
Brul: A Putback-Based Bidirectional Transformation

Library for Updatable Views

Tao Zan1 Li Liu2 Hsiang-Shang Ko3 Zhenjiang Hu1, 3

1 SOKENDAI (The Graduate University for Advanced Studies), Japan
{zantao, hu}@nii.ac.jp

2 Shanghai Jiao Tong University, China
lee.liu@sjtu.edu.cn

3 National Institute of Informatics, Japan
hsiang-shang@nii.ac.jp

Abstract

In work on relational databases, the view-update problem is about
how to translate update operations on the view table to corresponding
update operations on the source table properly. It is a problem that the
translation policies are not unique in many situations. Relational lenses
try to solve this problem by providing a list of combinators that let the
user write get functions (queries) with specified updated policies for
put functions (updates); however this can only provide limited control
of update policies which still may not satisfy the user’s real needs. In
this paper, we implement a library Brul that provides putback-based
basic combinators for the user to write the put function with flexible
update policies easily; from the put function, a unique get function can
be derived automatically. Brul is implemented in terms of BiGUL, a
core bidirectional programming language which has been formalized in
Agda and implemented as a Haskell library.

1 Introduction

Bidirectional transformations, which originated from the view-update problem, provide a novel mechanism for
maintaining consistency between two pieces of data. A bidirectional transformation consists of a pair of functions:
a get function that extracts part of information from a source to construct a view, and a put function that accepts
an updated view and the original source, resulting in an updated source that is consistent with the updated view.
The pair of functions needs to satisfy the well-behavedness laws:

put s (get s) = s (GetPut)
get (put s v) = v (PutGet)

The GetPut law says that putting an unmodified view get s directly back into the source s should produce the
same unmodified s, while the PutGet law says that getting from an updated source computed by putting a view v
should retrieve the same v.

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Anjorin, J. Gibbons (eds.): Proceedings of the Fifth International Workshop on Bidirectional Transformations (Bx 2016),
Eindhoven, The Netherlands, April 8, 2016, published at http://ceur-ws.org

name email location
John john@john.com Tokyo
Mary mary@mary.com NewYork
Stan stan@stan.com Tokyo

(a) Source table

name email location
John john@john.com Tokyo
Stan stan@stan.com Tokyo

(b) View table

Figure 1: Updated view and source table

name email location
Stan stan@mary.com Tokyo
Jeff jeff@jeff.com Tokyo

(a) Updated view table

name email location
Mary mary@mary.com NewYork
Stan stan@mary.com Tokyo
Jeff jeff@jeff.com Tokyo

(b) Updated source table

Figure 2: Updated view and source table

Lenses [6] were proposed to facilitate construction of bidirectional transformations. A lens is a well-behaved
pair of get and put functions, and one can provide combinators to compose smaller lenses into larger ones. While
lenses can be executed either as get or put , they are usually designed so that the programmers can construct lenses
as if they are writing unidirectional get programs. For relational databases, Bohannon et al. designed relational
lenses [3], whose get functions are database queries and put functions reflect updates on query results back to
databases. Specifically, they designed three basic lenses, called selection, drop and join. The get semantics for
selection and join are the same as the ones in SQL, while the get semantics of drop removes one column from
the source. Their put semantics are carefully formalized in order to satisfy the well-behavedness properties. The
lenses can be composed in order to create larger programs. Relational lenses have a SQL-like syntax, which let
the programmers simply write a bidirectional program as a SQL program. This get-based design (meaning that
the lens programs look like get functions) reduces the burden of writing bidirectional programs, but the put
behavior is not controlled by the programmers, and may not satisfy their real needs.

To explain the problem, let us look at an example: suppose that a company keeps a table of employee
information shown in Figure 1a, in which each record gives a person’s name, email address, and current location.
We can write a program with relational lenses as follows :

select from s where location = "Tokyo" as v

It looks exactly the same as writing a SQL query that selects only those people located in Tokyo. Running the
get direction of this program on the source table in Figure 1a yields the view table shown in Figure 1b. Now we
do some modifications on the view table: We delete the person John because he moved to another city Kyoto,
insert a new person Jeff, and update Stan’s email address. After that, if we run the put direction of this program,
the source table will be updated by deleting John, inserting Jeff, and updating Stan’s email address with the
one in the view, while Mary is left unchanged. The resulting table is shown in Figure 2b.

This backward behavior is acceptable in some cases, but it is not what we want here. What we want is
updating John’s location instead of deleting him, since he just moved to Kyoto and still belongs to the company.
Relational lenses cannot describe this behavior as this is more about controlling update policies in the put
direction. The put behavior provided by relational lenses is well-behaved, but the programmers are not given
the freedom to customize that behavior.

In order to give the programmers more control over the put behavior, we provide a new library Brul (bidi-
rectional relational update library) that follows our previous work [18, 12] on putback -based bidirectional pro-
gramming. Instead of letting the programmers write the forward get function and implicitly deriving a backward
put which might not satisfy the programmers’ real needs, we carefully define the library in a way that allows the
programmers to specify the update policies flexibly as a put function, from which the necessarily unique forward
transformation is derived. Our contributions can be summarized as follows:

• We design a library Brul that provides basic put combinators that can 1) let the programmers directly
describe the put behavior, and 2) give the programmers full control of the bidirectional behavior of their
programs, since the put behavior uniquely determines the get behavior [5].

