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ABSTRACT
The metamodel techniques and model transformation tech-
niques provide a standard way to represent and transform
data, especially the software artifacts in software develop-
ment. However, after a transformation is applied, the source
model and the target model usually co-exist and evolve in-
dependently. How to propagate modifications across models
in different formats still remains as an open problem.

In this paper we propose an automatic approach to syn-
chronizing models that are related by model transforma-
tions. Given a unidirectional transformation between meta-
models, we can automatically synchronize models in the
metamodels by propagating modifications across the mod-
els. We have implemented a model synchronization system
supporting the Atlas Transformation Language (ATL) and
have successfully tested our implementation on several ATL
transformation examples in the ATL web site.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Algorithms, Design, Languages

1. INTRODUCTION
Model transformations play an important role in Model-

driven architecture(MDA), an approach to software develop-
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ment, which provides a way to organize and manage software
artifacts by automated tools and services for both defining
models and facilitating transformations between different
model types. Writing model transformations is becoming
a common task in software development.

ATL [17] is a practical model transformation language
that has been designed and implemented by INRIA to sup-
port specifying model transformations that can cover differ-
ent domains of applications [1]. As a simple running exam-
ple which will be used throughout this paper, consider the
following UML2Java transformation in ATL.

module UML2Java;
create OUT : Java from IN : UML;
rule Class2Class {

from u : UML!Class (
not u.name.startsWith(’__draft__ ’)

)
to j : Java!Class (

name <- u.name ,
fields <- u.attrs

)
}
rule Attribute2Field {

from a : UML!Attribute
to f : Java!Field (

name <- ’_’ + a.name ,
type <- a.type

)
}

It uses two rules to transform a simple Unified Modeling
Language (UML) model to a simple Java model. Roughly
speaking, it maps each UML class whose name does not
start with “ draft ” to a Java class with the same name,
and each attribute of the class to a field of the corresponding
Java class where the field name is the attribute name with
an additional prefix “ ”. For instance, this transformation
maps the UML model (in XMI [24])

<Class name="Book" description="a demo class">
<attrs name="title" type="String"/>
<attrs name="price" type="Double"/>

</Class >
<Class name="__draft__Authors"/>

to the following Java model (in XMI):
<Class name="Book">

<fields name="_title" type="String"/>
<fields name="_price" type="Double"/>

</Class >

Despite a bunch of interesting applications of model trans-
formations in software development, there is little work on
a systematic method to maintain models at different stages
of the software development. Models may be changed in



both source and target sides after transformation. For the
above example, suppose a group of designers and a group of
programmers are working on the models at the same time.
The designers may want to add a new attribute authors to
the Book class on the UML model

<Class name="Book" description="a demo class">
<attrs name="title" type="String"/>
<attrs name="price" type="Double"/>
<attrs name=" authors" type="String"/>

</Class >
<Class name="__draft__Authors"/>

while at the same time the programmers may change the
field name title to bookTitle, delete the field price

from the Java model, and add a new comment to the Book

class.
<Class name="Book">

<fields name=" bookTitle" type="String"/>
<comment text=" bookTitle cannot be null"/>

</Class >

Now the UML model and the Java model become inconsis-
tent and need to be synchronized. Simply performing the
UML2Java transformation again is not adequate because the
modifications on the Java model will be lost.

There are many challenges in automatically synchronizing
these two models related by a model transformation. First
and most importantly, in order to establish and maintain
consistency, we need to precisely define what it means for
two models to be synchronized. Although there are several
general model synchronization frameworks [15, 16, 8] and
many specific code-model synchronization tools such as Ra-
tional Rose [25], there is, as far as we are aware, no clear
semantics for model synchronization in the context where a
model transformation is formally given.

Second, we need an automatic way to derive from a given
transformation enough necessary information, forward and
backward, such that not only modifications on the source
model can be automatically propagated to the target model,
but also modifications on the target model can be auto-
matically reflected back to the source model. The existing
model synchronization systems [25] and model synchroniza-
tion frameworks [15, 16, 8] cannot work well here, because
they require users to explicitly write synchronization code to
deal with each type of modification on each type of model.
This makes it hard to guarantee consistency between the
synchronization code and the transformation code, let alone
to say consistency between the two models.

Third, the method should be able to deal with general
model transformations described in general transformation
languages. In fact, the more restriction we impose on a
model transformation, the easier but less useful the derived
model synchronization process will be. Therefore, we should
target a class of practically useful model transformations in
order to obtain a useful model synchronization system.

In this paper, we report our first attempt towards auto-
matically constructing a model synchronization system from
a given model transformation described in ATL. Our main
contributions can be summarized as follows.

• We define a clear semantics of model synchronization
under the context where two models to be synchro-
nized are related by a model transformation. Our
semantics precisely characterizes the behavior of the
synchronization process with four important proper-
ties, namely stability, information preservation, modi-
fication propagation and composability, which provide

users a clear image of what models will be after syn-
chronization. These properties were much motivated
by studies on updating semantics of database views [7]
and the well-definedness of bidirectional tree transfor-
mation [12, 20]. We are the first who adapted these
results to solve the model synchronization problem.

• We propose a new model synchronization approach
that can automatically synchronize two models related
by a transformation described in ATL, without requir-
ing users to write extra synchronizing code. The model
synchronization process satisfies the required proper-
ties and ensures correct synchronization of models.
Different from the existing bidirectional tree transfor-
mations working on high level functional programs [12,
20], our approach works on low level byte codes, which
allows us to target more general transformation pro-
grams and cover the full ATL.

