
iDocument Builder: An Environment for Building
XML-Based Interactive Teaching Materials

Yasushi HAYASHI, Zhenjiang HU, and Masato TAKEICHI
Graduate School of Information Science and Technology

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
{hayashi,hu,takeichi}@mist.i.u-tokyo.ac.jp

ABSTRACT

PSD (Programmable Structured Document) is a
framework in which structured documents are
edited efficiently and safely by evaluating embed-
ded codes in themselves. Justsytem’s xfy has a
technology called Vocabulary Connection, which
supports creating and editing source XML docu-
ments on the HTML view. Combining these two
technologies allows us to produce an environment
to support creating XML-based interactive teach-
ing materials, which generate some outputs dynam-
ically according to user’s inputs. The way to pro-
duce the environment is explained and the useful-
ness of this tool is demonstrated by an example of
an XML-based exam paper.

Keywords: XML, HTML, Authoring Tools,
Teaching Materials, Document Processing

1. INTRODUCTION

Teaching materials on web pages are becoming in-
creasingly popular as more and more students can
access computers through the Internet in school or
at home. It is widely recognized that web-based
distributions of those materials have many advan-
tages. Among them, materials that are interac-
tively changeable by user’s actions are considered
to be very effective in promoting active learning.
Those materials are usually written in HTML and
some scripting language such as JavaScript since
standard web browsers can handle them. In recent
years, making an HTML from an XML by using a
transformation language such as XSLT is becom-
ing widely used. No matter which route is taken,
it is difficult to construct such teaching documents
since the author usually needs to learn HTML tags
and Cascading Style Sheet (CSS) when writing an

HTML directly, or XSLT when converting an XML
to an HTML. Furthermore, to add an interactive
nature to pages, the author needs to learn a script-
ing language such as JavaScript. The learning costs
for these techniques are considerably high for the
usual authors. Even for those who are familiar with
these techniques, it is a time-consuming task to
build such web-based interactive documents with-
out some editing supports. We believe that the
existence of a more useful environment to support
building web-based interactive documents will en-
courage more teaching documents authors to try
writing this kind of teaching materials. The follow-
ing features are desirable for such an environment.

• The author can build a web-based document
on the HTML view like when she writes a usual
text with a usual editor without knowing the
definition for elements.

• The author can easily add interactive actions
by entering codes in the documents on the
HTML view.

The aim of this work is to develop a system to
construct such an environment by combining two
recent XML related technologies, that is xfy [3]
developed by Justsytem Corporation, our collab-
orator, and PSD (Programmable Structured Doc-
uments) [2] proposed by our PSD project [5] at the
University of Tokyo. Using an environment con-
structed by our system, the author can easily make
interactive documents (we call them iDocuments)
that have the following features (that will be ex-
plained in detail in Section 6).

• Texts are dynamically changeable for user ’s
inputs.

• Textbooks or tutorials can be customized for
a user.



• Programs in the textbook can be modified and
executed on the document itself.

The structure of the rest of the paper is as fol-
lows. Section 2 explains how to predefine building
blocks with which the author can build documents
on an xfy window. Section 3 explains the prede-
fined building blocks for iDocument. Section 4 de-
scribes our PSD evaluating system. Section 5 ex-
plains how to write an embedded code in Haskell.
Section 6 describes the features of iDocuments and
gives an example of iDocuments, that is exam pa-
per (we call it iExam). Finally, Section 7 gives
conclusions.

2. BUILDING BLOCKS ON XFY

Justsystem xfy [3] is an XML management ar-
chitecture developed by Justsystem Corporation.
It has an innovative technology called Vocabulary
Connection (VC), which transforms a source XML
document to a target HTML. The distinguished
features of xfy that are useful for building inter-
active documents are the facility that the HTML
view can take user’s actions to edit the XML source
document and the support to build documents from
building blocks using the commands on the menu
bar. Here, a building block can be regarded as an
XML element that has some meaning as a docu-
ment component. Vocabulary Connection Descrip-
tor (VCD) is a scripting language to apply VC to
XML documents. It can be seen as an extension of
XSLT1.0. An important task for the construction
of an environment for building a document on xfy is
to predefine commands for inserting and deleating
a building block in the VCD program, with which
the author constructs an XML document. For ex-
ample, a command for inserting a paragraph block
after the element where cursor is located is defined
by

<vcd:command name="add-paragraph">
<vcd:insert ref=
"vcd:caret-node()/
ancestor-or-self::psd:*[parent::psd:content][1]"
position="after">
<psd:paragraph />
</vcd:insert>
</vcd:command>

The command can be assigned to the main menu
so that it is invoked by selecting it from the main
menu on the xfy window. To achieve it, we include
the following description in the VCD program.

