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Abstract
Transforming programs between two APIs or different versions of the same API is a common

software engineering task.
However, existing languages support for such transformation cannot satisfactorily handle

the cases when the relations between elements in the old API and the new API are many-to-
many mappings: multiple invocations to the old API are supposed to be replaced by multiple
invocations to the new API. Since the multiple invocations of the old APIs may not appear
consecutively and the variables in these calls may have different names, writing a tool to correctly
cover all such invocation cases is not an easy task.

In this paper we propose a novel guided-normalization approach to address this problem. Our
core insight is that programs in different forms can be normalized to a semantically equivalent
basic form guided by transformation goals, and developers only need to write rules for the basic
form to address the transformation. Based on this approach, we design a declarative program
transformation language, PATL, for adapting Java programs between different APIs. PATL
has simple syntax and basic semantics to handle transformations only considering consecutive
statements inside basic blocks, while with guided-normalization, it can be extended to handle
complex forms of invocations.

Furthermore, PATL ensures that the user-written rules would not accidentally break def-use
relations in the program.

We formalize the semantics of PATL on Middleweight Java and prove the semantics-preserving
property of guided-normalization. We also evaluated our language with three non-trivial case
studies: i.e. updating Google Calendar API, switching from JDom to Dom4j, and switching
from Swing to SWT. The result is encouraging; it shows that our language allows successful
transformations of real world programs with a small number of rules and a small number of
manual resolutions.

1998 ACM Subject Classification D.1.2 Automatic Programming.
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1 Introduction

Modern programs depend on library APIs, and when those APIs change, usually many places
of the client programs need to be changed. As a result, it is desirable for tool vendors to
provide program transformation tools that automate the task of transforming client programs.
In practice, there are two types of such program transformation tools. One is for API
upgrade [11, 19]: when a new version of the API is released, the tool is developed to upgrade
the client programs to work with the new API. For example, a tool named 2to3 script [30] is
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2 Transforming programs between APIs with Many-to-Many Mappings

//rule rSetAlign
(jb: JButton->Button, align: int->int){
- jb.setAlignmentX(align);
+ jb.setAlignment(align);

}

//rule rButton
(jb: JButton->Button,
parent: JPanel->Composite) {
- jb = new JButton();
- parent.add(jb);
+ jb = new Button(parent, SWT.PUSH);

}

Figure 1 Two transformation rules used in transformation of programs between Swing to SWT.

1 //Case 1:
2 jb = new JButton();
3 if(parent != null) {
4 parent.add(jb);
5 }

1 //Case 2:
2 jb = new JButton();
3 s = jb.getUIClassID(();
4 parent = new JPanel();
5 parent.add(jb);

1 //Case 3:
2 jb = new JButton();
3 defaultButton = jb;
4 parent.set(defaultButton);

Figure 2 Three examples of non-consecutive API invocations

provided to help users migrate programs from Python 2 to Python 3. Another is for API
switching [34], where the tool migrates programs from one platform to another platform. For
example, RIM provides a migration tool for transforming Android applications to Blackberry
applications in order to attract more developers to the Blackberry platform.

Given the importance of developing program transformation tools, dedicated program
transformation languages have been proposed, such as SmPL [27], Stratego [6], TXL [9],
Syntax Macros [38], Twinning [24] and SWIN [18]. These languages typically allow the
developers to describe a set of rewriting rules. A rule usually consists of a pattern that
matches a piece of code and an action to be performed on the matched code, where a typical
action is to replace the original code with a new piece of code.

For example, the rule rSetAlign in the left of Figure 1 is a simple rule to transform
a method invocation in Swing to its counterpart in SWT. The rule is written in PATL
(Patch-like Transformation Language), the transformation language to be introduced in the
paper, which adopts a patch language style syntax used previously in SmPL [27]. This
rule matches a call to method JButton.setAlignmentX and replaces it by a call to method
Button.setAlignment. The line marked with ‘-’ describes a pattern to match a statement,
while the line marked with ‘+’ describes a pattern for generating statements. Parameter jb is
a metavariable used to match a variable of type JButton, and the notation JButton->Button

indicates that class JButton in the old API corresponds to class Button in the new API.
Though program transformation languages have greatly reduced the difficulty of writing

program transformations, it is still difficult to deal with many-to-many mappings between
APIs. Many-to-many mapping means that a sequence of invocations to the old API is
mapped to a sequence of invocations to the new API, and this mapping is minimal: there
exists no mapping from a subsequence of invocations to the old API to a subsequence of the
new API. As shown by existing studies [34, 4], many-to-many mappings are very common
in transformation between APIs. Concretely, there are two key challenges in dealing with
many-to-many mappings.

Challenge 1. The first challenge is that the same sequence of API invocations at runtime
can be specified in many different forms in the code, and a transformation should consider
all such possible forms. Let us consider transformation rule rButton in the right of Figure 1.
In this case, the class JButton is mapped to the class Button, and the two calls in the Swing
API are merged into one call to the constructor of Button in SWT. While this rule captures
the basic forms of consecutively invoking the respective methods, many other different forms
may produce the sequential invocation to these two statements, such as the those in Figure 2.

In this first case, every time the program enters the if-branch, the calls to jb = new

JButton() and parent.add(jb) actually form consecutive calls defined in the pattern, while
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in the else-branch, such consecutive calls will not be produced. In the second case, though the
two invocations are not consecutive, their behavior is equivalent to consecutive invocations
(In this case, the third statement parent = new JPanel() has no dependency on the first
two statements, nor does the second statement depend on the last two statements. So the
whole execution is equivalent to an execution of statements 4, 2, 5, 3, where 2 and 5 are
consecutive.) and thus should be transformed. In the third case, though the argument
defaultButton in the third statement is different from jb in the first statement, they match
the patterns in the rules as these two variables are aliases and they both refer to the same
object. None of the three cases are directly captured by rule rButton.

Researchers have noticed this problem and have proposed different mechanisms to match
the above cases, such as flow-based matching [7] and context-sensitive matching [9]. Given
a rule that is similar to the rule rButton, these approaches can identify statements that
may produce the same sequence of invocations at runtime, and return these statements as
output. For example, in the first program in Figure 2, these approaches can identify the
match between the rule rButton and the two statements in lines 2,4.

However, safely transforming these matched statements is challenging: contexts for
matched statements should be considered and thus it is difficult to transform them uniformly
using a simple strategy. For example, a common strategy used in existing approaches is to
specify which statements in the ‘+’ block replace which statements in the ‘-’ blocka. In this
example, we can specify either the generated statement to replace the first statement marked
with ‘-’ or replace the second one. However, neither strategy can correctly handle even a
simple case like Case-2 in Figure 2. Replacing the first statement (left program below) will
lead to the problem that the parent used in the first statement (line 2) is either uninitialized
or captures some undesirable value defined by the previous context. Similarly, replacing the
second statement will lead to the fact that the statement jb.getUIClassID() refers to a
variable jb undefined or defined by some undesirable object in the previous context.

1 //jb = new JButton();
2 jb = new Button(parent, SWT.PUSH);
3 /* other rules will transform the

following two statements */
4 s = jb.getUIClassID(();
5 parent = new JPanel();
6 //parent.add(jb);

1 //jb = new JButton();
2 /* other rules will transform the

following two statements */
3 s = jb.getUIClassID(();
4 parent = new JPanel();
5 //parent.add(jb);
6 jb = new Button(parent, SWT.PUSH);

To correctly handle such cases in existing languages [27, 6, 9], we have to write rules
separately for each different case, capturing all possible contexts for all transformations that
need to be performed. This adds a lot of burdens to the developers, and also there is no
guarantee on whether these more complex patterns preserve the same meaning expressed in
the basic rule.

In this paper, we present a novel transformation technique, guided normalization, which
extends the notion of syntactical transformation expressed with a simple patch rule into a
more expressive transformational semantics that can match and transform statements in
control flow graphs. Using our approach, the developer only has to specify the transformation
rules for consecutive blocks. The system first finds matched statements in a way similar
to existing approaches, and for code pieces that cannot be directly transformed, a guided
normalization process is performed: the system performs a set of semantics-preserving
transformations to the program so that the matched statements become a consecutive block

a This strategy can be implemented as context-sensitive rules in TXL [9], dynamic rules in Stratego [6],
and standard placement of ‘+’ statements in SmPL [27].
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and can be directly transformed by simply syntactic substitution. If the normalization cannot
be performed, a warning is generated to the user.

In this paper, we consider several semantics-preserving transformation primitives that are
verified and widely used in compiler optimization [37, 1, 8, 14] and refactoring [33, 26, 31],
including (1) shifting unconditional statements into all conditional branches when data
dependencyb does not break, (2) swapping two adjacent statements that have no data
dependency with each other, and (3) renaming variables to their must-aliases or fresh names.
Applying the three primitives on the three cases above, we can get the following programs,
all of which can be directly matched and transformed by rButton.

