Figure

1b specifies the verification type.

Features in a feature model are organized as tree-like

hierarchy through parental relationships as follows.

• Mandatory: Mandatory feature has to be included if its

parent feature is selected

1The framework is available at http://www.prg.nii.ac.jp/members/stefanzan/viewrule.html.

Log in
LogInLog (f0): logEnum

E-commerce Website 

Environment for the E-commerce Website

WorkloadLevel: levelEnum
ConcurrentUsers: userEnum
AverageVisitTime: timeEnum

Legend
Mandatory Feature

Refinement

LogInEncryption (f1): encryEnum
Browse the List

BrowseListMode (f2): modeEnum
BrowseListCaching (f3)
BrowseListLog (f4): logEnum

Browse the Product
BrowseProductLog (f6): logEnum
BrowseProductRecommendation (f7): recEnum
BrowseProductCustomerReview (f8): revEnum
BrowseProductCaching (f9)
BrowseProductMode (f10): modeEnum

Add into Cart
AddCartLog (f12): logEnum
AddCartEncryption (f13): encryEnum
AddCartRecommendation (f14)

Check the Cart List
CheckCartLog (f15): logEnum
CheckCartEncryption (f16): encryEnum
CheckCartAuthentication (f17): authEnum

Check out
CheckOutLog (f18): logEnum
CheckOutEncryption (f19): encryEnum
CheckOutAuthentication (f20): authEnum

Pay the Order
PayLog (f21): logEnum
PayEncryption (f22): encryEnum
PayAuthentication (f23): authEnum
VerificationType (f24): vtEnum
VerificationDesign (f25): vdEnum

Enum Values

levelEnum: {1, 2, 3, 4, 5}

userEnum: {High, Mid, Low}

timeEnum: {Long, Mid, Short}

logEnum:{Full, Partial, None}

modeEnum: {MM, Picture,Text}

authEnum: {PerSession, PerRequest}

vtEnum: {Strict, Normal, Simple}

vdEnum: {Sequential, Parallel}

encryEnum: {Strict, Normal, Simple, None}

recEnum: {Detail, Simple, None}

revEnum: {Detail, Normal, Simple}

Optional Feature

BrowseListEncryption (f5): encryEnum

BrowseProductEncryption (f11): encryEnum

a) Environment Feature Model

b) System Feature Model

Fig. 1: Example Feature Models or the E-commerce Website

• Optional: Optional feature may be included if its parent

feature is selected

• Alternative: Alternative features are organized in alterna-

tive group. Exactly one feature in such a group has to be

selected if the group’s parent is selected. In this paper, we

treat the alternative features in a group as the alternative

values of the group’s parent feature.

A configuration of the system feature model describes a

member of the product family defined by the feature model.

In a configuration, each system feature is assigned one of

its enum values. The alternative group’s parent feature takes

integer values, e.g., the value of “VerificationType” f23 can

be “1” = “Strict”, “2” = “Normal” or “3” = “Simple”. Other

features take on boolean values, i.e., a feature value can be

either “1” = “selected” or “0” =“not selected”.

A configuration of the environment feature model describes

a possible environment state. Unlike the system features, the

values of environment features cannot be configured by people

or the control system. Their values can only be collected by

monitor through sensors.

B. Non-functional Goals

Goals can be categorized into functional goals that underlie

services the system is expected to deliver, and non-functional

goals that refer to expected system qualities such as security,

safety, performance and usability [14]. Since functional goals
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Fig. 2: An Example Non-functional Goal Model

are normally considered as mandatory goals in self-adaptive

systems, we focus on non-functional goals in this paper.

When making adaptation plans, non-functional goals are

referred as criteria for comparing system configurations and

choosing one that yields a highest satisfaction value of the

root non-functional goal (e.g., “Quality of service” is the root

non-functional goal in Figure 2). The satisfaction value of a

non-functional goal ranges from 0 to 100, and can be calculated

based on its related metric using a utility function. For example,

the related metric of g3 (shown in Figure 2) is “payment

response time” (denoted as m3); the utility function describes

a negative correlation between m3 and g3, where a longer

response time yields a lower satisfaction value.