<vcd:vocabulary match="idocuments"
label="idocuments"

call-template="root">
<ui:ui>
<ui:main-menu>
<ui:menu label="Block">
<ui:menu-item label="Paragraph"
command="add-paragraph" />
</ui:menu>
</ui:main-menu>
</ui:ui>
</vcd:vocabulary>

In addition to these definitions, we need to define
how to display the paragraph element on the view
in the same way we do it in XSLT. After describing
these statements in the VCD program, the “Para-
graph” command appears in the main menu, and
selecting it automatically inserts an empty para-
graph element in the source XML and displays a
cursor with a prompt to enter a content of para-
graph on the HTML view (Figure 1). Note that

Figure 1: Inserting a new paragraph

VC allows the author to input the content directly
on the HTML view.

In an environment with the necessary commands
for editing building blocks predefined, the authors
can create and edit the document by selecting a
command from the main menu and inputting con-
tents on the HTML view without knowing defini-
tions for elements and attributes.

3. BUILDING BLOCKS FOR
IDOCUMENTS

We have defined commands for editing building
blocks for iDocuments. The building blocks we can



insert and delete by the commands under Block
item of our main menu are classified into three
kinds, that is basic blocks, PSD related blocks, and
application specific blocks. The basic blocks are
blocks we often use to write a general document.
Those blocks include section, paragraph, list, or-
dered list, sample code, image and table. The PSD
related blocks are related to the PSD manipula-
tions. Those are Function Definition and PSD Ex-
pression. The Function Definition command gen-
erates an empty psdfun element whose contents
will be definitions of user-defined functions given
by the user. The view of a psdfun element shows
its contents and a “Hide Code” button to hide the
contents when needed. The PSD Expression com-
mand generates an empty psdexpr element whose
contents will be expressions that can be evaluated
by an evaluator. The view of a psdexpr element
usually shows its contents and two buttons, that is
an “Evaluate” button as a trigger of evaluation and
a “HideCode” button to hide the embedded codes
from the view. The application specific blocks are
additional building blocks for documents for a spe-
cific application. For example, building blocks for
iExam in Section 6 include options, and answers.

Another support for the document manipulation
is Inline whose commands are used to give some
effects to a part of sentence, for example, changing
a font style, placing a link and breaking line.

4. PSD EVALUATING SYSTEM

In [2], we proposed the notion of Programmable
Structured Documents. Simply speaking, PSD can
be seen as an XML with embedded codes. It can
be manipulated by evaluating an embedded code in
itself. In that sense, the document can be seen as a
program. In the current PSD systems, the content
of a psdexpr element is regarded as an evaluatable
expression that depends on other parts of the doc-
uments, and it is displayed with a trigger button
for evaluation on the HTML view. When pressing
the button on the view, the expression is evaluated
by an evaluator and its result is displayed in the
place the button was displayed.

We apply the paradigm of PSD to add interactive
natures to teaching materials that are built on the
xfy window. The main issue is how to realize this
kind of evaluation process on xfy. The xfy’s XML
editor keeps data as DOM [6]. But we think that
the language for embedded codes should not be re-

stricted to languages like Java that can manipulate
DOM directly. Especially, we hope that functional
languages such as Haskell [4] can be used as well.
Our design choice of the PSD system that works on
xfy is the separation of the xfy editing system and
an evaluator that evaluates expressions outside of
xfy. In order to make this kind of evaluating system
workable in practice, we should guarantee the ex-
istence of an efficient interface between the editing
system and evaluator.