• Brul is implemented on top of BiGUL [12], which is a fully formalized putback-based language. The

data BiGUL :: * -> * -> * where

Fail :: String -> BiGUL s v

Skip :: BiGUL s ()

Replace :: BiGUL s s

Prod :: BiGUL s v -> BiGUL s' v' -> BiGUL (s, s') (v, v')
RearrS :: Lambda s s' -> BiGUL s' v -> BiGUL s v

RearrV :: Lambda v v' -> BiGUL s v' -> BiGUL s v

Case :: [(s -> v -> Bool, CaseBranch s v)] -> BiGUL s v

Compose :: BiGUL u v -> BiGUL s u -> BiGUL s v

data CaseBranch s v = Normal (BiGUL s v) (s -> Bool)

| Adaptive (s -> v -> s)

Figure 3: BiGUL language

well-behavedness of Brul can thus be easily proved. The source code of the implementation is available at
the Brul website 1.

• We demonstrate Brul’s expressiveness by encoding in Brul all the operations of relational lenses and giving
examples of more flexible puts that cannot be described with relational lenses.

The rest of the paper is organized as follows: Section 2 briefly introduces the BiGUL language, Section 3
shows the design of the Brul library, Section 4 explains the implementation of Brul in detail, Section 5 gives
two typical examples which are described in the relational lenses paper, Section 6 reviews the related work in
both relational database and bidirectional transformation, and Section 7 gives a conclusion of our work.

2 Core language BiGUL

Brul is a library built on the BiGUL language. In order to let the reader understand how Brul is implemented,
we will introduce the basic operators of BiGUL and also present a series of simple examples in this section.

BiGUL is a putback-based bidirectional core language that provides a set of basic combinators for describing
the put functions of bidirectional transformations. The well-behavedness of BiGUL is fully verified in Agda [13];
for use in practical applications, BiGUL is ported to Haskell as an embedded domain-specific language (shown
in Figure 3), which we will use in this paper. A BiGUL program can be evaluated as either a put or a get . That
is, there are two interpreters for BiGUL programs:

put :: BiGUL s v -> s -> v -> Either ErrorInfo s

get :: BiGUL s v -> s -> Either ErrorInfo v

The bidirectional transformations described by BiGUL programs are potentially partial, and hence the results of
these two interpreters are wrapped in the Either monad — a value returned by put or get is either Left errMsg

for some error message errMsg (of type ErrorInfo) or Right result for some successfully computed result.
The well-behavedness laws are accordingly revised to

get b s = Right v ⇒ put b s v = Right s (GetPut)
put b s v = Right s′ ⇒ get b s′ = Right v (PutGet)

These are the well-behavedness properties verified in Agda.
Let us briefly explain the combinators in Figure 3. The three primitive operations are Fail, Skip, and

Replace: Fail always fails to compute (i.e., returns a Left-value) when interpreted as either put or get . The
put behavior of Skip returns the unchanged original source, while its get interpretation returns an empty view
— note that the view type specified for Skip is (). Replace works on sources and views of the same type;
its put interpretation replaces the whole source with the view, while its get interpretation returns the whole
source. The put behavior of the Prod combinator uses two BiGUL sub-programs to update a source pair by
a view pair in parallel, while its get interpretation extracts a view pair from a source pair again by using the
two sub-programs. RearrS updates a source s using view v by first computing a (usually) smaller source s′

1http://www.prg.nii.ac.jp/project/brul

with a simple λ-expression (given as the first argument of RearrS), then using a BiGUL sub-program to update
the source s′ with v, and finally putting s′ back into s by “inverting” the λ-expression; its get semantics again
computes a smaller source from which the resulting view is extracted. RearrV is dual to RearrS, acting on the
view instead of the source. Case does case analysis on both the source and the view, and performs either a
normal BiGUL operation to update the source using the view or an adaptive operation to change the source
to a new one. Since it is quite complicated, we will use an example to explain this in detail below. Compose

concatenates BiGUL programs sequentially.
In the following, we will use BiGUL to write several programs to give the reader a better understanding of

how BiGUL works. Suppose that we have a source (1, "Tokyo") and a view "Tokyo" which is the second
component of the source. If we modify the view into "NewYork", then the source and view become inconsistent.
We can write a simple BiGUL program bigul1 to update the source with the view:

bigul1 :: BiGUL (a,b) b

bigul1 = RearrV (Lambda RVar (EProd (EConst ()) (EDir (DRight DVar)))) (Prod Skip Replace)

Note that the first argument of RearrV is a deeply (syntactically) represented λ-expression \v -> ((), v). We
do not actually need to present the definition of Lambda, since in the rest of this paper we will use a more readable
surface syntax (implemented with Template Haskell [19]):

bigul1' :: BiGUL (a,b) b

bigul1' = RearrV [|\v -> ((), v)|] (Prod Skip Replace)

bigul1 ′ is expanded into bigul1 at compile-time. It first rearranges a view v to ((), v) (as specified by the Template
Haskell code [|\v -> ((), v)|]). Then, the first element of the source pair is skipped, and the second element
of the source pair is replaced by v which is the second element of the rearranged view pair. If we execute
the put direction of the program with the above source pair and modified view, the source will be updated
to (1, "NewYork"), and if we execute the get direction of the program on this updated source, it will output
"NewYork".