//Case 1’:
if(parent != null) {
jb = new JButton();
parent.add(jb);

}

//Case 2’:
parent = new JPanel();
jb = new JButton();
parent.add(jb);
s=jb.getUIClassID(();

//Case 3’:
jb = new JButton();
parent.set(jb);
defaultButton = jb;

A particular difficulty in designing guided-normalization algorithm is that several match
instances can intertwine with each other, thus, a global solution is necessary to ensure that
the normalization guided by one rule would not prevent the normalization guided by another
rule. In our approach, we globally encode constraints brought by matches and dependencies,
and then normalize the program based on the solution to the constraints.

Challenge 2. With guided normalization, we can ensure that code pieces in different
forms are transformed as a consecutive block. However, the basic transformation specified by
the user rules may also lead to undesirable conflicts with other code pieces. Here we focus on
one type of such conflicts: breaking def-use relation. An example of breaking def-use relation
is shown below.

1 //BadRule:
2 (x: ClassX->ClassX2,
3 y: ClassY->ClassY2) {
4 - x = new ClassX();
5 - y.add(x);
6 + y = new ClassY2(x);
7 }

1 //Program
2 y = System.defaultY();
3 x = new ClassX();
4 y.add(x);
5 SomeUse(y);
6 SomeOtherUse(x);

BadRule−−−−−−→
1 //Transformed Program
2 y = System.defaultY();
3 y = new ClassY2(x);
4 SomeUse(y);
5 SomeOtherUse(x);

As we can see, BadRule breaks the def-use relation in the program. The value y used
in SomeUse(y) was defined by line 2 in the original program (left) and now is defined by
line 3 in the transformed program (right). Similarly, the value of x in SomeOtherUse(x) was
previously defined, and becomes undefined after the transformation. This problem is caused
by the definition of BadRule, where a definition of y is undesirably added and a definition to
x is undesirably removed.

We solve this problem by providing a static checker to check the def-use safety by looking
into the set of transformation rules. Though this restricts the forms of the patch patterns
to write, we will show in the evaluation section that such restriction will not damage our
expressiveness in expressing API transformation problem.
Contributions. Concretely, this paper makes the following contributions.

We propose a novel transformation technique, guided normalization, for program trans-
formation with many-to-many mappings. In our approach, the developers specify the
transformations only for consecutive method invocations, and the system automatically
applies the transformation to many different forms via guided normalization.

b Note there are three types of data dependencies: read-after-write, write-after-read, and write-after-write.
In this paper, when we use the term “data dependency”, we refer to all the three.
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We design a patch-rule like programming language, PATL, to transform programs between
APIs, and provide a static checker to ensure block-level transformation safety in terms
of def-use relation. We formalize the semantics of core PATL atop of Middleweight
Java [5], and prove (1) the guided normalization is semantics-preserving, and (2) the
transformation never breaks def-use relations.
We have evaluated our language with three non-trivial case studies for Google Calendar
API updates, switching from JDom to Dom4j, and switching from Swing to SWT. The eval-
uation shows that our language allows successful transformations of real world programs
with a small number of rules, requiring only a small amount of manual resolutions.

In the rest of the paper, we first present the syntax and basic semantics of PATL
(Sections 2, 3). Then we describe how we address the two challenges (Sections 4, 5). Next,
we present the implementation (Section 6) and evaluation (Section 7). Finally, we discuss
related work (Section 8) and conclude the paper (Section 9).

2 PATL Syntax

2.1 Background: Middleweight Java
Our discussion of PATL is based on a formal imperative core of the Java language, Mid-
dleweight Java (MJ) [5]. To simplify the formal presentation, we only consider MJ in
three-address form, and in Section 6 we shall discuss how to transform a program into and
out of three-address form.

In three-address MJ, arguments of method invocations or object constructions, field access
targets, if condition expressions and while condition expressions are limited to variables.
Besides all local variables in a method body are declared before the statements. The syntax
of three-address Middleweight Java is presented in Figure 3.

In the formal notations, we use the bar notation similar to that adopted by Pierce [29]
for repetitive elements: ā indicate a sequence a1, a2, ..., an, and all operations defined on
single values expand component-wisely along with the sequence, e.g. C̄ f̄ , is equal to
C1 f1, · · · , Cn fn, where n is the length of C̄ and f̄ .

p ::= cd (Program)
cd ::= class C extends C {fd cnd md} (Class Definition)
fd ::= C f (Field Definition)

cnd ::= C(C̄ x̄){super(ē); vd; s̄} (Constructor)
md ::= τ m(C̄ x̄){vd; s̄ return x; } (Method Definition)
τ ::= void | C (Return Types)
vd ::= C̄ x̄ (Variable Declaration)
s ::= ps (Statement)

| if(x) {s̄} else {s̄}
| while(x){s̄}

ps ::= x = e; | x.f = e; | pe; (Primitive Statement)
e ::= null | x | x.f | (C) x | pe (Expression)
pe ::= x.m(x̄) | new C(x̄) (Promotable Expression)

Figure 3 Syntax of three-address MJ, where x ranges over MJ variables, f ranges over field
names, C ranges over class names, and m ranges over method names.

2.2 Syntax
The syntax of PATL is formally presented in Figure 4. Similar to SmPL [27] and SWIN [18],
a PATL program is a set of patch-like transformation rules. Each rule π in a PATL program
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consists of two parts: 1) metavariable declarations including type information of metavariables:
a declaration v : C1 ↪→ C2 means that the source type (type in old API) of the metavariable
v is C1 and the target type (type in new API) is C2, and 2) a rule body consists of a series of
program patterns. The I− pattern block describes the statements to be deleted and the I+

pattern block describes the statements to be generated. In a PATL rule π, all metavaribales
used in I− and I+ are required to be declared in the metavariable declaration part of that
rule, and particularly, when a metavariable u is newly-introduced in I+ (u does not appear
in I−, meaning that u has no source type), u should be defined with a dummy old type ⊥ in
its declaration.

Π ::= π1, ..., πn (Rule Sequence)
π ::= (d̄) {I−; I+} (Transformation Rule)
d ::= u : C ↪→ C (Metavariable Declarations)

I− ::= − p1 , ..., − pn (Source Pattern)
I+ ::= + p1 , ..., + pn (Target Pattern)
p ::= u = r; | r; (Statement Pattern)
r ::= u.m(ū) | new C(ū) | u.f (Expression Pattern)

Figure 4 PATL syntax, where u ranges over PATL metavariables and C ranges over MJ types.

3 Basic Semantics

Basic semantics of PATL performs only strict match on consecutive blocks and syntactical
transformation. In Section 5 we shall describe how to extend the basic semantics to deal
with code blocks in different forms.

3.1 Match
Intuitively, statements s̄− in method M are matched by a rule π defined in a rule set Π, if 1)
s̄− is a sequence of consecutive statements in M that can be matched by the source pattern
π.I−, and 2) all variable occurrences matched by a same metavariable should have a same
name. The formal definition is presented below. We assume each location in a program is
uniquely identified, and use the notation xl in the rest of the paper to denote the occurrence
of variable x at location l in the program.

I Definition 1 (Match). Given a method M , statements s̄− in M are said to form a match
instance with a transformation rule π = (d̄){I− I+} if the following conditions are satisfied.

(Block) A basic block s̄ exists in M , s.t. s̄− is a consecutive statement sequence in s̄.
(Source pattern match) s̄− can be matched by the pattern block I− syntactically. There
exists a map φ from variable occurrences to metavariable names, s.t. by substituting each
variable occurrence in s̄− with its image in φ, s̄− is exactly the same as I−.
(Variable mapping) Suppose xl and yl′ are two variable occurrences matched by the
same metavariable u, then x ≡ y (i.e. x and y are the same variable), and these two
occurrences xl, yl′ are must aliases.
(Variable typing) Suppose a variable occurrence xl is matched by a metavariable u, then
type(x) <: type(u) if xl is a right-value in M , and type(u) <: type(x) if xl is a left-value
in M (Function type(x) refers to the type of x in M , and type(u) refers to the source
type of metavariable u in π). J
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We denote a match instance as a triple b = (s̄−, π, σ), where σ = {u1 7→ [xl1 , ..., xln ], ...}
is the set of mappings from metavariables to variable occurrences formed in the match.
An element u1 7→ [xl1 , ..., xln ] ∈ σ indicates that the metavariable u matches to different
occurrences xl1 , ..., xln of the variable x in the program.

I Definition 2. A matching instance set B is a set of match instances {b1, ..., bn} formed
by matching a method M against a set of rules Π, such that for any b1 6= b2 ∈ B, where
b1 = (s̄−

1 , π1, σ1) and b2 = (s̄−
2 , π2, σ2), the statements s̄−

1 and s̄−
2 should have no overlap.

This constraint is to ensure that one statement will not be deleted twice in transformation.
In our system, a warning will be generated if two mapping instances overlap. In the following
sections, we always refer B to a valid match instance set.