We developed “Pruned-tree DOM Interface” [1]
as a plugin of xfy for that purpose. For efficient
evaluation, it picks up only three kinds of neces-
sary components from source XML documents and
sends them to the external evaluator. Those com-
ponents are the expression to be evaluated, the def-
initions of functions that are used in the expression,
and the elements referred by the expression. Par-
ticularly, the referred elements are gathered in the
form of a tree (called “Pruned DOM” tree) com-
posed of a new “arg” node as its root and the sub-
trees whose top nodes are referred by the expres-
sion as direct children of the root. The external
evaluator receives those components and generates
a runnable code from them in the employed lan-
guage, and then performs the evaluation. The edi-
tor reads the resulting output, parses it to generate
a DOM fragment, and plugs it back into the source
document. The process is illustrated in Figure 2.

Figure 2: Pruned-tree DOM interface

5. EMBEDDED CODES IN HASKELL

The PSD evaluating system described above is, in
principle, language independent. We have imple-
mented it with Haskell as a language for embedded



codes. We use Haxml [7] to convert an XML to
a Haskell’ s tree data structure to handle it as a
Haskell program. The underlying data modeling in
Haskell is

data Element = Elem Name [Attribute] [Content]
data Content = CElem Element

|CString String

An expression can have functions that are al-
ready predefined in a Haskell library or user-defined
functions defined in the PSD. Those functions can
take some Haskell expressions or other parts of the
XML tree as arguments. For example, suppose the
function grade takes three arguments, that is the
correct answer, an answer given by the user, and a
given score if the answer is correct, and then gen-
erates a score from the answer. The expression can
be grade (2, ../answer,10), where “../asnwer” is the
relative path of the element whose content is the
answer given by the user, 2 is the correct answer,
10 is the score if the answer is correct. The defini-
tion of grade is given by the user as the content of
a psdfun element in the document as follows.

grade(x, (Elem "arg" a0 [CElem (Elem
"answer" a1 [CString ans])]), y)

=(if x==ans
then (Elem "psdresult" [] [CString y])
else (Elem "psdresult" [] [CString "0"]))

where, (Elem "arg" a0 [CElem (Elem "answer"
a1 [CString ans])]) is the pruned tree in
Haskell expression generated from the reference
../answer, and ans is the answer given by the user.
The grade function compares x with ans and return
a psdresult element whose content is y if x = ans,
or return a psdresult element whose content is "0"
if x ̸= ans.

6. IDOCUMENTS

Using iDocument builder, we have been develop-
ing several iDocument applications. Those include
iTextbook (interactive textbook), iTutorial (inter-
active tutorial) and iExam (XML-based exam pa-
per), and have the following features. First, texts
are dynamically changeable for user’s inputs. This
means the interactive nature of iDocuments. For
example, in an iTextbook on algorithms, when an
algorithm is described with sample inputs, interme-
diate outputs, and the final outputs, the descrip-
tion can be changed dynamically when the user
changes some inputs because those intermediate
outputs and the final outputs are recomputed by
the evaluator. Second, textbooks or tutorials can

be customized for a user. This means that the user
can change and/or choose some contents of teach-
ing materials. For example, she can hide some parts
of materials she is already familiar with, or might
be given options to choose if she need more detailed
explanations. Third, programs in the textbook can
be modified and executed on the document itself.
This is particularly useful in a programming text-
book. The user can change the example codes on
the document and try to run it on the document
itself.

An Example: iExam

As an example of the use of iDocument builder, we
demonstrate how to build an iExam, which is an
XML-based exam paper. When the author makes
a new document, it is more efficient to build it from
a predefined template than to build it from scratch.
A template for iExam is predefined in the associ-
ated VCD program as follows.

<new:new-fragment name="empty-idocument">
<psd:idocuments>
<psd:create />
<psd:last-update />
<psd:section>
<psd:title />
<psd:content>
<psd:paragraph />

</psd:content>
</psd:section>

</psd:idocuments>
</new:new-fragment>

This definition enables the author to select
“empty idocument” from the menu to generate the
template on the new xfy window from which she
adds contents of an exam (Figure 3).