III. VIEW-BASED ADAPTATION FRAMEWORK

Figure 3 depicts the proposed adaptation framework, which

has the capability to seamlessly integrate goal-oriented and

rule-based adaptation. Here we introduce the concept view to

denote the results of goal-oriented planning, and name the

proposed framework as the view-based adaptation framework.

This view-based adaptation framework follows the MAPE-

K adaptation Loop [7], which stands for Monitor, Analyzer,

Planner and Executor based on Knowledge.

In the loop, Monitor collects information from the environ-

ment and the system, and detects whether changes occur.

Analyzer works to find out which types of environment

changes occur, and then notify the results to Planner. To facili-

tate the integrated planning process, Analyzer is responsible to

divide the system features (SFs) into two sets, i.e., the critical

system features (CSFs) and the non-critical system features

(NSFs). The critical system features have significant impact

on goals, while the non-critical system features do not have

such significant impact.

Planner integrates goal-oriented planning and rule-based

planning, in the sense that

• Goal-oriented planning will be triggered when either the

goal setting (goals and their priorities) has been tuned

or critical environment changes occur. When triggered,

goal-oriented planning searches the configuration space of

CSFs to work out view, which is the optimal configuration

of CSFs given the current goal setting.

• Rule-based planning will be triggered whenever changes

activate a rule in the adaptation rules set. This process

Planner
Rule-based
planning

Goal-oriented
planning

Environment
& System ExecutorMonitor

base
Knowledge

View

Analyzer
Change
analysis

Feature
division

View

ActionsChanges

Goals&
DivisionDivision

Changes

Critical
Changes

Rules&
Division

Records

Fig. 3: Overview of View-based Adaptation Framework

activates an adaptation rule only if the rules’s condition

is true and action preserves view. In this way, rule-based

planning can propagate changes to the whole system

feature model while preserve view, and therefore preserve

the goals.

Executor is to enforce the plan derived from Planner to

implementation. It enforces changes at feature level according

to the planning results firstly. The changes will then be

traced to architecture level changes through model to model

transformation ([15], [16]), and/or to implementation level

changes through model to code transformation [17].

The detailed analyzing and planning process will be further

elaborated in Section IV and Section V respectively.

IV. THE LEARNING-BASED ANALYZER

In this section, we describe the two major processes

Analyzer performs: 1) change analysis that decides the type

of environment changes; 2) feature division that divides the

system features into CSFs and NSFs.

A. Change Analysis

Monitor collects information from the environment and then

detects whether changes occur. For example, when Monitor
has sensed that the workload is in level 5, a change will be

detected if the original value of “WorkloadLevel” is not 5.

Analyzer analyzes the changes detected by Monitor to

decide which types of environment changes occur. Environment

changes can be categorized into two types: critical changes

that have explicit impact on the system behavior patterns, and

non-critical changes that do not have such explicit impact.

For example, the change of “WorkloadLevel” is categorized

as a critical change since it has explicit impact on the

behavior patterns of the website, in the sense that the website

could behave well with strict payment verification type and

multimedia browse mode when the workload is in low level,

but would probably encounter slow response problem when

the workload is in high level.

After that, Analyzer informs Planner its change analysis

results, which will trigger different planning process.
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B. Feature Division

To facilitate the integrated planning process, Analyzer divides

the configurable system features set into two sets: CSFs to be

handled by the goal-oriented planning process, and NSFs to be

handled by the rule-based planning process. CSFs are system

features that have significant impact on user goals, while NSFs

do not have such significant impact.

To decide whether such “significant” impact exists between

system features and goals, the feature division process runs

significance tests based on records collected by Monitor.

A record consists of the observed system feature values and

goal satisfaction values at a specific time point. While a feature

takes integer value, a goal value is a float that ranges between 0
and 100. Table I shows some example records for our running

example, where a record consists of the values of 26 system

features (f1 to f26 in Figure 1b) and the satisfaction degrees

of 6 non-functional goals (g1 to g6 in Figure 2) at a specific

time point. The meaning of feature values and the calculation

of goal values can be referred to Section II.