Note that in our pattern definition there is no syntax for capturing a field access expression.
Here we simply treat field access expressions as variables and allow metavariables to match
them.
Example. An example is presented in Figure 5: given the source program on left of Figure 5
and the transformation rules in Figure 1, the two statements in lines 2,3 will be matched
by the rule rButton, and the statement in line 5 can be matched by the rule rSetAlign,
and the match instance set is presented below: (Here, s2 refers to the statement btn=new

Button(); in line 2, and btn2 refers to the occurrence of the variable btn in line 2, other
notations are similar.)c

B =
{

(s2s3, rButton,
{
jb 7→ {btn2, btn3}, parent 7→ {panel2}

}
),

(s5, rSetAlign,
{
jb 7→ {btn5}, align 7→ {alX5}

}
)
} (1)

3.2 Transformation
I Definition 3 (Target Pattern Instantiation). Given a match instance set B, suppose b =
(s̄−, π, σ) ∈ B, then π.I+ will be instantiated into s̄+ by substituting each metavariable u in
π.I+ with an MJ variable:

If u is a metavariable in π.I+ and there exists u 7→ [xl1 , ..., xln ] ∈ σ, then u will be
substituted with x.
If u is a metavariable in π.I+ and u is a metavariable not appearing in π.I−, but defined
in π.I+, then u will be instantiated as a new variable name.

I Definition 4 (Statement-level Transformation). Given a method M (with its statement
body s̄M ) and a rule Π we denote the transformation of s̄M by Π as Π . s̄M . Suppose
B = {b1, ..., bn} is the set of match instances between M and Π where bi = (s̄−

i , πi, σi), then
Π . M is the result of substituting all s̄−

i with s̄+
i (statements instantiated from πi.I

+ with
bi). Formally, Π . s̄M = [s̄−

1 7→ s̄+
1 , ..., s̄−

n 7→ s̄+
n ]s̄M . J

Besides statement-level transformation, we will also 1) add the definitions of newly
introduced variables in the variable declaration field of M (the type of a newly introduced
variable is the target type of its corresponding metavariable defined in the rule) and 2)
transform the types based on the type mapping information provided in metavariable
declarations in each rules in Π. But as they are not our focus in this paper, we do not
formalize these two transformations.

c If there exist two variables at the same line, the encoding of l will not just be the line number but both
its line number and its character offset number, but as there is no such case in this example, we only
use line number for convenience.
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Example. Given the match instances in Equation 1 between the program in left Figure 5
and rules in Figure 1, target statements will first be generated before substitution. In the
first match instance, the target statement is generated by substitution of metavariable jb

with button, and substitution parent with panel. The resulting target statement is btn=new
Button(panel, SWT.PUSH);. Similarly, by substituting jb with btn and substituting align

with alX, we obtain the target statement btn.setAlignment(alX); from the second match
instance. By substituting source statements in each match instance with its corresponding
target statements, the desirable result can be obtained (right of Figure 5).

1 //Program
2 btn = new JButton();
3 panel.add(btn);
4 alX = 10;
5 btn.setAlignmentX(alX);

rButton−−−−−−−→
rSetAlign

1 //Transformed Program
2 btn = new Button(panel, SWT.PUSH);
3 alX = 10;
4 btn.setAlignment(alX);

Figure 5 A transformation example with rules defined in Figure 1, the statements in lines 2,3 (left)
are transformed into the statement in line 2 in the result program (right) by rule rButton. Similarly,
the statement in line 5 is transformed to the statement in line 4 (right) by rule rSetAlign. In our
examples, variables are always declared in the previous context, but we omit them for concision
consideration.

4 Preserving Def-Use Relations

As mentioned in Challenge 2 in the introduction, we would like to disallow rules that may
change def-use relations. Thus, besides checking the syntax and type correctness of the
rules as SWIN [18] did, an addition set of well-formedness conditions are checked against a
transformaion program Π to ensure the it will perserve def-use relations in transformation.

I Definition 5 (Well-Formedness Conditions). A PATL program Π = π1, ..., πn is well-formed
if the following four conditions are satisfied.

(Definition deletion) For all π, if there exists a pattern − u = r in I−, then there should
also be a pattern + u = r′ in I+.
(Definition introduction) For all π, if there exists a pattern + u = r in I+, then either
there exists − u = r in I− or u does not appear in I−.
(New metavariable introduction) Given a rule π, if there exists a pattern +p in π.I+ such
that a metavariable u in p does not appear in π.I−, then there exists a pattern +u = r

in π.I+ that introduce the definition of u. J

(SSA pattern form) For all π, the code block formed by I− (and I+) must be in static
single assignment (SSA) form, i.e. each variable is assigned at most once.

The first and second conditions ensure the def-use relations of existing variables. The
third condition ensures that the new variables are used after definition. The fourth condition
makes the other three conditions simpler, and also contributes to guided normalization to be
introduced in the next section. As an example, the BadRule in the introduction violates the
first two conditions, and thus can potentially violate def-use relations.

Now we can formally define and prove the def-use preservation property of a checked
PATL program Π. Suppose B is the match instance set between a method M and Π, Π(s) is
used to refer to the statements corresponding to s after transformation, defined as: (1) the
statements generated from a binding b, if exists b = (s̄−, π, σ) ∈ B s.t. s ∈ s̄−, or (2) s itself,
if s is not matched by any rule. We have the following theorem.
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I Theorem 6 (Def-use Preservation). Given a method M and a checked PATL program Π,
suppose the statement-level transformation is Π . s̄M = s̄′

M , then:
1. Suppose s1 and sn are two statements in a basic block in s̄M , and there exists a variable

x that is used in sn and defined in s1, then after transformation, either Π(sn) does not
use the variable x, or the occurrences of x used in Π(sn) is defined in Π(s1).

2. Suppose x is a variable newly introduced in s̄′
M , then x is used after definition.

Proof. (Proof sketch) For the first part of theorem, firstly, we need to prove that transforming
a statement sequence s̄1 in M will not delete a variable definition statement. Suppose a
statement “x=e;” is removed by a match instance b, then a pattern “-u=e’;” must exists
in b. According to the condition Definition Pattern, a target pattern “+u=e”” also exists
in b and it will be instantiated into a statement which defines the variable x. Secondly, we
need to show that the transformation will not introduce a variable definition y=e;, where
no definition statement of y appears in s̄1 and y is defined and used in a context before s̄1.
This can be proved by the following facts: 1) all newly introduced variables will have fresh
names, according to the Definition 3 and 2) these exists no statement pattern that will write
to a read-only variable in s̄1, according to the checking condition Definition Introduction.
With the above two properties, the first part of the property can be proved inductively.

For the second part, if x is a newly introduced variable, then x is matched by a metavariable
u newly introduced in I+. As required in the checking condition New Variable Introduction, a
metavariable newly introduced in I+ should also be defined in I+. This definition statement
for u in I+ will then be instantiated as the definition statement for the variable x in the
transformed program, according to Definition 3. J

5 Extending Basic Semantics via Guided Normalization

As mentioned in Challenge 1 in the introduction, we use guided normalization to extend the
basic semantics to different cases. We first start with the introduction of program analysis
techniques used in our approach, then introduce the extended match that identifies different
cases, and show how to guided-normalize the matched statements into the basic form.

5.1 Program Analysis
In order to apply a semantics-preserving transformation to a program p, the following two
program analysis results are required.

1. Alias relations between variable occurrences in p: given two variable occurrences xl1 and
yl2 , identify whether xl1 and yl2 are none-aliases, may-aliases or must-aliasesd.

2. Dependency relations between statements in p: given two primitive statements s1 and
s2, whether there are no dependencies between them or there may exist dependencies
between them, considering both data dependency and control dependency.

As the transformation algorithm only requires the analysis results, the analysis algorithm is
orthogonal to the transformation phase and any conservative program analysis tool providing
these results can be used. And as we will show later, the precision of analysis result will not
affect the semantics-preserving property of the transformation process due to our conservative

d Typical analysis tools will only provide none-alias relations and may-aliases relations, but enhancing
them with a conservative intra-procedural aliases analysis can further provides must-alias relations
between variable occurrences.
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treatment of the analysis result, but less precise analysis result may increase the number of
warnings reported by the transformation algorithm that require manual resolutions.

5.2 Extending Match
Now we define the extended match, considering match instances formed by potentially
scattered consecutive statements and rules.

I Definition 7 (Match*). Given a method M , statements s̄− in M are said to form a match
instance with a transformation rule π = (d̄){I− I+} if the following conditions are satisfied.