The Case operator is heavily used in the implementation of Brul. The most distinctive feature of Case is
source adaptation, which is useful when the source is not in a suitable shape to be updated with the view, and
needs to be modified through an adaptation function to a new source to make it updatable. After adapting to a
new source, the whole Case statement is run again on the new source and the view. To ensure termination, this
second run should not match with any adaptive cases again.

Let us use another example to show how to use the Case operator, in particular the source adaptation
mechanism. Suppose that the source s is a list and we want to put a value v into the i-th place in the source
list. We can write a bidirectional program in BiGUL as follows:

embedAt :: Int -> BiGUL [a] a

embedAt i = Case

[(\s _ -> i == 0 && not (null s), Normal (RearrS [|\(x:xs) -> (x, xs)|]

(RearrV [|\v -> (v, ())|] (Prod Replace Skip)))),

(\s _ -> i >= 0 && null s, Adaptive (_ _ -> [-1])),

(_ _ -> i > 0, Normal (RearrS [|\(x:xs) -> (x, xs)|] (Prod Skip (embedAt (i-1)))))

]

We can call put (embedAt i) s v to achieve our goal of embedding, and get (embedAt i) s to retrieve the value
from source. The implementation of embedAt is easy to understand: when i is greater than zero and source
is not null (the last branch), it leaves the first element of source unchanged and calls the embedAt function
recursively with i− 1; when i is greater than zero and source is null (the middle branch), the source is adapted
to a non-empty list by changing it to a one-element list with a default value −1; when i is zero and the source
is not null (the first branch), then the first element of the source will be replaced with the view value, and the
rest of the list will be skipped.

3 Brul library

Unlike relational lenses [3] where a fixed putback semantics (update policy) is preset to the forward query with
three relational operators (select, projection, join), we propose a new library Brul, where two putback -based
combinators (operators) are designed to specify update policies, from which forward queries can be automatically

derived. Two distinguished features of Brul are (1) it is powerful to be used to specify various update policies
(put), and (2) update policies written in Brul are guaranteed to be well-behaved as a consequence of the
formalization of BiGUL.

In the following, we will explain the Brul library functions in detail. The basic library functions are: 1) align,
which is used to update a source list with a view list by aligning part of source elements filtered by a predicate
with view elements according to a matching criteria between source element and view element; 2) unjoin, which
is used to decompose a join view to update two sources. The first argument defines the update policy for deletion
on the two sources when there is deletion on the view, and the remaining three arguments specify the common
attributes for the two sources and the view. Note that lists are used to represent tables in this paper.

3.1 Align

The function align:

align :: (s -> Bool) -> (s -> v -> Bool) ->

-> BiGUL s v {* Case 1: matched *}

-> (v -> s) {* Case 2: missing source element *}

-> (s -> Maybe s) {* Case 3: missing view element *}

-> Brul [s] [v]

describes an update on a source which is a list of records with type s using a view which a list of records with
type v. It starts by using the first argument (a source filter function (s -> Bool)) to extract the satisfied source
records, and then uses the second argument (a matching function (s -> v -> Bool)) to match these source
elements with the view elements. The matching result has three cases, and each case uses different update
operation: when source and view elements are matched, the third argument (a BiGUL program (BiGUL s v))
is used to update the source element by the view element; when a view element has no corresponding matching
source element, the fourth argument (a user-defined function (v -> s)) is used to create a source element from
this view element; when a source element has no corresponding matching view element, the fifth argument (a
user-defined conceal function (s -> Maybe s)) is used to conceal the element (from the view) by either deleting
this source element or modifying it so that it does not satisfy the filter condition. Note that the type of Brul s v

is similar with BiGUL s v except that it can call a function to correct the source of type s if it is inconsistent
(say, not satisfying necessary functional dependencies if the source is a table).

To see an example, consider the updating strategy given by relational lenses in the introduction. Using align,
we can specify it as

uEmployee :: Brul [Record] [Record]

uEmployee = align (\r -> (r!!2) == RString "Tokyo") (\s v -> (s!!0 == v!!0))

Replace

id

(_ -> Nothing)

Tables are represented as a list of records of type Record, which is defined in Section 4. The Brul program
uEmployee — whose source and view types are specified as [Record] — matches by name the source records
whose location is Tokyo with the view records. If they are matched, the source record is replaced by the view
record; for unmatched view record, create a new source record using id function since source and view records
are the same; for unmatched source record, it will be deleted in the source.