TABLE I: Collected Records for Significance Tests

No. f0 f1 f2 f3 f4 ... g1 g2 g3 ...
Rec.0 3 3 1 2 2 ... 84.9 49.8 7.8 ...
Rec.1 2 1 3 2 3 ... 83.2 62.2 64.3 ...
Rec.2 2 1 1 2 3 ... 68.8 70 60 ...
Rec.3 2 3 1 2 2 ... 89.6 68.4 89.7 ...

Significance tests are executed based on the collected records.

A significance test will be performed for each goal, and the

significance test for goal gi is conducted according to the

following steps:

1. Specify a significance level α;

2. State the model vgi =
∑m

j=0 βj × vfj , where vgi de-

notes the satisfaction degree of goal gi; vfj denotes the

value of feature fj ; and βj denotes the effect of feature

fj on goal gi;
3. State the null hypotheses for each feature. The null

hypotheses for feature fj is that vfj does not have a

significant effect on vgi ;
4. Compute p value (indicates the probability of the null

hypotheses) for the null hypotheses of each feature. The

detailed computation can be referred to [18].

Feature fj is regarded as a significant feature for gi only if its

p-value is less than α. If a feature has significant impact on at

least one goal, it will be categorized as a critical system feature.

Table II demonstrates an example feature division result for

our running example, where “∗” indicates that a feature has

significant impact on the corresponding goal, e.g., f13, f16 and

f24 have significant impact on g5 while others don’t. In this

case, the CSFs include f2, f3, f9, f10, f13, f16, f24 and f25,

while NSFs include the other 18 features.

After finding out CSFs, Analyzer will estimate the relation-

ship between goals and CSFs as functions (namely, goal-feature

functions) to support the further goal-oriented adaptation. The

estimation is conducted based on records collected by Monitor,

TABLE II: Results of Significance Tests

CSFs NSFs
f2 f3 f9 f10 f13 f16 f24 f25 f0 ...

g1 * * ...
g2 * * ...
g3 * * ...
g4 * * ...
g5 * * * ...
g6 * * ...

where a record consists of the goal values and the CSF values.

The estimation does not tie to specific techniques, and can take

use of techniques like the linear regression, neutral network and

m5 model tree [1], and also other machine learning techniques.

Back to our running example, suppose polynomial regression

is chosen, the goal-feature function for g1 can be learnt through

polynomial regression with its critical features f2 and f10 as

predictor variables. In this case, the goal-feature function is

more likely a segmented function since the impact from features

to goals is considerable influenced by the workload level.

v′g1 ={
9.41 + 17.91× vf2 + 11.09× vf10 workloadLevel < 3
0.91 + 4.37× v2f2 + 3.65× v2f10 workloadLevel ≥ 3

Similarly Analyzer estimates goal-feature functions for other

goals.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v′g2 = 9.75 + 1.06× vf13 + 9.15× vf16
v′g3 = 48.81 + 16.49× vf24 − 3.67× vf25
v′g4 = 72.98− 12.63× vf2 − 11.65× vf10
v′g5 = 143.69− 23.20× vf24 − 12.27× vf13 − 11.2× vf16
v′g6 = −85.93 + 46.51× vf3 + 44.51× vf9

V. THE INTEGRATED PLANNER

One distinguished characteristic of our view-based frame-

work is the integration of goal-oriented planning and rule-based
planning in the sense that the former is responsible for global

optimization and the latter is for local adaptation based on

rules.

In this section, we will detail the process of goal-oriented
planning and rule-based planning respectively.

A. Goal-oriented Planning

Normally, goal-oriented planning reduces the dynamic adap-

tation as an optimization process. It searches the configuration

space of feature model (or architecture model) to reason on an

ideal configuration that can best achieve goals. However, search-

ing for optimal solutions is often computationally expensive,

and even become impossible for big systems.