• We have implemented a model synchronization sys-
tem by extending the ATL Virtual Machine (VM),
the interpreter of ATL byte-code, and have success-
fully tested several ATL transformation examples in
the ATL web site [1]. The current prototype system is
available at our web site [2].

The rest of the paper is organized as the follows. We start
by defining semantics of model transformation of two models
that are related by a model transformation in Section 2. We
then show how to automatically synchronize models from a
model transformation in Section 3 and Section 4. We give
a case study to illustrate the feasibility of our system in
Section 5. Finally, we discuss related work in Section 6 and
conclude the paper in Section 7.

2. SEMANTICS OF MODEL SYNCHRONIZA-
TION

The semantics of model synchronization characterizes the
behavior of the synchronization process. A well-defined se-
mantics offers users clear information on what their models
should be after synchronization. This will increase the con-
fidence of users to deploy automatic model synchronization
in practical software development.

2.1 Model and Synchronization
In concepts, items in sets are not indexed. However, in

physical implementations, we are always able to refer to
items in sets by some kind of pointers or indexes. For exam-
ple, the two model elements in the UML model in Section 1
can be referenced by XLink "/0" and "/1". We abstract
these pointers and indexes as unstructured addresses.

In Meta-Object Facility (MOF), a model is a set of model
elements and a model element consists of a set of attributes,
each having an attribute name and storing a value or a set
of value. We call the addresses of model elements as model
references and the addresses of values as value addresses. In
addition, we consider an attribute storing only one value as
an attribute storing a collection that contains only one value
for simplicity.

In our semantics, a model is a function mapping from
model references to model elements, and each model element
is a function mapping from attribute names to containers.
A container is a function mapping from value addresses to



values. A value can be a model reference, a null value or a
value of boolean, string or integer. A null value means an
undefined value. Models can be constrained by a metamodel.
In other words, a metamodel includes a set of models sharing
the same structure constraints.

There are several notations to be used in the following
presentation. The notation m is used for denoting a model,
r for a model reference, n for an attribute name, d for a value
address and v for a value or a model element. Given two
metamodels S and T , the model transformation f : S → T
is a partial function that takes a model in S and produces
a model in T .

In our approach, a synchronization process with respect
to a given transformation f : S → T is a partial function
with the following signature: syncf : S × S × T → S × T
which takes as input the original source model, the modified
source model and the modified target model, and produces
the synchronized source model and target model. Note that
syncf does not need the original target model since it can
be obtained by applying f to the original source model.

2.2 Modification Operators on Model
In Figure 1 we define three modification operators replace,

delete and insert, which perform replacement, deletion
and insertion to models respectively, as indicated by their
names. In this section, these operators help define the se-
mantics of model synchronization; in the next section, they
are used by the extended transformation system to imple-
ment the putting-back functions. These operators may take
two or three parameters. The first parameter m is the model
to be modified. The second parameter obj specifies the lo-
cation in the model where a value or a model element is to
be modified. The parameter obj can be (r,⊥,⊥) specifying
a model element, or can be (r, n, d) specifying a value in a
container of a model element. Here ⊥ means an unspecified
part. The third parameter v, if available, is a new model
element or a new value. In the definition of these operators,
the notation f [k 7→ v] means a function that maps k to v
and maps any other value k′ 6= k to f(k′).

Suppose M is the collection of model elements. We define
a modification operation φ as a function φ : M →M special-
ized from one of the above operators by providing obj and,
if necessary, v. For instance, the modification operation φ
defined by φ(m) = delete(m, (r,⊥,⊥)) denotes deleting the
model element referred by r. Users may modify a model in
many places at one time. This is modeled by a sequence of
modification operations φ1◦φ2◦ . . .◦φn. We use ψ to denote
a sequence of modification operations.

If two modification operations affect different parts of a
model, they are said to be distinct, as defined below.

Definition 1. Let op1, op2 ∈ {replace, delete, insert}.
Operations op1(m, (r1, n1, d1), v1) and op2(m, (r2, n2, d2), v2)
are distinct if i1 6= i2 ∧ i1 6= ⊥ ∧ i2 6= ⊥ where i can be r, n
or d.

For distinct modification operations in a sequence, we can
change their order without affecting modification result since
they affect different parts of a model. On the other hand,
any sequence of non-distinct operations can be converted to
a sequence that only contains distinct operations. For ex-
ample, if an operation to change the attribute of a model
element into “a” is followed by another operation to change
the same attribute into “b”, then it is sufficient to use the

second operation to represent this sequence. Due to this,
we only consider sequences with distinct modification oper-
ations in the following presentation, and assume Ψ to be the
set of all such sequences.

Another property of modification operations is that the
effect of applying the same sequence of operations twice is
the same as the effect of applying the sequence once. Thus
ψ, a sequence of modification operations, is idempotent:

∀ψ ∈ Ψ, and a model m.ψ(ψ(m)) = ψ(m)

This property will be used to check whether a modification
sequence ψ has been applied to a model or not when we
define properties of synchronization in Section 2.3. If we
apply ψ to the model and the model remains the same, then
ψ has already been applied to the model.

Some modifications to one model cannot be propagated
to the other model. For the UML2Java example, the modi-
fication to the comment attribute in the Java model cannot
be propagated to the UML model since there is no corre-
sponding attribute. The operations performing such modi-
fications are said to be non-reflectable, and otherwise they
are reflectable.