Figure 3: Creating a new exam



As explained in Section 3, we prepared building
blocks for iExam. For example, option is a block
used in the type of questions in which the user try
to choose the correct answer from the given mul-
tiple options. The definition of the command to
insert an option is:

<vcd:command name="insert-option">
<vcd:insert ref=
"vcd:caret-node()/
ancestor-or-self::psd:*[parent::psd:content][1]"
position="after">
<psd:options>
<psd:item />
</psd:options>
</vcd:insert>
</vcd:command>

This command is assigned to the main menu by
the description:

<vcd:vocabulary match="idocuments"
label="idocuments"
call-template="root">
<ui:ui>
<ui:main-menu>
<ui:menu label="Block">
<ui:menu-item label="Option"
command="insert-option" />
</ui:menu>
</ui:main-menu>
</ui:ui>

</vcd:vocabulary>

These descriptions enable the author to select
“Options” from the main menu to add an empty
option to which she enters a content (Figure 4).

Figure 4: Adding contents

After making options and an answer box, sup-
pose the author wants to make a button to grade
the user’s answer. She selects “PSD Expression”
from the main menu to generate an empty psd-
expr element that prompts the author to input psd
codes and displays the two buttons “Evaluate” and
“HideCode”. The function grade takes three argu-
ments, that is the correct answer, user’s answer,
the score given when the given answer is correct.
For example, it can be grade(2, ../answer,10)
(Figure 5).

Figure 5: Inputing a program

Pressing “HideCode” button hides the code from
the view. Pressing “Evaluate” button after the user
inputs an answer evaluates the expression and dis-
plays the obtained score (Figure 6).

Figure 6: Evaluating expression



Note that the definition of grade function is given
by the author selecting “Functions Definition” com-
mand and entering the defintion in Haskell.

Although this example is very simple for the ex-
planation purpose, the same technique is appli-
cable to a type of questions that involves more
complex computations to evaluate user’s answer.
Also, by giving appropriate expressions, it is easy
to calculate the total score automatically when the
exam includes multiple questions, and to provide
the user with instructive comments about each an-
swer. This kind of questions can be easily inserted
at any point of an iTextbook by using iDocument
builder as exercises in order to test the user’s un-
derstanding of the material.

7. CONCLUSIONS

We made use of Justsystem xfy technology as a
basis of document processing environment. The fa-
cility of xfy to create and edit an XML document
on the target HTML view enables the view to ac-
cept user’s actions. We defined commands to insert
and delete building blocks of documents in VCD so
that the author can create and edit the document
by selecting a command from the main menu and
inputting contents without knowing definitions for
elements and attributes. To add interactive na-
tures to materials, we developed a PSD evaluating
system with an interface called pruned-tree DOM
interface. The author can enter some code on the
HTML view that takes the user’s input and gener-
ates some output dynamically. We demonstrated
that how easily this interractive document can be
built using the example of XML-based exam paper.

Acknowledgement

This work has been done under collaboration be-
tween University of Tokyo and Justsystem Corpo-
ration. The project is supported by the Compre-
hensive Development of e-Society Foundation Soft-
ware of the Ministry of Education, Culture, Sports,
Science and Technology, Japan.

References

[1] Y. Hayashi, Z. Hu, M. Takeichi. N. Wake,
M. Hara and N. Oshima. Pruning DOM Trees
for Structured Document Processing. In The
21st JSSST Annual Conference, 2004.

[2] M. Takeichi, Z. Hu, K. Kakehi, Y. Hayashi, S.-
C. Mu, and K. Nakano. TreeCalc: Towards
Programmable Structured Documents. In The
20th JSSST Annual Conference, 2003.

[3] Jastsystem corporation. xfy technology.
http://www.xfytec.com.

[4] S. P. Jones. Haskell 98 Language and Libraries.
Cambridge University Press, 2003.

[5] PSD Group. Programmable Structured Docu-
ments(PSD). http://www.psdlab.org/en/.

[6] W3C. Document Object Model (DOM).
http://www.w3.org/DOM.

[7] M. Wallace and C. Runciman. Haskell and
XML: Generic Combinators or Type-based
Translation?. In Proceedings of the 1999 ACM
SIGPLAN International Conference on Func-
tional Programming. ACM Press, 1999.