In our framework, goal-oriented planning works on CSFs

instead of the whole feature set. Since only CSFs are involved

in this process and NSFs are irrelevant, the feature searching

space has been greatly shrunk, which yields a much efficient

searching process.
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E-commerce Website 

BrowseListMode (f2): Text
Browse the List

BrowseListCaching (f3): Not Selected
Browse the Product

BrowseProductMode (f10): Text
BrowseProductCaching (f9): Not Selected

Add into Cart
AddCartEncryption (f13): Strict

Check the Cart List
CheckCartEncryption (f16): Strict

Pay the Order
VerificationType (f24): Strict
VerificationDesign (f25): Sequential

Fig. 4: An Example View of the E-commerce Website

1) The Planning Method: Goal-oriented planning will be

triggered by the changes of goal setting and the critical

environment changes. A goal setting is comprised of a set

of goals and their weights, denoted as

G = {(g1, ωg1), ..., (gn, ωgn)}
where gi is the ith goal and ωgi is the weight of gi. ωgi can

be customized by users and be tuned dynamically at run time.

When the value of ωgi is customized as zero, gi is considered

to be irrelevant.

When triggered, the goal-oriented planning process searches

the configuration space of CSFs to reason on view (denoted

as V ∗), an ideal configuration that can yield a highest goal

satisfaction degree. Defining the overall goal satisfaction degree

as a weighted sum of sub goal satisfaction degrees, we got the

following optimization problem:

V ∗ = argmax
V

∑
(g,ωg)εG

ωg × v′g(V )

where V is a possible configuration of CSFs, i.e., a collection

of selected CSF values, and v′g(V ) represents the predicted

value of vg given V by using the learnt goal-feature functions.

Solving this optimization problem yields view. View will

always be preserved until another goal-oriented planning

process triggered.

2) Example: Back to our running example, suppose the

weights of the six goals are customized as 0.2, 0.15, 0.15 ,
0.2, 0.2 and 0.1 respectively. An optimization problem will be

generated for this case,

V ∗ = argmaxV (0.2v
′
g1(V ) + 0.15v′g2(V ) + 0.15v′g3(V )

+0.2v′g4(V ) + 0.2v′g5(V ) + 0.1v′g6(V ))

where v′gi is the prediction of vgi that has been learnt in Section

IV-B. Here only 8 CSFs (as stated in Section IV-B) are involved

in this searching and optimization process, while the other 18
NSFs are irrelevant. Solving this optimization problem given

“workloadLevel ≥ 3” results in the following solution:

V ∗ = {(f2, 3), (f3, 2), (f9, 2), (f10, 3), (f13, 1),
(f16, 1), (f24, 1), (f25, 1)}

The resulted View has been demonstrated in Figure 4, which is

a configuration of CSFs that can maximize the goal satisfaction

degree given the current goal setting. V ∗ shall be kept until

the next goal-oriented planning process.

B. Rule-based Planning Process
Normally, the adaptation logic of rule-based planning is

prescribed by a set of adaptation rules. An adaptation rule takes

the form of “condition ⇒ action”, where condition specifies

the trigger of the rule, which is often fired as a result of a

set of monitoring operations, and action specifies an operation

sequence to perform is response to the trigger. Generally, the

action in an adaptation rule might conflict with user goals when

the environment or the goal setting has changed unexpectedly,

making it not easy to combine the goal-oriented adaptation

and the rule-based adaptation.
In our view-based framework, rule-based planning is slightly

different from that of the traditional rule-based adaptation, in

the sense that it will preserve view and user goals.
1) The Planning Method: The format of adaptation rules in

our framework is the same as traditional adaptation rules, while

the trigger of rules is slightly different from that in traditional

rule-based adaptation. Here an adaptation rule “condition ⇒
action” will be triggered under the following conditions:

a The condition of rule is true with respect to the monitoring

results, which is also the trigger condition of the traditional

adaptation rules. It worth noting that a rule can only be

triggered when its condition does not conflict with current

V ∗, since goal-oriented planning has already enforced

system changes based on V ∗.

b The action of rule does not do harm to V ∗, which is to

guarantee that the rule execution will preserve V ∗ and

enforce changes only on NSFs.