Definition 2. Given a transformation f : S → T . A
modification operation φt is reflectable w.r.t f if for any
s ∈ S, there exits a modification operation φs such that
f(φs(s)) = φt(f(s)).

Suppose ψ = φ1 ◦ φ2 ◦ . . . ◦ φn, we use the notation ψ|f
to denote the sequence of all non-reflectable operations in ψ
w.r.t f . That is, ψ|f = φk1 ◦ φk2 ◦ . . . ◦ φkm , where for any
i ∈ {k1, k2, . . . , km}, φi is non-reflectable w.r.t f and for any
j, 1 ≤ j ≤ n ∩ j /∈ {k1, k2, . . . , km}, φj is reflectable w.r.t f .

2.3 Properties of Synchronization
We formalize the semantics of model synchronization by

four important properties: stability, preservation, propaga-
tion and composability, which is inspired by those in the
area of view update and bidirectional tree transformations
[7, 12, 20]. In the following, we will describe what each of
these properties means for model synchronization, and dis-
cuss its relations with the corresponding properties in the
literature [7, 12]. Note that all these properties apply only
when the execution of syncf process is successful.

The stability property says if neither the source model nor
the target model is modified, the synchronization process
should not modify any of them.

Property 1. (Stability). syncf (s, s, f(s)) = (s, f(s))

The stability property corresponds to the GETPUT property
[12] and the acceptable condition [7].

The preservation property states that the synchronization
process should keep the modifications to source models and
target models after synchronization.

Property 2. (Preservation). Given f : S → T , s ∈ S,
ψs, ψt ∈ Ψ. If syncf (s, ψs(s), ψt(f(s))) = (s′, t′), then we
have ψs(s

′) = s′ and ψt(t
′) = t′.

By this property, for the UML2Java example in Section 1,
programmers can expect their modifications on comment and
bookTitle are kept on the Java model after the synchro-
nization, while designers can expect the authors attribute
still appears on the UML model. The preservation property



replace(m, obj, v) =

{
m[r 7→ m(r)[n 7→ m(r)(n)[d 7→ v]]], if obj = (r, n, d) and m(r)(n)(d) is defined;
m, otherwise.

delete(m, obj) =

 m[r 7→ m(r)[n 7→ m(r)(n)[d 7→ ⊥]]], if obj = (r, n, d);
m[r 7→ ⊥], if obj = (r,⊥,⊥);
m, otherwise.

insert(m, obj, v) =

 m[r 7→ m(r)[n 7→ m(r)(n)[d 7→ v]]], if obj = (r, n, d) and m(r)(n)(d) is undefined;
m[r 7→ v], if obj = (r,⊥,⊥);
m, otherwise.

Figure 1: Operators on Models

gets inspired by the PUTGET property [12] and the consis-
tent condition [7], but these existing properties are defined
in the situation where only views can be modified and thus
concerns only preservation of modifications to views.

The propagation property guarantees the correct propa-
gation of modifications among models.

Property 3. (Propagation). Given f : S → T , s ∈ S,
ψs, ψt ∈ Ψ. If syncf (s, ψs(s), ψt(f(s))) = (s′, t′), then we
have ψt|f (f(s′)) = t′.

That is, the synchronized target model t′ contains all those
modifications in ψs if they are applied to values used by
transformation f , and the synchronized source model s′ con-
tains all reflectable modifications in ψt. The rationale be-
hind this property is that if one reflectable modification in
ψt is not in s′, then it cannot be generated by applying f
to s′, and thus the equation ψt|f (f(s′)) = t′ cannot hold;
if one modification in ψs is not in t′ but will be brought
into the target model by f , then t′ cannot equal ψt|f (f(s′))
because f(s′) includes this modification. This property also
gets inspired by the PUTGET property [12] and the consis-
tent condition [7]. However, this property concerns two-
way propagation of modifications and allows non-reflectable
modifications on target models.

The last property we consider is composability. Intuitively,
this property says synchronizing twice with two sequences
of operations will have the same effect as synchronizing once
with one sequence of operations that is composed from the
two sequences of operations.

Property 4. (Composability). Given f : S → T , s ∈ S,
ψs, ψs′ , ψt, ψt′ ∈ Ψ. If syncf (s, ψs(s), ψt(f(s))) = (s′, t′)
and syncf (s, ψs′(s′), ψt′(t

′)) = (s′′, t′′) hold, then we have
syncf (s, ψs′(ψs(s)), ψt′(ψt(f(s)))) = (s′′, t′′).

This property corresponds to the PUTPUT property [12] and
gives users the freedom of performing synchronization at the
time they want.

3. BACKWARD PROPAGATION OF MOD-
IFICATIONS

To synchronize two models related by a model transfor-
mation, we need to propagate modifications between the
source model and the target model. The propagation of
modifications from the source model to the target model,
i.e., the forward propagation, can be carried out by running
the model transformation again. However, the propagation
of modifications from the target model to the source model,
i.e., the backward propagation, cannot get direct help from
this transformation.