(Path*) There exists a statement sequence s̄, which forms an execution path in the control
flow graph of M , s.t. s̄− is a (potentially scattered consecutive) sub-sequence in s̄ .
(Source pattern match) s̄− can be matched by pattern I− syntactically.
(Variable mapping*) Suppose xl and yl′ are two variable occurrences matched by the
same metavariable u, then xl and yl′ are may-aliases in M .
(Variable typing) Suppose a variable occurrence xl is matched by a metavariable u, then
type(x) <: type(u) if xl is a right value in M , and type(u) <: type(x) if xl is a left value
in M . J

Different from Definition 1, in Definition 7: (1) statements are only required to appear in
a path in the control flow graph, and (2) variable occurrences bound to the same metavariable
are only required to be may-aliases. Here, we use B∗ = {b∗

1, ..., b∗
n}, where b∗

i = (s̄−
i , πi, σ∗

i ),
to refer to the set of match instances formed between a method M and a PATL program
Π with extended match definition Match∗. The difference between σ∗ and σ is that given
u 7→ [xl1

1 , ..., xln
n ] ∈ σ∗ (indicating metavariable u maps to the variable occurrences xl1

1 , ..., xln
n

in the match instance), occurrences xl1
1 , ..., xln

n are only required to be aliases but not
necessarily with the same name.
Match Finding and Checking. Given a method M and a set of rules Π, we use a
dataflow analysis to obtain all match instances between statements in M and rules in Π.
The behavior of the dataflow analysis is similar to the method presented by Brunel et al. [7].
Due to space limit, we omit the details here.

As mentioned before, not all match instances can be guided-normalized. If there exist
match instances that cannot be handled by guided-normalization, we will report them to
users as warnings. Some untransformable match instances can be easily identified by static
condition check. More will be identified during the process of guided normalization. Basically,
we identify any match instance b∗ = (s̄1, π, σ∗) satisfying one of the following three conditions
and report it as a warning.

Any two variable occurrences matched by the same metavariable in σ∗ are not must-aliases.
Statements s̄1 appear across methods.
Statements s̄1 appear across boundary of a while statement, i.e., the matched statements
are in different iterations, or, some are inside a loop while some outside.

The latter two conditions are checked after the matching process, while the first condition
is checked after the guided-shift step in guided normalization (introduced later in this section).
This is because the guided-shift step will eliminate some may-aliases, and after checking, all
uncertain aliases between variables occurrences involved in match instances are resolved. On
the other hand, other uncertain aliases relations will not need to be handled as they will not
affect transformation correctness, as a result, only a small part of uncertainties is required to
resolve to proceed transformation.
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Example. An example program demonstrating extended match definition with rules
rButton and rSetAlign is presented below on the left of Figure 6. In this program, firstly,
the alignment field of the button is set via a call to “btn.setAlignmentX(alX);”. Then,
before adding the new JButton object to panel, it checks whether panel is null: if it is not
null, then the btn is added to panel, otherwise the button is assigned to defaultBtn, added
to a default panel defaultPnl.

From pointer analysis we can obtain that all occurrences of btn and defaultBtn are
may-aliases. Thus, three match instances (in Match*) can be obtained between the program
and the rules in Figure 1: i.e. 1) statements in lines 1,6 can form a match instance with
the rule rButton, 2) statements in lines 1,9 can form another match instance with the rule
rButton and 3) statement in line 2 can be matched by the rule rSetAlign. And these match
instances can be represented as Equation 2:

B∗ =
{

(s1s6, rButton,
{
jb 7→ {btn1, btn6}, parent 7→ {panel6}

}
),

(s1s9, rButton,
{
jb 7→ {btn1, defaultBtn9}, parent 7→ {defaultPnl9}

}
),

(s2, rSetAlign,
{
jb 7→ {btn2}, align 7→ {alX2}

}
)
} (2)

5.3 Guided Normalization
Guided normalization transforms the program in a semantics-preserving manner such that
the match instance in the extended semantics can be transformed by the basic semantics.
We first demonstrate the result of guided normalization by example.
Example. A desirable guided-normalization for the program with the match instances
in Equation 2 is presented below (6 right), as after normalization, statements matched
to a same rule appear consecutively in basic block and variable occurrences matched by
a same metavariable have same name. It is obvious that after guided-normalization, the
transformation defined in Section 3 can be performed as all extended match instances become
the basic in-block matches. Please note in this program different API methods do not write
or read to the same field, so there is no dependency between these method calls. This
information can be obtained by a dependency analysis.

1 btn = new JButton();
2 btn.setAlignmentX(alX);
3 System.out.print(alX);
4 b = panel != null;
5 if (b) {
6 panel.add(btn);
7 } else {
8 defaultBtn = btn;
9 defaultPnl.add(defaultBtn);

10 }

normalize−−−−−−−→

1 System.out.print(alX);
2 b = panel != null;
3 if (b) {
4 btn = new JButton();
5 panel.add(btn);
6 btn.setAlignmentX(alX);
7 } else {
8 x = new JButton();
9 defaultPnl.add(x);

10 btn = x;
11 defaultBtn = btn;
12 btn.setAlignmentX(alX);
13 }

Figure 6 An Example Program to be Transformed by Rules rButton and rSetAlign and its
guided normalized result. The program on the right is normalized with match instances in Equation 2,
and after guided normalization, the match instances become: 1) statements in lines 4,5 form a match
with rule rButton, 2) statement in line 6 form a match with rule rSetAlign, 3) statements in lines
8,9 form a match with rule rButton and 4) statement in line 12 form a match with rule rSetAlign.

Semantics Preserving Transformation. As mentioned in Section 1, the key point of
guided-normalization is to ensure that the normalization process is semantics-preserving.
Thus before moving to an algorithmic description of guided-normalization, we shall first
define which transformations are semantics-preserving.
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I Definition 8 (Semantics-preserving transformation). A method M (the body of M is s̄M ) is
said to be semantics-equivalently transformed into M ′, if M can be transformed into M ′ with
a series of the transformation primitives defined below. We denote such semantics-preserving
transformation as M

∼−→ M ′.
Alias Renaming Primitive: In s̄M , if xl is a must alias of variable y in the statement of l,
renaming x to y at the statement of l is semantics-preserving.
Left-value Renaming Primitive: In s̄M , suppose x = e; is a statement defining the value
of x, and y is a free name in M , then after declaring y in M , substituting x = e; with
y = e; x = y; is semantics preserving.
Fresh-variable Introduction Primitive: In s̄M , suppose x is a fresh variable name in
M , then declaring x in M and inserting x = y; at a location where y is defined is
semantics-preserving.
Swapping Primitive: In s̄M , suppose s1s2 are two adjacent statements with no dependency,
then transforming them into s2s1 is semantics preserving.
Shifting Primitive: In s̄M , (1) given s1if(x){s̄2}else{s̄3} and suppose x does not
depends on s1, then substituting it with if(x){s1s̄2}else{s1s̄3} is semantics preserving.
(2) given if(x){s̄2}else{s̄3}s1, substituting it with if(x){s̄2s1}else{s̄3s1} is semantics
preserving. J

The transformation primitives defined above are verified and commonly used in compiler
optimization [37, 1, 8, 14] and semantics-preserving refactoring [33, 26, 31], and as long as
we can show that a transformation algorithm can be decomposed into such series of trans-
formation primitives, the transformation process is guaranteed to be semantics-preserving.

Transformation Stages. Algorithmically, the guide-normalization process can be decom-
posed into the following three stages:

1. Stage-1: Transforming the program with GuidedShift Algorithm so that statements matched
by a rule will appear in a basic block in the resulting program.

2. Stage-2: Transforming the program with GuidedRename Algorithm, and variable occur-
rences matched a same metavariable in a rule will have same name and definition.

3. Stage-3: Transforming statements in basic blocks with GuidedReorder Algorithm, so that
statements matched by a same rule will appear consecutively in the block.

In the rest of the section, we will concretely describe each guided normalization stage and
prove its semantics-preserving property. The guided normalization process consists of three
transformation stages (three algorithms), i.e. GuidedShift, GuidedRename and GuidedReorder.

In our algorithms, we use ∆ to denote a must-alias checker, which is obtained by program
analysis, i.e. given two variable name x, y and a location l, ∆(x, y, l) = true indicates that
x and y are must-aliases at the location l otherwise not. We also use Θ to represent a
dependency checker, i.e. given two statements, Θ(s1, s2) = true indicates that s1 and s2
may have dependencies otherwise not e. Particularly, besides dependencies obtained from
analysis, here we also consider match dependency: two statements s1 and s2 are said to have
match dependency when they are in a same match instance in B∗. We shall refer match
dependency and data dependency uniformly as dependency.

e If may-dependence relation is reported between two statements s1 and s2, the result will be treated as
“s1 and s2 have dependencies” in our approach. This treatment ensures that any possible dependencies
will not be broken in transformation.
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5.3.1 GuidedShift Algorithm
In the first stage, we make all statement sequences in a match instance appear in the
same basic block, i.e. given the match instance set B∗ = {(s̄−

1 , σ∗
1 , π1), ...}, if s̄′

M =
GuidedShift(s̄M , STB∗ , Θ), then all s̄−

i in match instances from B∗ will appear in a ba-
sic block in s̄′

M . Here ST B∗ is the shifting targets of B∗, indicating which statements are
supposed to appear in a basic block. ST B∗ is calculated by including all adjacent statement
pairs in s̄−

i , formally, given b∗ = (s̄−
i , σ∗

i , πi) ∈ B∗, if s1s2 are two adjacent statements in s̄−
i ,

then a pair (s1, s2) is added into STB∗ .
The function locateBlock(s) is used to find the basic block where s is in, ShiftDownInto

(ShiftUpInto) is used to move a statement into the beginning (end) of both branches of an
if statement without moving any other statement, and UpdateLocation is used to update
locations for all statements whenever a shift operation happens (as it changes locations of
statements).