In our rule-based planning process, the triggered rule set is

selected not only based on the current environment, but also

based on V ∗. In this way, it can guarantee that each triggered

individual rule preserves view and user goals with synergy

between goal-oriented and the rule-based adaptations.
2) Example: Returning to our running example, assume the

following three rules in the rule set.

(r1)ConcurrentUsers = Low ∧WorkloadLevel = 1
∧VerificationType = Normal
⇒ VerificationDesign := Sequential ,PayLog := Full

(r2)ConcurrentUsers = High ∧ VerificationType = Strict
⇒ VerificationDesign := Parallel

(r3)ConcurrentUsers = High ∧WorkloadLevel = 5
∧BrowseProductMode = Text
⇒ BrowseProductLog := Partial

Let’s imagine a scenario where view V ∗ is as Figure 4 shows,

and the environment state is monitored as {“WorkloadLevel=5”,

“ConcurrentUsers=High”, “AverageVisitTime=Long”}. In this

scenario, the condition of r1 is not true with respect to

the environment state and therefore cannot be triggered.

Although the condition of r2 is true, its action does harms to

“f25=1” (“VerificationDesign=Sequential”) in V ∗ so it cannot

be triggered. Accordingly, r3 is the only rule that should be

triggered at this point, so the action of r3 is enforced to

propagate changes: f6:=2 (“BrowseProductLog:=Partial”).
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VI. EVALUATION

We aim to answer the following questions:

Q1: Can our approach improve the planning efficiency

(Section VI-B)?

Q2: Can our approach improve the planning quality (Section

VI-C)?

A. Experiment Design

We have conducted the evaluation based on two e-commerce

websites:

• Ecommer-26: The e-commerce website with 26 config-

urable system features (as shown in Figure 1b).

• Ecommer-18: The e-commerce website with 18 config-

urable system features (removing 8 configurable features

in Figure 1b).

We have established mapping relationship between the system

feature model and system implementation by mapping each

system feature value to a code fragment. When a system

feature is assigned a specific feature value by Planner, the

corresponding code fragment of the selected feature value

would be automatically weaved to the system implementation

by Executor.

The e-commerce websites are deployed on a ThinkCentre

PC with Intel Core i7 3.60 GHz processor and 8 GB RAM,

while the visiting traffic is generated by the PC and a MacBook

Air with Intel Core i5 1.8 GHZ processor and 4GB RAM. The

traffic is simulated using the stress testing tool JMeter installed

in both computers.

The websites may face two kinds of changes at runtime:

1) changes of the environment, i.e., changes of workload, the

number of concurrent users and etc; 2) changes of the goal

setting, i.e., changes of the weights (priority) of goals.

The adaptation objective of the websites is to optimize

the goal satisfaction degree in such dynamically changing

environment. The overall goal satisfaction degree here is

calculated as a weighted sum of the satisfaction degree of

6 non-functional goals (g1 to g6 in Figure 2). Each goal is

related with metrics based on which its satisfaction degree

can be calculated using a utility function (detailed in Section

II-B): g1 with browse response time, g2 with order generation

time, g3 with payment response time, g4 with usability

related feature values (including feature “BrowseProductMode”,

“BrowseProductRecommendation” and etc), g5 with security

related feature values (including feature “VerificationType”,

“PayAuthentication” and etc), and g6 with reliability related

feature values (including “PayLog”, “BrowseProductCaching”

and etc).

For comparison, we have imposed different adaptation logics

into this e-commerce website:

• Random: A base line approach that randomly assigns

values to configurable system features.

• GoalAdap: The traditional goal-oriented adaptation that

searches for a system configuration to optimize goals.

• RuleAdap: The traditional rule-based adaptation that is

supported by predefined adaptation rules.

ViewAdap ViewAdap ViewAdap GoalAdap
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Fig. 5: Time Consumption of the Planning Process

• ViewAdap: The proposed view-based adaptation approach

that combines GoalAdap and RuleAdap.