The update policy that cannot be dealt with by relational lenses in the introduction can now be easily obtained
by changing the definition of the last function for uEmployee:

uEmployee' :: Brul [Record] [Record]

uEmployee' = align (\r -> (r!!2) == RString "Tokyo") (\s v -> (s!!0 == v!!0))

Replace

id

(\[name, email, location] -> [name, email, RString "Kyoto"])

In the last line, an unmatched source record is modified by changing the location to Kyoto.
Returning to the example in the introduction, if we wish to adopt the update strategy of deleting John in

the source, we may use uEmployee; if we wish to adopt the strategy of moving John to Kyoto, we may use

A B
a1 b1
a2 b2
a3 b3
a5 b5

(a) Source table I

B C
b1 c1
b3 c3
b4 c4
b5 c5

(b) Source table II

A B C
a1 b1 c1
a5 b5 c5

(c) Updated view table

Figure 4: Join example I

A B
a1 b1
a2 b1

(a) Source table I

B C
b1 c1
b1 c2

(b) Source table II

A B C
a1 b1 c1
a1 b1 c2
a2 b1 c1
a2 b1 c2

(c) View table

Figure 5: Join example II

uEmployee'. It is worth noting that these two Brul programs have the same get behavior as one written in
relational lenses.

3.2 Unjoin

The type signature of function align is:

unjoin :: DeleteFlag -> (s1 -> a) -> (s2 -> a) -> (v -> a) -> Brul ([s1],[s2]) [v]

The library function unjoin delStrategy extracts1 extracts2 extractv specifies how to update two source
tables using a view table, the join result of the two source tables, when the view table is modified, based on a
deletion policy delStrategy and three functions extracts1, extracts2, extractv for extracting the common
parts from these three tables. The deletion policy is used to describe the deletion strategy on the source tables
when some records are deleted on the view table. We offer three kinds of deletion policies when deletions on both
source tables are allowed: deleting records only on the left source table (DeleteLeft), deleting records only on
the right source table (DeleteRight), and deleting records on both tables (DeleteBoth). The remaining three
arguments are functions with the same output type, since the result is the common part of the three tables.

As an example, consider the two source tables shown in Figure 4a and Figure 4b, each with four records.
Consider the view table in Figure 4c, the join of these two source tables by attribute B, being updated by
deleting record (a3, b3, c3). We can write a simple program in Brul to update the source tables as follows:

uss1 = unjoin DeleteLeft fs1 fs2 fv

where fs1 = \[a,b] -> [b]

fs2 = \[b,c]-> [b]

fv = \[a,b,c] -> [b]

Here, we use the deletion policy DeleteLeft. Function fs1 extracts the value of attribute B from a record in
source table I, and fs2 and fv extract the same attribute value from source table I and view table respectively.
With uss1, deletion of record (a3, b3, c3) from the view will lead to deletion of record (a3, b3) from source table
I, while source table II remains unchanged. If we choose DeleteBoth as the update policy as in the following
uss2:

uss2 = unjoin DeleteBoth fs1 fs2 fv

the same deletion from the view will lead to deletion of record (a3, b3) from source table I and that of (b3, c3)
from source table II.

Notice that unjoin is more general and powerful than the join lenses (i.e. join dl , join dr etc.) in relational
lenses, where the join lenses have the restriction that the join attribute should be the key of the right table.
We do not have this restriction, allowing arbitrary join attribute. This, however, introduces challenges in
implementation, which will be given in Section 4.3. To see this, let us consider the tables in Figure 5. Each

of the two source tables has two records, and joining these two table by attribute B (which is not the key of
source table II) yields a view table with four records as shown in Figure 5c. It is important to see that arbitrary
updates on view are not necessarily valid if B is not the key of source table II. For example, if we delete (a1, b1,
c1) from the view table, there is no correct way of updating the two source tables. If we would delete (a1, b1)
from source table I, then joining the updated source table I with source table II would remove another record
(a1, b1, c2) from the view table; if we would delete (b1, c1) from source table II, record (a2, b1, c1) would be
removed from the view. But if we give a valid update on the view, say deleting (a1, b1, c1) and (a1, b1, c2)
from the view table, there is one possible update strategy that is to delete record (a1, b1) from source table I.
The good news is that programs written in Brul (both uss1 and uss2) can correctly identify the invalid cases
to report dynamic errors while allowing valid view updates.

4 Brul implementation over BiGUL

In this section, we show how Brul is implemented using BiGUL to enjoy the well-behavedness of BiGUL.
The align function is implemented basically in Case; The unjoin function is composed by three sub BiGUL
programs. Some details are tedious and complex, so we just illustrate them simply.

4.1 Relational database representation

Before explaining the implementation of two libary functions on a relational database (i.e. table), we briefly
explain how tables are represented in our context. A table is a list of records ([Record]), and each record is a
list of attribute elements of type RType:

type Record = [RType]

data RType = RInt Int

| RString String

| RFloat Float

| RDouble Double

For example, the source table in Figure 1a is represented as follows.

[[RString "John", RString "john@john.com", RString "Tokyo"],

[RString "Mary", RString "mary@mary.com", RString "NewYork"],

[RString "Stan", RString "stan@stan.com", RString "Tokyo"]]

A table may have functional dependencies. In the above example, the second attribute (email) may depend
on the first (name). We use FDMap to store such functional dependencies of a table:

type FDMap = Map Int [Int]

which maps from one attribute to a list of attributes that depend on it. Here each attribute is represented by
the index in the record list. More than one attribute may depend on the same attribute, and one attribute
may depend on more than one attribute. For simplicity, in our example, we do not consider the case where one
attribute depends on more than one attribute.