Algorithm 1: GuidedShift algorithm
Input: statements s̄, shifting targets ST = [(sa, sb), ...],

dependency checker Θ.
Output: shifted statement sequence s̄′

1 while exists tuple (sa, sb) ∈ ST , s.t. sa and sb are not in the same block do
2 find s1, s2, s.t. s1 is the statement containing sa, s2 is the statement containing sb and s1, s2

are in the same basic block.
3 if s1 6= sa and s1 is a compound statement containing sa then
4 s̄t ← locateBlock(s1);
5 i1 ← indexOf(s1, s̄t);
6 for i← i1 + 1, ..., size(s̄t)− 1, do
7 sx ← s̄t[i]
8 if sx == s2 then
9 shiftUpInto(s2, s1); updateLocations(s̄);

10 break;
11 if Θ(s2, sx) == true then
12 GuidedShift(s̄t, [(sx, s1)]);updateLocations(s̄)
13 break;
14 else if s1 = sa and s2 = if(u){s21}else{s22} then
15 s̄t ← locateBlock(sa);
16 i2 ← indexOf(s2, s̄t);
17 for i← i2 − 1, ..., 0 do
18 sx ← s̄t[i]
19 if sx == sa then
20 if Θ(u, sa) == false then
21 shiftDownInto(sa, s2); updateLocations(s̄);
22 break;
23 else
24 report(); retract(); exit();
25 if Θ(sx, s1) == true then
26 s̄t ← GuidedShift(s̄t, [(sx, s2)]);
27 updateLocations(s̄)
28 break;

In the algorithm, given a target pair (sa, sb), we will first decide find two compound
statements s1, s2 such that s1, s2 appear in the same basic block and s1 contains or equals
sa, s2 contains or equals sb (line 2). Then we determine whether s1 is a compound statement
containing sa. If so, we shift s2 into an inner level of the block s1 (lines 3-13). In the shifting
process, we visit each statement after s1 in the block s1 is in, and when a statement s′ having
dependence with s2 is found, it will be shifted first to avoid dependency breaking (lines
8-10). If no such statement exists, s2 will moved into an inner level of the block s1 using the
shiftUpInto function (line 8-10). When s1 = sa, meaning that sa is in an outer block level
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compared to sb, we need to shift sa into s2 unless it is sa and sb are already in the same
basic block (lines 14-28). This process is similar to the former part except that dependence
relation will be checked when we try to shift a statement into an if statement, if dependence
between the condition variable and the statement exists, an warning will be generated for
user to handle (line 24).

The algorithm will always terminate as the block-level (the number of nested blocks
a statement is in) of some statement will increase in each loop. And the algorithm only
terminates when the shifting goal is satisfied. The semantics-preserving property of the
algorithm is presented below.

I Property 9 (GuidedShift semantics-preserving). Let M be a method (s̄M be its body), Θ
be a dependency checker that contains all statement dependencies in s̄M , and ST be a
set of shifting targets. We have M

∼−→ [s̄M 7→ s̄′
M ]M if the invocation to the algorithm

GuidedShift(s̄M , ST , Θ) = s̄′
M finishes without warning.

Proof. They key point is to show that whenever we call the function ShiftDownInto(s, s1) in
line 21 (or ShiftUpInto(s, s1) in line 9), where s1 is an if statement, all statements between s

and s1 have no dependency with s, so that we can decompose this operation into a series of
primitive swaps and a primitive shift operation. And this is ensured as we will recursively
shift statement depends on s into s1 before shifting s (lines 11-13, 25-28 in the algorithm). J

Example. Given the example in Figure 6, the first stage transformation is shifting, and it
is performed as follows in Figure 7.

1 btn = new JButton();
2 btn.setAlignmentX(alX);
3 System.out.print(alX);
4 b = panel != null;
5 if (b) {
6 panel.add(btn);
7 } else {
8 defaultBtn = btn;
9 defaultPnl.add(defaultBtn);

10 }

GuidedShift−−−−−−→

1 System.out.print(alX);
2 b = panel != null;
3 if (b) {
4 btn = new JButton();
5 btn.setAlignmentX(alX);
6 panel.add(btn);
7 } else {
8 btn = new JButton();
9 btn.setAlignmentX(alX);

10 defaultBtn = btn;
11 defaultPnl.add(defaultBtn);
12 }

Figure 7 Guided-shift result of the example in Figure 6 left. Based on the match instances
defined in Equation 2, the statement in line 1 is the target statement to be shifted into branches.
Besides, the statement in line 2 is also shifted into branches as it depends on the statement in line 1.

5.3.2 GuidedRename Algorithm
The second stage of guided-normalization is to deal with variable names in s̄M , so that if
there exist two variable occurrences xl1 , yl2 matched to the same metavariable u in a match
instance (xl1 , yl2 are aliases to form such match), we will rename them into a uniform name
via semantics-preserving transformation. Since a variable may be re-assigned or used outside
a matching instance, to avoid disturbance to the code outside a matching instance, we always
introduce a new variable and renaming to the new variable.

Similar to the previous normalization stage, the renaming targets RTB∗ are calculated first
based on the B∗. Given a match instance b∗ = (s̄−, π, σ∗) ∈ B∗ and u 7→ [xl1

1 , ..., xln
n ] ∈ σ∗,

we add [xl1
1 , ..., xln

n ] into the renaming targets, as these variable occurrences are matched by
the same metavariable u in b∗. When we obtain RTB∗ from B∗, we will run GuidedRename
on RTB∗ and M to obtain the desirable normalized program.

In our algorithm, we use the following auxiliary functions: 1) Occurs(RT ) calculates the
set of all variable occurrences appearing in RT , 2) FreshName(M) generates a fresh variable
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name that is not used in M , 3) UpdateAlias() updates variable locations in both M and RT
after transformation and 4) rename(x, y, l) renames x into name y at the location l.

Algorithm 2: GuidedRename algorithm
Input: method M = τ m(C̄ x̄){vd; s̄M ; return x; },

renaming targets RT = {[xl11
11 , ..., x

l1n1
1n1

], ...}
Output: method M with some variables in the body renamed

1 S1 ← Assignment statements with left-value in Occurs(RT);
2 foreach sd ∈ S1 (sd of form yl = e;) do
3 x1 ← FreshName(M);
4 M.vd ←M.vd ∪ {type(yl) x1};
5 M.s̄M ← [sd 7→ x1 = e; y = x1; ]M.s̄M ;
6 UpdateAlias();
7 foreach yl′

where yl′
and yl are in a rt ∈ RT and l 6= l′ do

8 rename(y, x1, l′); UpdateAlias();
9 S2 ← ∅;

10 foreach rt = [xli1
i1 , ..., x

lini

ini
] ∈ RT do

11 if Foreach x
lij

ij ∈ rt, x
lij

ij is a right-value then
12 S2 ← S2 ∪ {statement use xli1

i1 };
13 foreach s ∈ S2 do
14 foreach variable yl used in s do
15 if yl ∈ Occurs(RT) and yl is the first element of a rt ∈ RT then
16 x1 ← FreshName(M);
17 M.vd ←M.vd ∪ {type(yl) x1};
18 M.s̄M ← [s 7→ (u = y; [y 7→ x1]s; )]M.s̄M ;
19 UpdateAlias();
20 foreach other yl′

in rt do
21 rename(y, x1, l′); UpdateAlias();
22 return M ;

In GuidedRename algorithm, we will deal with left-value renaming in lines 1-9 and deal
with right-value renaming in lines 10-21.

Left-value renaming (line 1-9) is used to deal with situations that the first element xl1
1 in

a renaming target rt = [xl1
1 , ..., xln

n ] is a left-value in M . (As we can prove, the only possible
left-value in a rt is the first element, as the patterns are required to be in SSA form and all
xli

i are matched by a same metavariable u in a rule.) Firstly, we will find the statement that
defines the value of xl1

1 and collect all such statements in a set S1 (line 1). And then, for
each collected assignment statement, we will generate a fresh name to rename it through
the Left-value renaming primitive defined in Definition 8 (lines 2-5). Then, as all these xli

i

appear in a same basic block (as a result of the GuidedShift algorithm), we will rename all
variable occurrences in rt into the new name (lines 7-8). Similarly, Right-value renaming
(lines 10-23) helps renaming a target such that all variable occurrences are right values.
Example. The guided-renaming phase for the program in Figure 7 is shown below in
Figure 8. As in the match instance between statements in lines 8-11 and the rule rButton

involves an alias-pair (i.e. btn8 and defaultBtn11), they will be renamed to have the same
name. The renaming process is done by introducing a new variable name x following the
left-value renaming part defined in the GuidedRename algorithm (lines 8,9,12 in the right of
Figure 8).