In this experiment, we have implemented an online learning

process both in GoalAdap and ViewAdap, where the goal-

feature relationship is learnt from the runtime environment to

support the goal-oriented planning.

B. Efficiency Evaluation (Q1)

To evaluate whether the proposed approach improves

efficiency, we set the websites in an adaptation scenario

where workload changes randomly, and apply ViewAdap and

GoalAdap to make adaptation plans. Here we apply three

ViewAdap approaches with significance level α set as 0.01,

0.05 and 0.1 respectively. Recall that α greatly impacts the

number of CSFs and therefore the performance of ViewAdap.

We record the time consumed by each planning process,

and summarize the time consumption using box plot as shown

in Figure 5. Here the vertical axis represents the computation

expense per planning process, which is a logarithm result

of the time consumption (in ms) per planning process, for

the ease of visibility. The left part of Figure 5 reports the

results of Ecommer-18 while the right part reports the results

of Ecommer-26. The results show that all the three ViewAdap
approaches are much more efficient than GoalAdap. Precisely,

GoalAdap spends an average of 92164ms for Ecommer-18
and an average of 260561437ms for Ecommer-26 to make an

adaptation decision, which is too long and can prevent the

self-adaptive system from reacting timely to arising situations

at run-time.

Conclusion. The proposed approach can improve the plan-

ning efficiency of GoalAdap.

C. Effectiveness Evaluation (Q2)

To evaluate whether the proposed approach can improve the

adaptation quality, we set an adaptation scenario based on the

e-commerce websites, and apply Random, RuleAdap, Goal-
Adap and ViewAdap (α=0.05) to handle them respectively.

Figure 6 reports the experiment results, where the changes

occur as follows: 1) the number of concurrent users firstly

increases from 0 to 300 in 30 minutes (denoted as Normal
Changing Traffic), then fluctuates between 100 and 300 for an-

other 30 minutes (denoted as Random Changing Traffic); 2) the

goal setting is initialized to [0.35, 0.25, 0.25, 0.05, 0.05, 0.05],
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(a) Results for Ecommer-18

(b) Results for Ecommer-26

Fig. 6: Goal Satisfaction Degrees in the Adaptation Process

then switches to [0.16, 0.16, 0.25, 0.16, 0.16, 0.16] in the 22nd

minute.

In the two plots of Figure 6, the horizontal axis represents

the time points, and the vertical axis represents the overall goal

satisfaction degrees.

Figure 6a reports the results of ViewAdap, Random and

GoalAdap when handling Ecommer-18. In the first 30 minutes

(with Normal Changing Traffic), ViewAdap and GoalAdap
both yield high goal satisfaction degrees and outperform

Random. Although GoalAdap spends about 90 seconds every

planning process, it still leads to good results since the workload

changes gradually and only small changes can happen in 90 sec-

onds. In the second 30 minutes (with Random Changing Traffic),

GoalAdap performs poorly since unexpected environment

changes might happen before its planning process completes

and therefore it cannot react to the changes timely. On the

contrary, ViewAdap can still yield good goal satisfaction

degrees, since it is quite efficient and therefore can make

timely adaptation decisions.

Figure 6b reports the results of ViewAdap, RuleAdap and

GoalAdap when handling Ecommer-26. Since the performance

of RuleAdap greatly depends on the quality of the prescribed

adaptation rules, we carefully designed a set of rules according

to the initial goal setting. At first, ViewAdap and RuleAdap
lead to comparable goal satisfaction degrees. However, the

results of RuleAdap drop dramatically after the switch of

goal setting in the 22nd minute. This is because the rule set

is designed for the initial goal setting that states a higher

priority of g1, g2 and g3, and does not fit the new goal setting

that assigns all sub goals the same priorities. This reveals

the drawback of the traditional rule-based adaptation, which

is the static adaptation logic that cannot react to changes of

the goal setting. In this scenario, GoalAdap performs poorly

since it takes more than one day to complete a goal-oriented

process, while the experiment only lasts for 1 hour. Therefore,

GoalAdap did not complete even 1 planning process in this

experiment, leading to the results equal to a static approach

that never changes its configuration.