Table 1: The Core Instructions of ATL Byte-code
instructions description
push push a constant to the stack
pop pop the top of the stack
store store a value into a local variable
load load value from local variable
if branch if the top of the stack is true

iterate delimitate the beginning of iteration on
collection elements

enditerate delimitate the end of iteration on collec-
tion elements

call call a method
new create a new model element
get fetch an attribute of a model element
set set an attribute of a model element

In this section, we will propose a technique to imple-
ment the backward propagation by extending the ATL Vir-
tual Machine (VM). If we execute a transformation on the
extended ATL VM, we will get a target model with ex-
tended model elements and extended values, and also a set
of validity-checking functions. Extended model elements
and extended values contain putting-back functions. If later
users modify the model, we can use the functions on the
modified values and model elements to reflect back the mod-
ifications. The validity-checking functions are used to check,
after backward propagation, whether the modified values in
the source model are valid in that they do not change the ex-
ecution path of the transformation over this updated source
model. This is to guarantee that the preservation property
is satisfied by our model synchronization process.

3.1 ATL Byte-code
An ATL transformation program is first compiled into

ATL byte-code and then executed on the ATL VM. The
ATL VM, like the Java virtual machine, contains a stack to
hold local variables and partial results. An ATL byte-code
program consists of a sequence of instructions. A summary
of the core ATL instructions is given in Table 1. The full
specification of ATL byte-code and the ATL virtual machine
can be found at the ATL web site [1].

As a simple example, the rule Attribute2Field in the
UML2Java transformation in Section 1 can be written in
byte-code, as shown in Figure 2. The first three lines return
a list containing all UML!Attribute instances in the source
model. Then instructions between Line 4 and Line 19 iterate
on the list. Each instance is stored in a variable a (Line
5) and for each instance, a Java!Field model element is
created (Line 6-7) and stored in a variable f (Line 8). Then
the name attribute of the variable a is concatenated with “ ”



1 push "UML!Attribute"
2 push "IN"
3 call "S.allInstancesFrom(S):QJ"
4 iterate
5 store "a"
6 push "Java!Field"
7 new
8 store "f"
9 load "f"

10 push "_"
11 load "a"
12 get "name"
13 call "S.Concatenate(S):S"
14 set "name"
15 load "f"
16 load "a"
17 get "type"
18 set "type"
19 enditerate

Figure 2: Byte-code for Attribute2Field

(Line 10-13) and set to the name attribute of the variable
f (Line 9 and 14). The type attribute of the variable a is
retrieved (Line 16 and 17) and set to the type attribute of
the variable f (Line 15 and 18).

3.2 Extending the ATL Virtual Machine (VM)
In the extended VM, each model element and each value

are associated with a set of putting-back functions: rep,
del, sat r, sat d and val. The function rep is to be called
when the value is replaced, the function del is to be called
when the value or the model element is deleted, the function
sat r is used to check whether the replacement is valid to
be put back, the function sat d is used to check whether
the deletion is valid to be put back, and the function val is
used to reevaluate the value or the model element from the
source model.

Specifically, we made three extensions to the ATL VM.
The first is that the model elements or values in source
models are extended with putting-back functions when the
models are loaded. The second extension is to extend the
semantics of each ATL byte-code instruction, which, if gen-
erating new values, also associates the generated values with
appropriate putting-back functions. In addition, each if in-
struction also generates a validity-checking function to en-
sure that its condition is still satisfied after propagating
modifications into source models. The third extension is
made on the ATL library methods, such as Concatenate and
startsWith, such that the values returned by these meth-
ods are also associated with putting-back functions. In most
methods and some instructions, new values are created by
composing existing values. In those cases, the putting-back
functions of new values are built by composing the putting-
back functions of existing values. In this way, a call to a
putting-back function of a new value will invoke a series of
calls to functions of existing values, and will eventually call
putting-back functions of values in the source model to up-
date the source model if necessary. Therefore when a model
element or a value in the target model is modified (replaced
or deleted), we can call appropriate putting-back functions
to propagate the modification back into the source model.

3.2.1 Extending Source Models
The model elements and values in source models are ex-

tended before transformations. This is done when the ATL
VM loads source models into its runtime environment.

Suppose v is a value at the location of m(r)(n)(d). v′ is a
new value to replace the original one. Then its extension is
represented as (v, ext), where ext = (rep, del, sat r, sat d,
val) and each function in this tuple is defined as below with
the operators in Figure 1.

rep(m, v′) = replace(m, (r, n, d), v′)
del(m) = delete(m, (r, n, d))
sat r(v′) = true
sat d() = true
val(m) = m(r)(n)(d)

Here the functions rep and del replace and delete the value
in the source model, respectively. The sat r and sat d func-
tions always return true, meaning that the associated value
can always be replaced or removed. The val function just
returns the value from the source model.

The extension to the model element v = m(r) is rep-
resented as (v, ext), where ext = (rep, del, sat r, sat d,
val). These functions are defined as below.

rep(m, v′) = m
del(m) = delete(m, r)
sat r(v′) = false
sat d() = true
val(m) = m(r)

These functions have the same meaning as the above ones.
Note currently we do not support replacing a model element,
so the rep function does nothing and the sat r always re-
turns false.

3.2.2 Extending ATL Byte-code Instructions
Some instructions of ATL byte-code do not change or cre-

ate values or model elements, but move values among dif-
ferent parts (e.g. from a local variable to the stack) of the
running environment. The instructions pop, store, load,
get in Table 1 belong to this case. We extend these instruc-
tions so that they not only move the original value but also
the putting-back functions. Although the set instruction
modifies model elements, we treat it as an instruction mov-
ing a value from the stack to a model element and extend
the set instruction in the same way.