Similar to GuidedShift algorithm, GuidedRename is also semantics preserving, and we
present the proof below.

I Property 10 (GuidedRename Semantics-preserving). Let M be a method, Π be a trans-
formation program, B∗ be a set of match instances between M and Π, and RTB∗ be a set of
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1 System.out.print(alX);
2 b = panel != null;
3 if (b) {
4 btn = new JButton();
5 btn.setAlignmentX(alX);
6 panel.add(btn);
7 } else {
8 btn = new JButton();
9 btn.setAlignmentX(alX);

10 defaultBtn = btn;
11 defaultPnl.add(defaultBtn);
12 }

GuidedRename−−−−−−−−→

1 System.out.print(alX);
2 b = panel != null;
3 if (b) {
4 btn = new JButton();
5 btn.setAlignmentX(alX);
6 panel.add(btn);
7 } else {
8 x = new JButton();
9 btn = x;

10 btn.setAlignmentX(alX);
11 defaultBtn = btn;
12 defaultPnl.add(x);
13 }

Figure 8 Guided-rename result following the previous result in Figure 7, a new variable name x

is introduced to rename btn8 and defaultBtn11.

renaming targets generated from B∗. We have M
∼−→ M ′ if GuidedRename(M, RTB∗) = M ′.

Proof. The places we will modify M are lines 3-5, line 9, lines 17-19 and line 23 in the
algorithm. Firstly, the operation in lines 3-5 directly corresponds to a left-value renaming
primitive, lines 17-19 directly corresponds to a free variable introduction primitive and an
alias renaming primitive so that they are semantics preserving. The key point here is to show
that modification in line 9 (similarly, in line 23) is also semantics preserving by showing that
x1 and y are aliases at l′ (if they are aliases, then we are transforming with alias renaming
primitive). This can be proved by the transitivity of alias relations: xl′

1 is an alias to x in sd,
x in sd is an alias to yl, and yl is an alias to yl′ (as they are in target set generated from
B∗), so that x1 and y are aliases at location l′. J

5.3.3 GuidedReorder Algorithm
The last phase of guided normalization is guided-reordering, in which we want to reorder
statements in blocks so that given a match instance b∗ = (s̄−, π, σ∗) ∈ B∗, statements s̄−,
will appear consecutively.

The reordering targets OT required by the algorithm will first be built: starting from
an empty set, for each b∗

i = (s̄−
i , πi, σ∗

i ) ∈ B∗, s̄−
i will be added into OT , i.e. the goal is to

make all such statement sequences matched by source patterns appeared consecutively. The
dependency checker Θ here is same as the checker used in GuidedShift.

In the GuidedReorder algorithm, firstly, for each block s̄, we assign each statement s ∈ s̄

with a field l indicating its target location. Then, we encode the goal as constraints using
by these locations, and then these locations can be calculated by solving the constraints.
Concretely, the constraints are built in the following way:

For each si, sj ∈ s̄, if Θ(si, sj) = true, add si.l < sj .l into the constraint set if i < j,
otherwise add sj .l < si.l if j < i (line 6-10). These constraints ensure that the statement
dependencies are kept after reordering.
For each statement sequence s̄k ∈ OT , add sk(i).l + 1 = sk(i+1) into the constraint set
(line 11-13). These constraints ensure that target statements will appear consecutively in
the right order.

As these constraints form a system of difference constraints [10], and we can solve it
through shortest path algorithm. When we successfully solve the constraints, we will then
reorder the statements accordingly in M to obtain the desirable result. If there exists no
solution to the constraints, warnings will be generated to users, as we cannot make all
matched statements appear consecutively due to dependency issues.
Example. After performing GuidedRename the program in Figure 8, we only need to reorder
the statements in lines 4,6 and statements in lines 8,12 in program (right of Figure 8) to
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Algorithm 3: Statements Reordering
Input: method M , dependency checker Θ,

reordering targets OT = [s̄a, ...]
Output: Re-ordered statement sequence s̄′

1 foreach basic block s̄ in M do
2 OTs ← {statement sequences from OT and in s̄};
3 (Suppose OTs is {s̄1, ..., s̄m})
4 n← length(s̄);
5 Constraints ← ∅;
6 foreach si 6= sj ∈ s̄ do
7 if Θ(si, sj) and i < j then
8 Constraint ← Constraint ∪ {si.l + 1 ≤ sj .l};
9 else if Θ(si, sj) and j < i then

10 Constraint ← Constraint ∪ {sj .l + 1 ≤ si.l};
11 foreach s̄k ∈ OT do
12 foreach i = 1 to length(s̄k)− 1 do
13 Constraint ← Constraint ∪ {si.l + 1 = si+1.l};
14 if TrySolve(Constraints) successful then
15 s̄′ ← Sort s̄ according to s.l;
16 M ← [s̄ 7→ s̄′]M ;
17 else
18 report();
19 return M ;

obtain the desired program in Figure 6 left. At this point, we successfully guided-normalize
the program as presented in 6.

The following property shows that GuidedReorder is semantics-preserving.

I Property 11 (GuidedReorder semantics-preserving). Let M be a method, Θ be a dependency
checker containing all statement dependencies in M , and OT be a set of reordering target.
We have M

∼−→ M ′ if M ′ = GuidedReorder(M, Θ, OT ).

Proof. We prove the property by showing that for each block s̄, if s̄ is reordered into s̄′, then
s̄ can be transformed into s̄′ through a series of Swapping Primitives defined in Definition 8.

We first prove that the dependencies in the original program are preserved in s̄′, i.e. if
Θ(si, sj) == true and si appear before sj in M , then si.l < sj .l: suppose si and sj have
dependency in s̄ and j < i, then sj .l < si.l is added into the constraint set. By solving the
constraints, we still have sj appears before si after transformation in s̄′, sj .l < si.l. Thus we
have all dependencies preserved in s̄′.

Then we present a constructive method on how to generate a sequence of Swapping
Primitives to transform s̄ into s̄′: 1) label the statements in s̄′ with [1, ..., n], and assign that
label to statements in s̄ (e.g. if s1 in s̄′ is labeled as k, then the s1 in s̄ also have label k, as
a result, labels in s̄′ are sort while not in s̄), 2) perform a bubble sort algorithm on labels
in s̄ and record swaps when running the algorithm. We now show that all these swaps are
Swapping Primitives: as indicated in the last part, if si depends on sj , then sj appears before
si in both s̄ and s̄′, then before performing bubble sort on the labels, the label of si and sj

is already sorted. As bubble sort algorithm will never swapping sorted pairs, any of the swap
operations used are Swapping Primitives. Thus, M

∼−→ M ′ and the property is proved. J

5.4 Main Theorem
Here we present the main theorem on the semantics-preservation of guided normalization.

I Theorem 12 (Main Theorem). Let M be a method, Π be a rule set, and B∗ be a set
of match instances between statements in M and rules in Π. We have M

∼−→ M ′ if the
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guided normalization of M with B∗ returns M ′. In other words, the transformation is
semantics-preserving.

Proof. This theorem is a simple derivation of Property 9, 10 and 11. J

6 Full Language Implementation

Based on the core PATL presented in previous sections, we implemented a version of PATL
for Java (Patl4J). On top of core PATL, there are several extensions in the full language.

First, the full language supports standard Java programs that are not necessarily in
three-address code. Before matching and transformation, we first convert the Java program
into three-address code. This is achieved by introducing a set of temporary variables to
decompose statements that are not in three-address form. We give special names to the
temporary variables, and after the transformation, we try to apply the “inline variable”
refactoring to inline these variables to recover the original program. In this way we can
ensure the structure of the original program is retained to some degree.

Second, the full language supports context-sensitive matching, similar to the context-
sensitive matching in SmPL [27] and TXL [9]. We introduce a new type of pattern to match
a context of a rule. A context is a sequence of statements (not necessarily consecutive)
that always appear before the matched statements in all paths in the control flow graph,
and transformation only when its context is matched by the rule. An example of the
context-sensitive matching can be found in the evaluation section.

Finally, the full language provides a new type of transformation rules to change method
definitions. In Java, we may define a class that extends a library class or implements a library
interface. When the library class/interface is mapped to a new class/interface, the client
definition should also be changed. Our rule works similarly to refactorings [13], allowing to
rename a method, reorder the parameters of a method, or introduce a new parameter.

