Surrounding Theorem: Developing Parallel Programs
for Matrix-Convolutions

Kento Emoto, Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi

Department of Mathematical Informatics,
University of Tokyo
{emoto, kmatsu, hu, takeichi}@ipl.t.u-tokyo.ac. jp

Abstract. Computations on two-dimensional arrays such as matrices and images
are one of the most fundamental and ubiquitous things in computational science
and its vast application areas, but development of efficient parallel programs on
two-dimensional arrays is known to be hard. To solve this problem, we have
proposed the skeletal framework on two-dimensional arrays based on the theory
of constructive algorithmics. It supports users, even with little knowledge about
parallel machines, to develop systematically both correct and efficient parallel
programs on two-dimensional arrays. In this paper, we apply our framework to the
matrix-convolutions often used in image filters and difference methods. We show
the efficacy of the framework by giving a general parallel program described
with the skeletons for the matrix-convolutions, and a theorem that optimizes the
general program into an application-specific one.

1 Introduction

Computations on two-dimensional arrays, such as matrix computations, image process-
ing, and difference methods, are both fundamental and ubiquitous in scientific computa-
tions and other application areas [6, 10, 11]. However, development of efficient parallel
programs on two-dimensional arrays is known to be a hard task due to the necessity of
considering data allocation, synchronization and communication between processors.
Skeletal parallel programming is one promising solution to the situation [4, 12]. In this
model, users build parallel programs by composing ready-made components (called
skeletons) implemented efficiently in parallel for various parallel architectures. Since
low-level parallelism is concealed in the skeletons, users can obtain a comparatively ef-
ficient parallel program without needing technical details of parallel computers or being
conscious of parallelism explicitly.

We have proposed a skeletal framework on two-dimensional arrays [8], based on the
theory of constructive algorithmics (also known as Bird-Meertens Formalism) [1,3,13].
Our framework provides users, even with little knowledge about parallel machines, a
concise way to describe safe and efficient parallel computation over two-dimensional
arrays, and theories for deriving and optimizing programs. The main features of our
framework are: (1) a novel use of the abide-tree representation [1] in developing paral-
lel programs for manipulating two-dimensional arrays; (2) a strong support for system-
atic development of both efficient and correct parallel programs on two-dimensional
arrays in a highly abstract way; (3) an efficient implementation of basic skeletons in

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

2 K. Emoto et al.

C++ and MPI on PC clusters, guaranteeing that programs composed with these paral-
lel skeletons can run efficiently in parallel. In this framework, users write an easy and
general program that covers a class of problems, derive its efficient version using gen-
eral techniques such as fusion, tupling and generalization, summarize it as a theorem
(tool), and then instantiate it to solve concrete problems. These general techniques have
already been developed in the framework, however, domain-specific tools are not so
much presented.

In this paper, we give an domain-specific tool and show the efficacy of the frame-
work. We focus on a set of computations on two-dimensional arrays known as matrix-
convolutions [?], in which each element in the resulting array depends on its surround-
ing elements. This set of computations includes important and fundamental problems
such as image filters, difference methods and the N-body problem (although this last
problem seems more difficult than the others, it merely sees not only the nearest neigh-
bours but all the surrounding elements.) The most general form mconv is described
with three components in our framework:

meconv f shrink = map fomap shrink o surrounds .

Here, surrounds gathers all the surrounding elements for each element, shrink picks
the necessary parts up from those gathered elements, and f calculates the resulting
element from them. This general form is parameterized by the two functions shrink
and f, and users can solve many problems by specifying suitable ones. For example,
users can develop a sharpen-filter by choosing the function shrink that reduces the
surroundings into 3 x 3 matrix, and the function f that calculates the weighted sum of
them. We can further optimize instances of the general program to application-specific
ones with the surrounding theorem.
The main contribution of this paper is as follows.

— We show the general parallel program for the matrix-convolution described with
parallel skeletons. Users can solve their problems as an instance.

— We give the surrounding theorem which enables users to get an efficient program
easily. The experimental results show that the derived program can be executed
efficiently in parallel.

Technical details of this paper is available in the master’s thesis [7].

2 Notations

Notation in this paper follows that of Haskell [2], a pure functional language that can
describe both algorithms and algorithmic transformation concisely.

Function application is denoted by a space and the argument may be written without
brackets. Thus, f a means f(a) in ordinary notation. Functions are curried, i.e. func-
tions take one argument and return a function or a value, and the function application
associates to the left. Thus, f a b means (f a) b. The function application binds more
strongly than any other operator, so f a ®b means (f a) ®b, butnot f (a®b). Function
composition is denoted by o, so (fog) x = f (g x) from its definition. Binary operators

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Surrounding Theorem 3

can be used as functions by sectioning as follows: a ® b = (a®) b = (Bb) a = (®) ab.
Two binary operators < and >> are defined by a < b = a, a > b = b. Pairs are
Cartesian products of plural data, written like (x, y). A function that applies functions
f and g respectively to the elements of a pair (z,y) is denoted by (f x g). Thus,

(fxg)(x,y)=(fz,9y).