In the following, we explain how to extend the instruc-
tions push, iterate, enditerate, new and if. The call

instruction is discussed in the next subsection.

push cst
The original semantics of this instruction is to push the

constant cst onto the top of the operand stack. For example,
the instruction at line 10 in Figure 2 pushes a constant string
’ ’ to the stack. In the extended ATM VM, the system
pushes an extended constant (cst , ext), where ext = (rep,
del, sat r, sat d, val), and these putting-back functions
are defined as below.

rep(m, v′) = m
del(m) = m
sat r(v′) = if v′ = cst then true else false
sat d() = false
val(m) = cst

Since the modifications on cst cannot be reflected back to
the source model, we do not allow replacing or deleting this
value. So the rep and del functions do nothing; the sat r

and sat d functions always return false.



new, iterate and enditerate

The new instruction creates new target model elements.
However, this instruction provides no information of what
source model element or source value corresponds to the new
target model element.

To create a collection of target model elements, usually we
have to traverse a collection of values or model elements, and
create a target model element for each item in the collection.
Thus items in the collection can be considered as sources of
the target model elements. For the example in Figure 2, a
set of Field model elements is created when traversing the
set of Attribute model elements in the source. In ATL byte-
code the only way to traverse a collection is the iterate and
enditerate instructions.

Based on the above observation, we create a stack called
IterObjs in the runtime environment to remember the ob-
jects being iterated. The iterate instruction pushes the
object being iterated onto the IterObjs stack, while the
enditerate instruction pops off the top object from the
IterObjs stack. For the model element created by the new

instruction, it copies the putting-back functions from the ob-
ject at the top of the IterObjs stack. If a model element is
created outside any iteration, it is considered as a constant
and the putting-back functions for constants are associated
to the model element.

if l
The if instruction jumps to the instruction with label l

if the value at the top of the operand stack is true, other-
wise it falls through to the next instruction. We call the
value at the top of the stack the condition value of the
if instruction. If we execute the transformation again af-
ter backward propagation of modifications, some condition
values may become different from their values before back-
ward propagation. This will change the execution paths of
the transformation, and probably generate target models in
which the user modifications are lost. In our synchronization
algorithm, this will violate the preservation property.

In our running example, a Java!Class model element is
generated only when the name attribute of the UML!Class

model element does not start with draft . Suppose a user
happens to change the name attribute of a Java!Class model
element to a value starting with draft . After propa-
gating modifications backward and transforming again, this
model element will disappear on the target model.

To prevent such cases, we require that modifications by
users should not cause a condition value to be different be-
fore and after backward propagation. Our solution is that
when executing an if instruction, the system will generate a
validity-checking function sat c, and store the function into
a set Θ. After backward propagation, this validity-checking
function is used to recompute the condition value of this
if instruction and check whether it is the same as before
backward propagation. If not, the system reports an error.

Suppose when executing an if instruction, its condition
value is (v, ext), where ext = (rep, del, sat r, sat d, val).
Then the function sat c generated for this if instruction is:
sat c(m) = if val(m) = v then true else false.

After backward propagation, the system calls all validity-
checking functions in Θ and reports a failure if a function
returns false.

3.2.3 Extending ATL Library Methods

The call instruction is to call ATL library methods. These
methods are implemented in Java, not ATL byte-code, so we
need to extend them to return extended model elements or
extended values. In the following, we will explain how to
extend ATL library methods concatenate and startsWith

as examples.
The methods concatenate and startsWith both take as

arguments the first two strings at the top of the operand
stack. Suppose the two arguments for both concatenate

and startsWith methods are (str1 , ext1) and (str2 , ext2),
where ext1 = (rep1, del1, sat r1, sat d1, val1) and ext2 =
(rep2, del2, sat r2, sat d2, val2).

For the concatenated string returned by the concatenate

method, its putting-back functions are (rep, del, sat r,
sat d, val), as defined below:

rep(m, v′) = repx(m, v′, 0)
repx(m, v′, i) =
if sat r1(head(v′, i)) and sat r2(tail(v′, len(v′)− i)) then
rep1(rep2(m, tail(v′, len(v′)− i)), head(v′, i))

else repx(m, v′, i + 1)
del(m) = if sat d1(m) then del1(delx(m)) else delx(m)
delx(m) = if sat d2(m) then del2(m) else m
sat r(v′) = sat rx(v′, 0)
sat rx(v′, i) =
if i ≤ len(v′) then
if sat r1(head(v′, i)) and sat r2(tail(v′, len(v′)− i))
then true
else sat rx(v′, i + 1)

else false
sat d() = sat d1() or sat d2()
val(m) = val1(m)⊕ val2(m)

The function tail(v′, l) extracts the tail substring of
string v′ of length l; the function head(v′, l) extracts the
leading substring of string v′ of length l. The operator ⊕ is
used to concatenate two strings. For a modified string, we
try out all possible ways to split the string into two parts.
If the two parts are both accepted by the sat d functions
of the original strings, we invoke the rep functions of the
original strings with the two parts. For a deleted string, we
deleted the two original strings. As long as strings are sep-
arated with constants, we can ensure a reasonable putting-
back behavior.

For the boolean value returned by the startsWith method,
its putting-back functions are defined as below.

rep(m, v′) = m
del(m) = m
sat r(v′) = false
sat d() = false
val(m) = substr(val1(m), val2(m))

Boolean values returned by the startsWith method can-
not be modified, but these values can be reevaluated by call-
ing the val function. The substr checks whether the first
argument is the leading substring of the second argument.