Currently, the full language is implemented as an Eclipse Plug-in using the Eclipse JDT
parser to manipulate the syntax tree and obtain type and use Soot [35] to perform program
analysis for the client program. Concretely, in our implementation, desired program analysis
results are obtained using SOOT Spark pointer analysis tool, where 1) the alias relation
between two variable occurrences is determined by querying the anaylsis tool whether two
variable occurrences always points to the same memory location and 2) the dependence
relations between two statements is determined by querying the tool whether there exists
variable occurrences in the two statements accessing the same memory location. Our
prototype can be found in its web sitef g.

7 Evaluation

How effective is PATL for transforming real-world industrial cases? To answer this question,
we evaluate our approach on three groups of widely-used Java API cases, i.e. Jdom to Dom4j,
Google Calendar version 2 to version 3, and Swing to SWT.

f https://github.com/Mestway/Patl4J.
g As a proof-of-concept, the type analysis, interprocedural dependency analysis, and some transformation

steps in our implementation is not fully automated and may require user input. Nevertheless, this
is purely a pragmatic problem due to our limited resource on implementation; our approach can be
implemented fully automatically.
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Table 1 Subject Client Programs

Client KLOC Classes Methods Case
husacct 195.6 1187 5977 Jdom/Dom4j
serenoa 12.2 52 523 Jdom/Dom4j

openfuxml 112.5 727 4098 Jdom/Dom4j
clinicaweb 3.9 74 213 Calendar

blasd 9.7 199 729 Calendar
goofs 8.6 78 643 Calendar

evochamber 12.8 132 868 Swing/SWT
swingheat 2.3 30 186 Swing/SWT

marble 1.6 10 56 Swing/SWT
Total 359.2 2489 13293 –

7.1 Data Set
In our experiments, we chose three case studies that migrate programs from Jdomh to Dom4ji,
from Google Calendarj version 2 to version 3, and from Swingk to SWTl, respectively. Jdom
and Dom4j are two popular XML parsers, but Dom4j has better performance over Jdom
on a number of tasks, so it is desirable to migrate programs from Jdom to Dom4j. Google
Calendar API is a web service provided by Google to access personal calendar data. The
interface for version 2 has been shut down, and version 3 is not compatible with version 2
clients, so the clients will not work unless migrated to version 3. Swing and SWT are two
Java GUI libraries. Swing uses platform-independent components while SWT is designed as
a light-weight wrapper of native GUI. SWT is sometimes considered faster than Swing, and
some platforms such as Eclipse only supports SWT. We chose the three case studies because
they are real-world program migration cases, and a large number of clients are available for
the evaluation. Also, the three cases cover the two main types of program migration: API
switching and API upgrading.

To evaluate the transformation program we wrote, we also collected a number of client
programs that use the source API. These clients are obtained by searching the source API
methods in searchcodem. In total, we used nine client programs in our evaluation. The
statistics of the subject programs can be found in Table 1. In total, the projects totally
contain 342.5 KLOC, including 2317 classes and 12183 methods, details about these projects
can be found in our implementation website.

7.2 Procedures
For each case, we first wrote PATL rules that capture the correspondence between the old
and the new APIs. Since the changed portion of the API is large, and it is important to test
the rule under a real client, we only dealt with the portion of API that is used in our subject
client programs. However, the rules we wrote are generic rules for any possible client, not
specific to the subjects in our evaluation.

Next we transformed client programs that contain source API invocations using our
transformation tools. To produce working clients, we manually resolved warnings reported

h http://www.jdom.org/
i http://www.dom4j.org/
j https://developers.google.com/google-apps/calendar/
k http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
l http://www.eclipse.org/swt/
m http://searchcode.com



20 Transforming programs between APIs with Many-to-Many Mappings

Table 2 Transformation Rules

Transformation Rules Classes Methods M-to-m
Jdom/Dom4j 84 12 77 12(14.3%)

Calendar 42 14 45 21(50.0%)
Swing/SWT 110 40 82 54(49.1%)

Total 236 66 204 87(36.9%)

Table 3 Results of the Transformations

Client CF CL W U I MM GN
husacct 42 852(100%) 0(0%) 0(0%) 0 0(0%) 0(0%)
serenoa 8 273(98.9%) 0(0%) 3(1.1%) 0 9(3.3%) 0(0%)

openfuxml 72 983(94.8%) 0(0%) 54(5.2%) 15 2(0.2%) 0(0%)
clinicaweb 5 81(100%) 0(0%) 0(0%) 8 34(42%) 0(0%)

blasd 5 26(63.4%) 8(19.5%) 7(17.1%) 0 13(50%) 2(15.4%)
goofs 13 100(80.0%) 12(9.6%) 13(10.4%) 27 27(27%) 0(0%)

evochamber 9 587(98.3%) 10(1.7%) 0(0%) 0 330(56.2%) 109(33.0%)
swingheat 21 653(100%) 0(0%) 0(0%) 0 461(70.6%) 394(85.5%)

marble 6 488(98.6%) 0(0%) 7(1.4%) 0 240(49.2%) 220(91.7%)
Total 181 4043(97.3%) 30(0.7%) 84(2.0%) 50 1116(27.6%) 725(65.0%)

CF = number of changed files, CL= number of changed lines, percentages in CL = CL / (CL+W+U), W
= the number of lines of code that have warnings, percentages in W = W / (CL+W+U), U = number of
lines that PATL cannot transform, percentages in U = U / (CL+W+U), I = number of lines impossible
to transform, MM = number of lines that are involved in many-to-many mappings, percentages in MM =
MM / CL, GN = number of lines that require guided normalization, percentages in GN = GN / MM.

during the transformation. A few API invocations are impossible to be transformed due to
the limitation of PATL, and we create mock objects for them.

To ensure that the transformation is performed correctly, we performed three different
tests for these converted clients. (1) Client EvolutionChamber comes with a set of 28
functional and 4 performance tests, and we ensure that the transformed client passes all
transformed tests. (2) We check whether they behave normally without exceptions, error
messages, or crashes.. (3) For the clients in JDom/Dom4j and Swing/SWT, we side-by-side
executed both the original and transformed clients to ensure they behaved the same. Note
that we cannot apply the last test to the clients of Google Calendar because Calendar API
v2 is already shut down.

7.3 Results

Rules Written. The statistics for the rules and transformed source APIs are summarized
in Table 2: the ‘Rule’ column shows the number of the rules. The ‘Class’ and the ‘Method’
columns contian the number of API classes and methods covered by the rules. In total, we
wrote 236 rules for the three case studies, and 66 classes and 204 methods in the source API
are covered.

Basically, the number of rules is close to the number of covered methods. Furthermore,
most rules are easy to write: only 14 rules in total that have a body longer than 4 lines. This
indicates that PATL rules are friendly to users: they only need to capture basic forms in
writing the rules without worrying about complex program context.
Effectiveness of Client Transformation. To evaluate the effectiveness of our approach
on transforming clients, we counted the following numbers in our evaluation: (1) the number
of files transformed by the rules (CF), (2) the number of lines transformed by the rules (CL),
(3) the number of lines in the source client code on which warnings are generated (W), (4)
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// Rule-1
(x: CalendarEntry->CalendarListEntry,
y: TextConstruct->String,
z : String -> String){

m y = new PlainTextConstruct(z);
- x.setTitle(y);
+ x.setSummary(z);

}

//Rule-2
(y: TextConstruct -> String){

- y = new PlainTextConstruct(z);
+ y = "";

}

Figure 9 Two transformation rules used in transforming Google Calendar v2 to v3.

the number of lines where transformed code exists but the transformation rule cannot be
specified in PATL (U). Details of the data are presented in the first five columns in Table 3.

As we can see from the table, the 236 rules changed in total 4043 lines distributed in
181 files. This result reflects the effort saved from manual migration. The efforts saved are
twofold: (1) to locate these lines from different files, (2) to derive transformation solution for
each line based on the context surrounding this line.

Furthermore, the number of lines transformed by PATL consist of 97.3% of the lines that
need to be converted. The rest of lines need manual resolution: the lines where warnings are
reported and the unconvertible lines. These lines amount to 114 lines, consisting of 2.7% of
total lines. This result indicates that PATL is able to handle the majority of the cases in
practice.
Many-to-Many Rules. A significant portion of the transformation rules are many-to-
many rules. As we can see from the last column of Table 2, in total 36.9% of the rules are
many-to-many rules, and in the case of Google Calendar upgrade the percentage is as high as
50%. These many-to-many rules is responsible to transform a significant portion of the client
code. As shown in column “MM” in Table 3, in total 27.6% of the lines are transformed by
many-to-many rules, and in project swingheat the percentage is as high as 70.6%.

From our running example we have seen a typical case where many-to-many rules can
be applied. Here we show another typical case: a wrapper class in the source API does not
exist in the target API. For example, in the old version of Google Calendar, a wrapper class
called PlainTextConstruct is used to wrap a string. For example, client goofs contains the
following two lines of code (e in the statement is a variable of type CalendarEventEntry).

e.setTitle(new PlainTextConstruct(name));

In the new API, the use of the wrapper class is removed as many as possible. As a result,
the above two lines should be converted to the following line of code.

e.setSummary(name);

This instance is a typical many-to-many mapping instance, and the transformation can be
captured by the two rules in Figure 9.