4.2 Align

The align function is implemented using the Case operator in BiGUL. As discussed in Section 2, Case provides a
flexible way to do case analysis on both the source and the view, and perform either a normal BiGUL operation
to update the source using the view or an adaptive operation to change the source to a new one. Six cases should
be considered for implementing

align p m b c d

using a Case, where p is a predicate for the filter function, m is a matching function, b is a BiGUL program to
do updating when the source and the view are matched, c is a source create function, d is a conceal function. We
use fd to represent the function for updating the source record according to the functional dependency, which
can be automatically generated from the functional dependencies on the database. In the following, we give an
intuitive explanation for each case analysis in this Case; the detailed implementation is available in the Brul
website.

(a1, b1, c1)
(a3, b3, c3)
(a5, b5, c5)

(a3, b3, c3)

(a1, b1)
(a2, b2)
(a3, b3)
(a5, b5)

(b1, c1)
(b3, c3)
(b4, c4)
(b5, c5)

(a1, b1)
(a2, b2)
(a3, b3)
(a5, b5)

(b1, c1)
(b3, c3)
(b4, c4)
(b5, c5)

([(a1, b1)], [(b1, c1)])
([(a2, b2)], [])
([(a3, b3)], [(b3, c3)])
([] , [(b4, c4)])
([(a5, b5)], [(b5, c5)])

groupalignunZip

ungroup

ungroup

source1

source2

tabg1

tabg2

ziptab viewg
view

(a1, b1, c1)

(a5, b5, c5)

Figure 6: Implementation sketch for unjoin

1. When the view is empty and the source meets the requirement of functional dependences and there is no
record in the source satisfying p, we keep the source and make no change. The condition for this case can
be written in Haskell as \ss vv -> null vv && null (filter p ss) && map fd ss == ss.

2. When the view is empty but the source does not satisfy the condition in the first case, we perform an
adaption, where we update each record of the source by function fd and conceal those updated records that
satisfy the filter condition p. Note that according to the semantics of Case, the adapted source will be fed
into this Case again to match other cases.

3. When the first record of the source does not satisfy the filter condition p and also does not meet the
requirement of functional dependencies, the source is adapted by updating the first record using function
fd . We will check the adapted record shall still not satisfy the filter condition p.

4. When the first record of the source does not satisfy the filter condition p but follows the functional depen-
dency, we keep the first record and update the rest part of the source with current view by recursively calling
the align function.

5. When the first record of the source satisfies p and matches with the first element of the view, we use the
given function b to update the matched source record, and recursively update the rest part of the source
with the rest of the view. The condition is:

\ss vs -> not (null (filter p ss)) && p (head ss)

&& not (null vs) && m (head ss) (head vs)

6. Otherwise, we do adaption on the source. In this case, both the source satisfying p and the view should not
be empty. The first record of the view is used to find a corresponding element in the source according to
the matching function m. If we find one, we move this record to the head of the source; otherwise, we use
the create function v to create a new head record of the source based on the view record.

4.3 Unjoin

The second important library function is unjoin for describing how to update a pair of tables using its join view
with three strategies. It is implementation by sequential composition of four bidirectional transformation:

unjoin :: DeleteFlag -> (s1 -> a) -> (s2 -> a) -> (v -> a) -> Brul ([s1],[s2]) [v]

unjoin flag fs1 fs2 fv = productUnGroup fs1 fs2 ;

unZip fs1 fs2 ;

alignWithsubUnjoin flag fs1 fv;

group fv

where f ; g denotes composition of two BiGUL transformations f and g (i.e., (Compose g f)).

The unjoin is mainly composed by four bidirectional transformations: group fv, alignWithsubUnjoin flag,
unZip fs1 fs2 and productUnGroup fs1 fs2. As demonstrated in Figure 6, the basic idea to update the two
sources (source1 and source2) using the view (view), is to use grouped view (viewg) to update the zipped
table (ziptab) of two grouped sources (tabg1 and tabg2).

Rather than giving formal definitions for the above four bidirectional transformations in BiGUL, we explain
their intuitive putback behavior through a concrete example. Recall the uss1 defined with unjoin in Section
3.2, where we have given the updated results for the sources and the view in Figure 4. Figure 6 shows how the
update on the view is propagated to the two sources.

• As the first step from the view to the source, group fv updates the grouped view (viewg) with the updated
view (view), resulting in deleting (a3,b3,c3) from viewg.

• In the second step, alignWithsubJoin flag fs1 fv aligns ziptab with viewg. ([(a1, b1)], [(b1, c1)]) will
be updated with [(a1, b1, c1)]; ([(a5, b5)], [(b5, c5)]) will be updated with [(a5, b5, c5)]; (a3,b3) will be
deleted from ([(a3, b3)], [(b3, c3)]); ([(a2, b2)], []) and ([], [(b4, c4)]) will remain unchanged.

• In the third step, for each pair of ziptab, unZip fs1 fs2 putbacks its left/right part list (non-empty) to
tabg1/tabg2, so tabg1 and tabg2 will be [[(a1, b1)], [(a2, b2)], [(a5, b5)]] and [[(b1, c1)], [(b3, c3)], [(b4,
c4)], [(b5, c5)]].