4. SYNCHRONIZATION
In this section we show how to realize our model synchro-

nization process (as defined in Section 2)

syncf : S × S × T → S × T

based on (1) a given transformation f : S → T which shows
how to map the source model (including its modification) to
the target model, and (2) the derived putting-back functions
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(in Section 3) which shows how to reflect modifications (re-
placements and deletions) on target models back to source
models. We shall illustrate our synchronization algorithm
by our running example, and explain intuitively that our
synchronization satisfies the properties in Section 2.

4.1 Synchronization Algorithm
An overview of our synchronization algorithm is shown in

Figure 3. The synchronization algorithm takes as input

• the original source model Src0,
• the modified source model Src1,
• the modified target model Tgt1, and
• the transformation f that can generate a target model

from a source model

and returns as output

• the synchronized source model Src2, and
• the synchronized target model Tgt2.

It should be noted that our synchronization algorithm makes
use of the original source model. This is in sharp contrast
to other systems [4, 13, 18], and it contributes much to the
good properties of our system (see Section 4.2).

The basic idea of the algorithm is: first put back the modi-
fications on the target into the source and merge with mod-
ifications on the source, then reproduce the target model.
The synchronization process in all has seven steps, which
will be informally illustrated through our running example
of UML2Java in Section 1, where all inputs have been given.

Step 1: Generating the original target model
This step simply applies the transformation to the original

source model to obtain the original target model Tgt0. For
our UML2Java example, it is the first Java model in the
introduction.

Step 2: Deriving modified target model with modi-
fication tags

We use modification tags to indicate the modifications
that users have performed on models. Modification tags can
be annotated on primitive values and on model elements,
and are defined below:
ModTag = {Non, Rep, Ins, Del}

The tag Non, often being omitted, indicates a value or a
model element has not been modified. The tag Rep indi-
cates a primitive value has been replaced by another prim-
itive value. The tag Ins indicates a model element or a

primitive value in a collection is inserted by users. The tag
Del indicates a model element or a primitive value in a col-
lection is deleted by users.

Our algorithm can integrate with the existing differencing
algorithms [3, 21] to find what modifications that users have
made on the target model. The differencing procedure com-
pares the original model and the modified model, and pro-
duces a new model annotated with modification tags. For
our running example, differencing the original Java model
with the modified Java model yields the following tagged
model Tagged Tgt, where modification tags are annotated
as superscripts.

<Class name="Book">
<fields nameRep="_bookTitle" type="String"/>
<fieldsDel name="_price" type="Double"/>Del

<commentRep text="_bookTitle cannot be null"/>Ins

</Class>

It should be noted that adding the comment to the class
needs two modifications. First a new Comment model element
needs to be inserted. We put this tag at the end of the model
element. Second the comment attribute of the class needs to
be modified from null to the reference to the comment.
We put this tag on the attribute name. The same tagging
method is used for the deleted price field.

Step 3: Reflecting modifications on the target model
back to the source model

We apply the technique described in Section 3 to put back
all reflectable modifications annotated in the model Tagged
Tgt1 back to the source model, resulting in an updated
model Inter.Src (i.e., an intermediate source model).

It is possible that multiple modifications are reflected to
one value or one model element. In this case, the algorithm
uses rules in Tables 2 and 3 to merge the modifications.
When the algorithm is going to change a single value or a
model element, it looks up the table by matching the original
single value or model element with v1 or e1 and the single
value or model element to be changed to with v2 or e2. If
there is a “conflict” in the result column, the system will
halt and report an error.

<Class name="Book" description="a demo class">
<attrs nameRep="bookTitle" type="String"/>
<attrsDel name="price" type="Double"/>Del

</Class>
<Class name="__draft__Authors"/>

Note that the inserted comment on the target model is
not necessary to be reflected to the source model. This
is because the given transformation program does not pro-
duce the Comment model element and this is a non-reflectable
modification. There will be no putting-back functions gen-
erated for this inserted comment model element. We will dis-
cuss more on how to identify non-reflectable modifications
in Step 7.

Step 4: Deriving modified source model with modi-
fication tags

This step is similar to Step 2 except that it is applied to
the source model instead of the target model. Differenc-
ing the original source model Src0 with the modified source
model Src1, this step produces a tagged model Tagged Src.

<Class name="Book" description="a demo class">
<attrs name="bookTitle" type="String"/>
<attrs name="price" type="Double"/>
<attrsIns name="authors" type="String"/>Ins



Table 2: Rules for merging tagged values v1 and v2
v1.tag v2.tag condition result
Non - - v2
Del Del/Non - v1
Del Rep/Ins - conflict

Rep/Ins Rep/Ins v1 = v2 v1
Rep/Ins Rep/Ins v1 6= v2 conflict
Rep/Ins Del - conflict
Rep/Ins Non - v1

Table 3: Rules for merging tagged model elements
e1 and e2

e1.tag e2.tag result tag
Non Del/Non/Ins e2.tag
Del Del/Non Del
Del Ins conflict
Ins Ins/Non Ins
Ins Del conflict

</Class>
<Class name="__draft__Authors"/>

Step 5: Merging two modified source models
Tagged Src contains modifications on the source model

and Inter.Src contains modifications on the target model.
Then the algorithm uses a merging process to merge the
two models into one by comparing the modification tags
according to the rules in Tables 2 and 3. After merging,
the merged model Src2 should have the modifications from
both sides if there is no conflict. Otherwise, a conflict error
should be reported.