The first rule uses context-sensitive matching described in Section 6. The statement
annotated with “m” is a context pattern, which indicates that x.setTitle(y) is only matched
and transformed if there is y = new PlainTextConstruct(z) before it. The first rule captures
the wrapping of a string and the use of the wrapper, and converts it into a proper method
invocation based on how the wrapper is used. The second rule removes the useless variable
y. Note that the target method setSummary is decided by both the argument passed to
PlainTextConstruct (in this case, a string but not an html object) and the invoked source
method on x (in this case setTitle), so this rule has to be many-to-many.
Guided Normalization. The number and percentage of lines in the source clients that
require guided normalization are shown in the last column of Table 3. As we can see from
the table, a significant portion of lines involved in many-to-many rules, i.e., 65.0% of lines,
requires guided normalization to correctly perform the transformation. This result indicates
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(1) guided normalization is necessary; (2) guided normalization is only performed on necessary
lines but not all lines, avoiding excessive change to the layout of the source code.

Besides guided normalization, a conversion to three-address code is performed at the
beginning of the transformation, and the introduced temporary variables will be inlined at
the end of the transformation. In our experiment, all temporary variables are inlined at the
end. This result indicates that the conversion to three-address code would not significantly
affect the source code, either.

In particular, most lines requiring guided normalization exist in the clients of the
Swing/SWT. This is because a lot of UI elements are first initialized and then added
to their parents, such as the following example, in which we need to first swap the statements
at line 2 and line 3 and then the rule in our running example becomes application.

button = new JButton();
button.setText("OK");
panel.add(button);

Unspecifiable Cases. As shown by the column “U” in Table 3, there are in total 84 lines of
code whose transformation patterns cannot be captured by PATL rules. These unsupported
mapping patterns are summarized into the following three categories.

The first category is that type mapping does not form a function. For example, a class
may split into two classes, each inherits part of the functionalities of the original class. Since
in the meta variable declaration we only allow to map one class to another class, we cannot
write a rule for such cases. Most lines, 74 out of 84 belong to this category.

The second category is that the transformation needs high-level coordination between
match instances, and only one such instance of three lines is observed. This instance is from
Jdom/Dom4j. Below is the source client code (left of Figure 10), which converts elements
in rulesElements into a string in rulesToRegister. An ideal transformation of this case is
shown on right: instead of directly converting each element into string, they are written into
a StringWriter to get the concatenated string. While we can write rules to generate the
first three lines of the target code, We cannot generate the call to sw.toString() at the end
of the target client code because there is no corresponding source statement. Generating this
type of “closing” statement remains future work.

XMLOutputter out = new XMLOutputter();
for (Element e : rulesElements)
rulesToRegister += out.outputString(e);

StringWriter sw = new StringWriter();
XMLWriter out = new XMLWriter(sw);
for (Element e : rulesElements)
out.write(e);

rulesToRegister += sw.toString();

Figure 10 An example using the JDom that PATL cannot handle.
The last category relates to the use of JPopupMenu in Swing. In the evaluation 7 out of

the 84 lines belong to this category. In Swing, to show and hide a pop menu, we need to
implement a listener in which we write code to show and hide the pop menu. In SWT, we
only need to call a method setMenu. To perform this transformation, we need to match both
a method definition as well as the method body, which is not supported in PATL.
Warnings. As shown in the “W” column in Table 3, there are in total 30 lines of code on
which warnings are generated. There are several reasons why warnings are generated. The
first one, also the largest category, is that some code pieces cannot be transformed or shifted
together because of dependencies among statements. 18 out of 30 lines belong to this category.
The second one is that one line is matched by multiple “-” block in different rule instances. 2
out of 30 lines belong to this category. These two categories actually show the usefulness of
guided normalization: unsafe transformations are disabled by guided normalization.
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The last category is that the matched code is scattered in several methods. Since we do
not move statements across method boundaries, our approach reports warnings on these lines.
10 out of 30 lines belong to this category. This shows a limitation of our current approach.
Untransformable code. As shown in the “I” column in Table 3, there are in total
50 lines of source code that are impossible to transform. This is because we cannot find
any counterpart in the target API for a portion of the source API, and any lines invoking
this portion cannot be transformed. The portion of untransformable API in the Google
Calendar case is confirmed by the official Google Calendar upgrade guide, which states some
functionalities are removed and will not be supported any more.

8 Related Work

Pattern finding in programs. Several works have been done in enhancing the pattern
finding technique to enable finding program patterns with simpler rules [28, 7]. Among them,
the most related is the approach proposed by Brunel et al. [7], which enables users to specify
a sequence of consecutive statements to match different form statements against patterns
with same semantics via model checking. The match part of our transformation technique is
similar to this matching mechanism, while differently, besides matching, our language also
performs transformation using these consecutive statement patterns.
Transformation languages. A lot of different program transformation approaches have
been proposed for different purposes. Some of these approaches [24, 18, 3, 36, 21, 20] are
specialized for handling one-to-many mappings: one method invocation is replaced by a
sequence of invocations. Among them the most related are Twinning [24] and SWIN [18], both
of which are designed for handling the API migration problem with one-to-many mapping
rules. Our basic semantics and the type mapping design are similar to them. Another related
approach is update calculus [21, 20], which ensures the type-safe update of programs. Our
approach currently does not ensure type safety, and potentially can be combined with update
calculus and SWIN to ensure type safety. Overall, compared with these languages designed
for one-to-many mappings, our approach supports many-to-many mappings, the importance
of which is recognized by several empirical studies [4, 34] as well as our evaluation.

Besides, a number of program transformation languages or frameworks can be used to
handle program transformation involved in many-to-many mappings.

SmPL [27] is a transformation language designed to document and automate the collateral
evolutions of large C programs with patch rules. Our syntax for specifying the three
patterns are inherited from semantic patches. SmPL also includes a state check [7] to check
transformations that may potentially break data dependency relations, and a failure will be
report on Case-2 in introduction (which our approach successfully handles). Stratego [6] is a
general purpose transformation language, allowing users to define rules to rewrite the abstract
syntax tree of a program. Stratego handles the context-sensitive transformation with the
support of dynamic rules, enabling users rewrite rule at places where context information is
currently unavailable. Dataflow facts in Stratego can also be collected and propagated using
dynamic rules [25]. TXL [9] is another general purpose transformation language manipulating
the abstract syntax trees, which allows acquiring the context information in tree traversal.
Lacey and De Moor [17] propose a graph rewriting language where conditions on execution
paths can be specified using temporary logic. Crossver [32] proposed a way to combine
dataflow analysis with aspect-oriented programming to transform programs.

Overall, though these languages have provided more general and expressive operations
for matching and transforming programs, they are low-level and require more effort to create
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correct and generic transformation. Differently, our language focuses on a more restrict but
simpler language interface for the API transformation tasks.
Automated Transformation for APIs. Several approaches try to further reduce the
cost of program adaptation between APIs by automatically discovering the transformation
program. Typical approach includes recording the API refactorings and replay them on the
client code [13, 12], and analyzing manually adapted code pieces [2, 23, 22] or clients [39, ?].
Currently, none of these approaches supports the automatic transformation of many-to-many
mappings in a flexible and safe manner. Our approach can be potentially combined with
those approaches to reduce the effort of writing code.
Normalization. Normalization techniques are commonly used in compiler optimization[15,
1, 14, 37, 8], semantics-preserving refactoring [26, 31] and procedure extraction [16].

Komondoor and Horowitz [16] presented a normalization technique that helps to move a
set of identified statements to form a consecutive sequence, for program extraction purpose.
However, due to the different domain requirements, their approach [16] handles only the
situation that the normalization target is one sequence of statements, while our approach
is required to normalize multiple sequences at the same time. As a result, we restrict
the transformation primitives to retain the semantics-preserving property with the more
complex normalization goal. Furthermore, transforming programs between APIs also requires
performing renaming between aliases, which is not supported by Komondoor and Horowitz’s
approach [16] as it is not a requirement in code extraction.

Code motion [15] is an optimization technique which, when applied to if-branches, behaves
similarly to our shift operation. However, these operations are not designed for user-specified
program transformations. In addition, different from their approach and other compiler
optimization approaches [1, 14, 37, 8], normalization in our approach are guided by match
instances so that most original program structure can be kept after normalization.

9 Conclusion

In this paper we have presented PATL for safe transformation of complex programs between
different APIs with simple Many-to-Many mapping rules. The key insight for PATL is to
bridge the gap between simple in-block transformation semantics and complex program
structures using guided normalization, which automatically changes the program so that
code in different forms can be transformed in a unified manner. We applied PATL to three
real world program transformation cases. The evaluation showed that PATL is expressive
in handling real world scenarios, and with the help of guided normalization, only a small
amount of manual resolution is required.
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