• In the last step, productUnGroup fs1 fs2 ungroups tabg1 and tabg2 to get the new sources [(a1, b1), (a2,
b2), (a5, b5)] and [(b1, c1), (b3, c3), (b4, c4), (b5, c5)].

To put it a bit more concretely, the important bidirectional transformations are implemented as follows. The
group bidirectional transformation

group :: (s -> a) -> BiGUL [[s]] [s]

is bijective and can be easily implemented in BiGUL. Its dual ungroup can be defined using group. With
ungroup, we can define productUnGroup, a product of two ungroup BiGUL programs that apply to different
functions.

productUnGroup :: (s1 -> a) -> (s2 -> a) -> BiGUL ([s1],[s2]) ([[s1]],[[s2]])

productUnGroup f1 f2 = Prod (ungroup f1) (ungroup f2)

We omit the implementation of unZip. Bidirectional transformation alignWithsubUnjoin flag fs1 fv is im-
plemented using align and another new bidirectional transformation subUnjoin. The filter condition for align
is: not (null (fst s)) && not (null (snd s)), which means both parts of the source pair are non-empty.
The match condition is : fs1 (head (fst s)) == fv (head v). Since both source and view elements are not
null, the head function will always succeed. As we mentioned before, the results of alignment are three cases. For
matched source and view elements, we use subUnjoin to synchronize them. For the unmatched view element,
we create a proper source element and use subUnjoin to synchronize them. The most interesting one is the
unmatched source case where the source pair will be updated by deleting either the first one, the second one
or both according to the given flag. The subUnjoin is a kind of restricted unjoin. It requires that all shared
field values of two source lists must be the same and both source lists must be non-empty. Since subUnjoin

is only used in the matched and unmatched view cases of alignWithsubUnjoin, the requirement is satisfied
automatically.

5 Example

In this section, we use one typical example proposed in the relational lenses paper [3] to illustrate how to use
our putback-based bidirectional transformation library Brul to write more expressive and powerful programs.

Suppose the source table shown in Figure 7 stores five music track records, and each record contains its Track
name, release Date, Rating, Album, and the Quantity of this Album. There are also functional dependencies
from Track to Date (denoted as Track → Date), Track to Rating (denoted as Track → Rating), and Album to
Quantity (denoted as Album → Quantity). For example, the first two records have the same Date and Rating
value since they have the same Track name, and the first and the third record have the same Quantity value
since they have the same Album name even their Track names are different.

Track Date Rating Album Quantity
Lullaby 1989 3 Galore 2
Lullaby 1989 3 Show 3
Lovesong 1989 5 Galore 2
Lovesong 1989 5 Paris 4
Trust 1992 4 Wish 5

Figure 7: Source table

Track Rating Album Quantity
Lullaby 3 Show 3
Lovesong 5 Paris 4
Trust 4 Wish 5

(a) View table

Track Rating Album Quantity
Lullaby 4 Show 3
Lovesong 5 Disintegration 7

(b) Updated view table

Figure 8: View tables

The view table in Figure 8a consists of three records whose Quantity value is greater than 2 and whose Data
is dropped. Suppose the view table is updated as shown in Figure 8b: the Rating of Track named Lullaby is
raised to 4, the Quantity of Paris is updated to 7, and the record with Track name Trust is deleted.

In the following, we will show how to implement a putback-based bidirectional transformation program to
synchronize the source table with the updated view table using our library functions based on BiGUL. Here, we
use lists to simulate sets and represent tables and records for simplicity.

The function u1 shown in Figure 9a accepts an argument of type RType which is used as a default value to
fill in the Date attribute when there is a new record inserted into the view and no records in the source have
the same Track value. The program is implemented using the library function align, which aligns the part of
the source list satisfying certain filter condition (line 3) with the view list by a matching condition (line 4). The
filter function determines whether the Quantity is greater than 2. The Haskell expression r!!4 retrieves the fifth
value of a list. The matching condition states that a source record and a view record are matched if they share
the same Track name and Album name.

When aligning, there are three cases:

• A source record is matched with a view record: we first use a rearrangement function (line 5-9) to rearrange
the view from a four-element list ([t,r,a,q]) to a five-element list ([t,_,r,a,q]) with the second element
marked as underscore. This rearrangement function reshapes the view to match the shape of the source.
Then, the element in the source is Replaced by the corresponding element in the view by an update
([d|t = Replace|]) which means the t in the source record will be replaced by the t in the view record.

• A view record that has no matching source record: a new source record is created (line 10) with a default
value d filled into the Date.

• A source record that has no matching view record: we simply delete this record by return Nothing.

The program can be executed bidirectionally either as a put function to update source by view, or as a get
function that extracts a view from the source. Figure 10 shows the updated source table after executing the put
direction of the program. The most interesting case is that even though the first record of the source table does
not appear in the view, its Rating is updated from 3 to 4 according to the functional dependency since it has
the same Track name as the second record.