<Class name="Book" description="a demo class">
<attrs nameRep="bookTitle" type="String"/>
<attrsDel name="price" type="Double"/>Del

<attrsIns name="authors" type="String"/>Ins

</Class>
<Class name="__draft__Authors"/>

Step 6: Propagating all modifications on the source
model to the target model

In order to propagate the merged modifications to the
target side, we apply the transformation on Src2 and get
Inter.Tgt (i.e. an intermediate target model).

<Class name="Book">
<fields nameRep="_bookTitle" type="String"/>
<fieldsDel name="_price" type="Double"/>Del

<fieldsIns name="_authors"/>Ins

</Class>

Step 7: Supplementary merging on target models
Inter.Tgt now should contain the modifications on the

source model and the reflectable modifications that have
been reflected from the target model to the source. Yet
the non-reflectable modifications are still missing. To merge
such modifications, we copy the non-reflectable modifica-
tions from Tgt1 and produce the synchronized target model
Tgt2.

<Class name="Book">
<fields nameRep="_bookTitle" type="String"/>
<fieldsDel name="_price" type="Double"/>Del

<fieldsIns name="_authors"/>Ins

<commentIns text="_bookTitle cannot be null"/>Ins

</Class>

It is worth noting that to merge the modifications, we
should first identify what modifications are non-reflectable
and need to be merged. Here we define three types of iden-
tifiable non-reflectable modifications, as shown below:

• Replacing values in the attributes that have not been
set during the transformation, e.g. the comment at-
tribute on the Java!Class model element.

• Adding model elements of a type whose instance has
never been created during the transformation, e.g., the
new Comment element user added on the Java model.

• Adding references that refer to the model elements
identified in the second type. Fox example, suppose
there is another transformation that generates skele-
ton Java code from UML class diagrams. If later pro-
grammers add statements to Java methods, the ref-
erences from the Java methods to the statements are
non-reflectable and need to be copied.

All these modifications can be identified by keeping track
of what attributes have been set and what types of model
elements have been created during the transformation.

4.2 Properties
It is worth remarking that our synchronization system

satisfies the properties we described in Section 2.3. To prove
it formally we need to give formal semantics to all ATL
statements, and this formalization, however, is beyond the
scope of the paper. So we only give an intuitive discussion
of the properties.

First, our synchronization system satisfies the stability
property. If users have not made modifications on models
after transformation, our system will not put any modifica-
tion tags on models so no models will be changed during
synchronization.

Second, our synchronization system satisfies the preserva-
tion property. On the source side, the merge process will
merge all modifications into the synchronized model Src2.
On the target side, all reflectable modifications will be put
back to the source. Because all condition expressions will
be evaluated to the same value, all the reflectable modifica-
tions will be produced again following the same path. On the
other hand, all non-reflectable modifications will be merged
into the synchronized target model during the supplemen-
tarily merging process. So modifications on the target model
are preserved.

Third, our synchronization system satisfies the propaga-
tion property. This is directly followed from the last two
steps of our synchronization process.

Finally, our synchronization system satisfies the compos-
ability property. Because the system ensures all condition
expressions remains the same during synchronization, mod-
ifications are propagated in the same way regardless of how
many times we synchronize.

5. A CASE STUDY
Our system has been successfully applied to several ATL

examples listed at ATL web site [1]. In this section, we will
use one of them to help demonstrate our approach described
before. This example is about a transformation from class
models to relational database models and is widely used in
the literature of model transformations [19]. By this case



0: <?xml version="1.0" encoding="ISO -8859 -1"?>
1: <xmi:XMI xmi:version="2.0" xmlns="Class"

xmlns:xmi="http ://www.omg.org/XMI" >
2: <Class name="Person" ID="1">
3: <attr name="firstName" ID="5" type="3"/>
4: <attr name="closestFriend" ID="6" type="1"/>
5: <attr name="emailAddresses" ID="7"
6: multiValued="true" type="3"/>
7: </Class >
8: <Class name="Family" ID="2">
9: <attr name="name" ID="8" type="3"/>

10: <attr name="members" ID="9"
11: multiValued="true" type="1"/>
12: </Class >
13: <DataType name="String" ID="3"/>
14: <DataType name="Integer" ID="4"/>
15: </xmi:XMI >

Figure 4: A Source Model in XMI

study, we can see after users write an ATL transformation,
the consistency of the source and target models can be auto-
matically maintained by our system when they are evolved,
and the synchronization procedure exhibits some interesting
properties.

To run this example, we need the ATL code, the source
model as well as the source and target metamodels. Due
to space limitation, only the source model is shown in Fig-
ure 4, and other files can be found at ATL web site [1].
This source model includes two classes Person and Family,
and two Datatypes String and Integer. Each class has a
collection of attributes attr, which can be single-valued or
multi-valued. The attribute ID in each model element is
added by us to identify model elements.

In this example, a class will be transformed into a table,
and a datatype into a type in the relational table model.
Each attribute in a class, if it is single-valued, will lead to
a column in the corresponding table, otherwise a new table
will be generated for it. And each table generated from a
class also includes a key column. The ATL web site has
the detailed description for this transformation. The target
model generated by this transformation is given in Figure 5.

In the following, we will give several experiments to show
the synchronization results of our system. Each experiment
is to demonstrate some properties that our approach has.

In the first experiment, we invoke the synchronization pro-
cedure without changing the source model and the target
model. After synchronization, the resulting source and tar-
get models are still the same as the original ones, embodying
the property of stability.