The experiment results show that ViewAdap outperforms

RuleAdap since it can react to dynamic changing goal setting,

and outperforms GoalAdap since its more efficient planning

process.

Conclusion. Our approach can lead to comparable or even

better adaptation quality than GoalAdap.

VII. RELATED WORK

Many efforts have been done on the self-adaptation ([7, 8]).

Among them, the most related includes the MAPE-K framework

([19, 20]), the goal-oriented and rule-based adaptation, and the

dynamic product lines with feature models. Our work follows

the MAPE-K framework but enriches the planning part by

integrating the goal-oriented and rule-based planning.

Goal-oriented modelling approaches have been adopted

widely in adaptive systems ([21, 22]). [23] uses goal model

to specify adaptive requirements, including inferring runtime

monitors, and [24] introduces a variability-intensive approach.

In [25], user goals are refined into alternative functionalities

and a decision-making process is deployed to generate system

design to fulfill user goals. Some works ([21, 22]) use utility

function to describe the dynamic variability for enabling

the online decision-making. Elkhodary et.al [1] proposes

a learning based feature-oriented self-adaptation framework

FUSION, which prunes the feature space by inter-feature

relationship. G.Ghezzi et.al [3] proposes a framework that

supports adaptation to maximize the system’s ability to meet

its non-functional requirements. Chen et.al [2] propose to

combine goal-driven self-adaptation and architecture-based

adaptation. Qian et.al [6] propose a requirements driven

self-adaptation approach that combines goal reasoning and

case-based reasoning. These goal-oriented approaches provide

solutions to enable adaptation plans matching with changed

goals. Our approach integrates goal-oriented planning with

rule-based planning approach, which significantly reduce the

searching space and therefore dramatically lower the execution
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cost of goal-oriented adaptation.

Rule-based adaptation can facilitate efficient adaptation.

Rainbow [10] uses rules to specify the desired adaptive behavior.

A rule-based framework for self-adaptation was proposed

in [26], with the consideration of separation between the

application and the adaptation logic. Acher et.al ([11, 27]) use

adaptation rules to configure the adaptive system with respect

to a particular context. However, the traditional rule-based

adaptation cannot well support rule evolution to cope with

requirements changes and unexpected environment changes.

Our work integrates goal model into rule-based adaptation,

which makes the adaptation logic can be dynamically updated.

Dynamic software product line (DSPL) and feature models

have provided opportunities to dynamic adaptive systems. Many

works ([28, 16, 29]) have been devoted to adopting DSPL to

enable self-adaptation by using feature models as the variability

model. These works, in some extent, bridge the gap between

features and architecture by various approaches. Our work

takes the advantage of the properties of context-awareness,

and resource-aware decision-making, and consistent dynamic

reconfiguration provided by DSPL.

Our work was inspired by the idea in bidirectional transfor-

mation ([12, 30, 31, 32]). Bidirectional transformation is a new

mechanism for maintaining the consistency of two different

information originated from the view updating mechanism in

the database community ([13]). Different from the existing

approaches, this work can be considered as the first attempt to

construct adaptive systems in a view-based adaptation way.

VIII. CONCLUSION

We propse a novel approach to combining the goal-oriented

and rule-based adaptation for tackling the inefficiency issue in

the traditional goal-oriented adaptation. Our novel view-based

framework shows synergy between goal-oriented planning
and rule-based planning, where the former is responsible for

global optimization (on a subset of important features) and

the latter is for local adaptation based on the adaptation logic.

Thus, it combines the strengths of the rule-based and goal-

oriented adaptation approaches and enjoys the advantages of

both. The application to the construction of an online self-

adaptive shopping system shows that our approach outperforms

the existing goal-oriented and rule-based approaches.

As a future work, it should be interesting to consider other

realistic context models by taking account of behavior of system

components. This would make adaptation actions be applicable

to wider realistic situation.
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