The Brul program written in Figure 9a only describes the put behavior, that is, how to align source and
view records and update the source records, but in fact the get direction of this program implicitly also behaves
as a SQL query:

select Track, Rating, Album, Quantity as v

from s where Quantity > 2

Running get of the program will get the view shown in Figure 8b. This Brul program expresses the same
behavior as the example shown in the relational lenses paper for both get and put functions.

u1 :: RType -> Brul [Record] [Record]

u1 d = align

(\r -> (r!!4) > RInt 2)

(\s v -> (s!!0 == v!!0)&&(s!!3 == v!!2))

(RearrV

[p|\(t:r:a:q:[]) -> (t:_:r:a:q:[])|]

[d|t = Replace; r = Replace;

a = Replace; q = Replace|])

(\(t:r:a:q:[]) -> (t:d:r:a:q:[]))

(\rs -> Nothing)

(a) Update program I

u2 :: RType -> Brul [Record] [Record]

u2 d = align

(\r -> (r!!4) > RInt 2)

(\s v -> (s!!0 == v!!0)&&(s!!3 == v!!2))

(RearrV

[p|\(t:r:a:q:[]) -> (t:_:r:a:q:[])|]

[d|t = Replace; r = Replace;

a = Replace; q = Replace|])

(\(t:r:a:q:[]) -> (t:d:r:a:q:[]))

(\(t:d:r:a:q:[]) -> (t:d:r:a:RInt 2:[]))

(b) Update program II

Figure 9: Two program in Brul

Track Date Rating Album Quantity
Lullaby 1989 4 Galore 2
Lullaby 1989 4 Show 3
Lovesong 1989 5 Galore 2
Lovesong 1989 5 Disintegration 7

Figure 10: Updated Source I

While the put semantics of the selection combinator in relational lenses for unmatched source records is fixed
to deletion that can be described using u1, we carefully design the interface of align that allows users to specify
the update policy. Figure 9b gives another update program u2. Instead of deleting the unmatched source record
(Trust, 1992, 4, Wish, 5), we update it by changing the Quantity to 2. This is also a valid update: (Trust, 1992,
4, Wish, 2) will not appear in the view when performing get , since it will fail the filter condition.

Moreover, we can use an environment to update the source as shown in Figure 11. The environment stores
a mapping from Album name to Quantity of this Album. The function uSWithEnv tries to find the Quantity of
the specific Album in the environment. If it succeeds, we update the Quantity of the source record by the value
retrieved from the environment otherwise by 0. For example, if we update the source with an env that stores a
mapping from “Wish” to 1, the Quantity of unmatched source record “Trust” will be updated to 1. Last but
not least, align checks that those unmatched source records will not satisfy the filter function after updating to
guarantee that those records will not appear in the view.

6 Related Work

In relational databases, much research has been devoted to correct translation of updates on the view to updates
on the source (the view-update problem) [1, 4]. To deal with different update strategies, Keller [11] classified
different update translation algorithms for different update operations (i.e. replacement, insertion, and deletion)
with the view that is computed using either selection, projection, join or a combination of these three operations,
and suggested using a dialog to ask the user to choose a proper update translation algorithm where there exists
more than one update translation algorithm for a given view and update operations on the view. In this paper,
we show that Brul provides a concise way to specify and choose update translations.

Bidirectional transformations [6] originate from the view-update problem in relational databases, and many
bidirectional languages [6, 2, 8, 9, 15, 16, 10, 7] have been proposed. Among them are a series of bidirectional
languages called lenses; they are basically get-based in the sense that they provide a set of combinators that
are intended to describe the get direction of bidirectional transformations. One problem with this get-based
approach is that there often exist many puts for a given get and there is no way to choose a suitable put just
by writing a good get and the get-based approach only provides one possible put as the default that may not
satisfy the user’s need.

The putback-based approach [5] opens a new research direction to resolve this problem for bidirectional transfor-
mations, and several putback-based bidirectional programming languages have been proposed to handle different
kinds of data: putlenses [17] defines a set of bidirectional combinators that support putback style bidirectional
programming. BiFluX [18] is a bidirectional functional update language for XML data; with BiFluX, the

u3 :: Env -> RType -> Brul [Record] [Record]

u3 env d = align

(\r -> (r!!4) > RInt 2)

(\s v -> (s!!0 == v!!0)&&(s!!3 == v!!2))

(Rearrv

[p|\(t:r:a:q:[]) -> (t:_:r:a:q:[])|]

[d|t = Replace; r = Replace;

a = Replace; q = Replace|])

(\(t:r:a:q:[]) -> (t:d:r:a:q:[]))

(\rs -> uSWithEnv rs env)

Type Env = Map RType RType

uSWithEnv :: Record -> Env -> Maybe Record

uSWithEnv r env =

case Map.lookup (r!!3) env of

Just q -> Just $ uRecord 4 q r

Nothing -> Just $ uRecord 4 (RInt 0) r

uRecord :: Int -> RType -> Record -> Record

uRecord 0 v (x:xs) = v:xs

uRecord i v (x:xs) = x : uRecord (i-1) v xs

Figure 11: Update program III

Track Date Rating Album Quantity
Lullaby 1989 4 Galore 2
Lullaby 1989 4 Show 3
Lovesong 1989 5 Galore 2
Lovesong 1989 5 Disintegration 7
Trust 1992 4 Wish 1

Figure 12: Updated Source II

programmer can describe the putback function explicitly and the system derives a unique get function for free.
BiYacc [20] lets the programmer write simple production-like rules which in fact describe how to update the
concrete syntax tree using the abstract syntax tree as a “reflective” printer. Finally, BiGUL [12] was designed to
serve as the foundation for higher-level putback-based bidirectional programming languages; BiGUL is designed
to be concise yet powerful, and its well-behavedness has been fully verified in the dependently typed programming
language Agda [14], guaranteeing that any program written in BiGUL is well-behaved.