In the second experiment, change Person emailAddresses

in Line 14 to Individual emailAddresses and change the
type of emailAddresses in Line 17 from "3" to "4", that
is, the type changes to Integer. In addition, we change
the source model by removing the line 4, that is, the at-
tribute of closestFriendId in class Person is deleted. Af-
ter synchronization, the result source model keeps the at-
tribute of closestFriendId deleted while the class name in
line 2 changes from Person to Individual and the type of
emailAddresses changes to "4", that is, changes to type
Integer; the result target model has closestFriend orig-
inally in Line 10 deleted, the type of emailAddresses re-
maining Integer and all occurrences of the string “Person”
changing to “Individual”, in other words, the table name
in Line 7 changes to Individual, the table name in Line
14 remains Individual emailAddresses, and the column
name in Line 15 changes to IndividualID. This experi-

0: <xmi:XMI xmi:version="2.0" xmlns="Relational"
1: xmlns:xmi="http :// www.omg.org/XMI" >
2: <Table name="Family" ID="2" key="1002">
3: <col name="objectId" ID="1002" keyOf="2"
4: type="4"/>
5: <col name="name" ID="8" type="3"/>
6: </Table >
7: <Table name="Person" ID="1" key="1001">
8: <col name="objectId" ID="1001" keyOf="1"
9: type="4"/>
9: <col name="firstName" ID="5" type="3"/>

10: <col name="closestFriendId" ID="6"
11: type="4"/>
11: </Table >
12: <Type name="String" ID="3"/>
13: <Type name="Integer" ID="4"/>
14: <Table name="Person_emailAddresses" ID="7">
15: <col name="PersonId" ID="1007" type="4"/>
16: <col name="emailAddresses" ID="1008"
17: type="3"/>
18: </Table >
19: <Table name="Family_members" ID="9">
20: <col name="FamilyId" ID="1009" type="4"/>
21: <col name="membersId" ID="1010" type="4"/>
22: </Table >
23: </xmi:XMI >

Figure 5: A Target Model in XMI
ment demonstrates the preservation property and propaga-
tion property.

In the third experiment, we change the string objectId

in the line 8 into objId. This string comes from the trans-
formation code, not from the source model. The system
reports a failure during synchronization. This shows that
our system has the ability to detect and report inappropri-
ate modifications.

The fourth experiment is to demonstrate the composabil-
ity property by dividing the modifications in the second ex-
periment in two steps, that is, first change the table name
in the target model and delete the attribute in the source
model, synchronize, then change the type of emailAddresses
in the target model and synchronize again. After the two
synchronization processes, we get the same result as the sec-
ond experiment.

6. RELATED WORK
There have been a large number of approaches to model

transformations, each with its own characteristics. To clas-
sify existing transformation approaches, Czarnecki et al. [10]
have proposed a classification framework. This framework
uses a set of features to classify model transformation ap-
proaches. Among them, bidirectionality is of great interest.
This feature can be achieved through bidirectional languages
that can be executed both forwardly and backwardly. Based
on the interface, the bidirectional transformation approaches
can be classified into two categories. The first category takes
the source model and produces the target model in the for-
ward direction and takes the target model and produces the
source model in the backward direction. The typical work
includes the work of Akehurst and Kent [4] which uses mod-
els and OCL to describe transformations and the work based
on the Triple Graph Grammars (TGGs) [13, 18]. This cate-
gory of approaches are not adequate to support synchroniza-
tion because the transformations overwrite existing models
without using information in the models. When a model is
reproduced, information not presented in the other model
will be lost.

Compared to the first category, the other category up-
dates the existing model when an old version of the model



is provided. This category includes some submissions [9,
6] to Query/View/Transformation (QVT) Request for Pro-
posal (RFP) and the relations language in the QVT final
adopted specification [23]. These approaches use declara-
tive symmetric rules to relate the source model and the tar-
get model symmetrically and only update the related parts
when transforming models. These approaches can support
model synchronization when there are only direct mappings
between attributes, but cannot support more complex trans-
formation involving, for example, string concatenation or
attribute-to-model mappings. Furthermore, the source and
the target models cannot be modified at the same time.

The studies of synchronizing artifacts in software engi-
neering can be traced back to the studies of multi-view con-
sistency mechanisms [11, 14]. These studies give a general
representation of modifications and rely on users to write
code to handle the each type of modification in each type of
view. This idea has influenced the later studies on the syn-
chronization between models and code [5, 22] and the stud-
ies on general model synchronization framework [15, 16, 8].
Compared to these studies, our approach extracts informa-
tion automatically from existing model transformations and
do not require users to write code to handle modifications
manually.

The term “synchronization” sometimes refers to the ap-
proaches to differencing and merging models in the same
metamodel [3, 21]. These approaches can be used in our
synchronization algorithm to difference and merge models.

7. CONCLUSION
In this paper we have reported our first attempt towards

automatic construction of model synchronization systems
under the condition that the models to be synchronized are
related by model transformations. In our approach, if a
model transformation from one model to another is given,
these two models can be synchronized for free without writ-
ing extra code. The key contributions of our approach are
two folds: an automatic derivation of putback functions from
execution of a model transformation, and a new synchroniza-
tion algorithm with clear synchronization semantics. We
have implemented all the ideas in this paper as a system
for synchronizing models related by ATL transformations.
The experimental results are encouraging; several nontrivial
examples in the ATL Web site have been successfully tested.

One limitation of our current system is that it cannot deal
well with insertions on the target side; although the system
works well on non-reflectable insertions on the target side,
it cannot deal with reflectable insertions. This is one of our
future work.
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