Brul follows the putback-based approach, and it removes the ambiguity of put function by providing operations
that let the user write update translations explicitly. Our careful design of the Brul library not only offers
flexibility, but also guarantees that any put program written in Brul has a unique forward get semantics that
forms a well-behaved bidirectional transformation with this put . We also extend put with parameters to allow
the user to update the source by an environment.

7 Conclusion

We implemented a library Brul for writing bidirectional programs on relational databases, offering programmers
the ability to specify flexible update policies. The programmers write put programs that describe how to use a
view table to update a source table; corresponding get programs — queries that extract data from a source table
to construct a view table — are then automatically derived. Brul is implemented on top of the putback-based
bidirectional programming language BiGUL which is formalized in Agda, and hence all programs written with
Brul are guaranteed to be well-behaved. We also explore the expressiveness of putback-based bidirectional
programming by adding parameters to the put function to write more interesting examples, i.e. using a third
environment when updating the source table. For future work, we plan to investigate how to write the putback
behavior for aggregate functions (average, maximum, etc.), which are also frequently used in relational databases.

Acknowledgments

We thank Jeremy Gibbons for carefully reading through our draft and giving plenty of suggestions, Zirun Zhu
for helping with the intensive revision before the submission deadline, and all the reviewers for giving useful
comments. This work was partially supported by the Japan Society for the Promotion of Science (JSPS) Grant-
in-Aid for Scientific Research (A) No. 25240009.

References

[1] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Transactions on Database
Systems, 6(4):557–575, 1981.

[2] D. M. J. Barbosa, J. Cretin, J. N. Foster, M. Greenberg, and B. C. Pierce. Matching lenses: Alignment
and view update. In International Conference on Functional Programming, ICFP ’10, pages 193–204. ACM,
2010.

[3] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: A language for updatable views. In
Principles of Database Systems, PODS ’06, pages 338–347. ACM, 2006.

[4] U. Dayal and P. A. Bernstein. On the correct translation of update operations on relational views. ACM
Transactions on Database Systems, 7(3):381–416, 1982.

[5] S. Fischer, Z. Hu, and H. Pacheco. “Putback” is the essence of bidirectional programming. Technical Report
GRACE-TR 2012-08, GRACE Center, National Institute of Informatics, 2012.

[6] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the view-update problem. ACM Transactions on Programming
Languages and Systems, 29(3):17, 2007.

[7] J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient lenses. In International Conference on Functional
Programming, ICFP ’08, pages 383–396. ACM, 2008.

[8] M. Hofmann, B. C. Pierce, and D. Wagner. Symmetric lenses. In Principles of Programming Languages,
POPL ’11, pages 371–384. ACM, 2011.

[9] M. Hofmann, B. C. Pierce, and D. Wagner. Edit lenses. In Principles of Programming Languages, POPL
’12, pages 495–508. ACM, 2012.

[10] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing structured documents based on
bidirectional transformations. Higher-Order and Symbolic Computation, 21(1–2):89–118, 2008.

[11] A. Keller. Choosing a view update translator by dialog at view definition time. In International Conference
on Very Large Data Bases, VLDB ’86, pages 467–474. Morgan Kaufmann Publishers, 1986.

[12] H.-S. Ko, T. Zan, and Z. Hu. BiGUL: A formally verified core language for putback-based bidirectional
programming. In Partial Evaluation and Program Manipulation, PEPM’16. ACM, 2016.

[13] U. Norell. Towards a Practical Programming Language based on Dependent Type Theory. PhD thesis,
Chalmers University of Technology, 2007.

[14] U. Norell. Dependently Typed Programming in Agda. In Advanced Functional Programming, volume 5832
of Lecture Notes in Computer Science, pages 230–266. Springer, 2009.

[15] H. Pacheco and A. Cunha. Generic point-free lenses. In Mathematics of Program Construction, MPC ’10,
pages 331–352. Springer, 2010.

[16] H. Pacheco, A. Cunha, and Z. Hu. Delta lenses over inductive types. In International Workshop on
Bidirectional Transformations, volume 49 of Electronic Communications of the EASST, 2012.

[17] H. Pacheco, Z. Hu, and S. Fischer. Monadic combinators for “putback” style bidirectional programming.
In Partial Evaluation and Program Manipulation, PEPM ’14, pages 39–50. ACM, 2014.

[18] H. Pacheco, T. Zan, and Z. Hu. BiFluX: A bidirectional functional update language for XML. In Principles
and Practice of Declarative Programming, PPDP ’14, 2014.

[19] T. Sheard and S. Peyton Jones. Template meta-programming for Haskell. In Haskell Workshop, Haskell
’02, pages 1–16. ACM, 2002.

[20] Z. Zhu, H.-S. Ko, P. Martins, J. Saraiva, and Z. Hu. BiYacc: Roll your parser and reflective printer into
one. In International Workshop on Bidirectional Transformations, pages 43–50. CEUR-WS, 2015.