3 Skeletal Framework on Two-Dimensional Arrays

In this section, we introduce our parallel skeletal framework on two-dimensional ar-
rays [8] based on the theory of constructive algorithmics [1, 3, 13].

3.1 Abide-trees for Two-Dimensional Arrays

To represent two-dimensional arrays, we define the following abide-trees, which are
built up by three constructors |-| (singleton), e (above) and ¢ (beside) following the idea
in [1].

data AbideTree o = || «
| (AbideTree o) o (AbideTree)
| (AbideTree o) ¢ (AbideTree)

Here, || a, or abbreviated as |a|, means a singleton array of a, i.e. a two-dimensional
array with a single element a. For two-dimensional arrays x and y of the same width,
x ey means that z is located above y. Similarly, for two-dimensional arrays = and y of
the same height, x ¢ y means that x is located on the left of y. Moreover, & and ¢ are
associative binary operators and satisfy the following abide (a coined term from above
and beside) property.

Definition 1 (Abide Property). Two binary operators & and ® are said to satisfy the
abide property or to be abiding, if the following equation is satisfied:

(r@u)@(yev) =@y (udv).

In the rest of the paper, we will assume that = has the same width of y when z e y
appears, and that u has the same height of v for u ¢ v.

Note that one two-dimensional array may be represented by many abide-trees, but
these abide-trees are equivalent because of the abide property of < and ¢. For example,
we can express the following 2 x 2 two-dimensional array by two equivalent abide-trees.

(1 2) _ J (e 2o (I3l |4))
34 (Il [31) o (12| = [4])
This is in sharp contrast to the quadtree representation of matrices [9], which does not
allow such freedom.
From the theory of constructive algorithmics [3], it follows that each constructively

built-up data structure (i.e., algebraic data structure) is equipped with a powerful com-
putation pattern called homomorphism.

4 K. Emoto et al.

Ti1 o Tin fzin - fxim
map f | 1o = :
Tl - Tm fmi - f Ton
T11 ' Tin (711 ® - @ 1)
reduce(®,®) [: .) =
Tm1 " * Tmn (Tm1 ® @ Tymn)
i1 oc Tin Yi1 oot Yin friiynr - fTinyin
zipwith f : (: = : . :
Zml - T Yl Ymn f Tt Ymi - F T Y
T11 * Tin Y11 " Yin (211 ® - - Q@ x1;)D
scan(®, ®) oo = where 1;; = .
Tt - Toum Y1 - Ymn (i1 ® -+ @ xij)
Z11 *c Tin 211 ' Zin (i ® -+ - @ Tin)D
scanr(®, ®) Do, = Do where z;; =
Tml * Tmn Zml " Zmn (Tmj @ -+ @ Tmn)

Fig. 1. Intuitive Definition of Parallel Skeletons on Two-Dimensional Arrays

Definition 2 ((Abide-tree) Homomorphism). A function h is said to be an abide-tree
homomorphism, if it is defined as follows for a function f and binary operators ®, ®.

h |a| =fa
h(zey)=hz®hy
h(zoy)=haz®hy

For notational convenience, we write (| f, ©, ®|) to denote h. When it is clear from the
context, we just call (| f, ®, ®|) homomorphism. Note that ® and ® in (| f, D, ®|) should
be associative and satisfy the abide property, inheriting the properties of e and ¢.

Intuitively, a homomorphism (| f, @, ®|) is a function to replace the constructors |- |, e
and ¢ in an input abide-tree by f, & and ® respectively.

3.2 Parallel Skeletons on Two-Dimensional Arrays

We introduce the parallel skeletons map, reduce, zipwith, scan and scanr for manip-
ulating two-dimensional arrays. In the theory of Constructive Algorithmics [1, 3, 13],
these functions are known to be the most fundamental computation components for
manipulating algebraic data structures and for being glued together to express compli-
cated computations. Intuitive definitions of the skeletons are shown in Fig. 1. All the
skeletons are implemented efficiently in parallel and their costs are shown in Table 1.
The skeletons map and reduce are two special cases of homomorphism. The skele-
ton map applies a function f to each element of a two-dimensional array while keeping

Surrounding Theorem 5

Table 1. Parallel Complexity of the Skeletons for a Two-Dimensional Array of n X n

P processors n2 processors
map, zipwith O(n?/P) o(1)
reduce O(n?/P +log P) O(logn)
scan, scanr | O(n?/P + /n2/Plog P)| O(logn)

the shape of the structure. The skeleton reduce collapses a two-dimensional array to
a value using two abiding binary operators €& and ® . They are defined formally as
map f = (|| o f,e, ¢|), and reduce(d, ®) = (id, B, Q).

The skeleton zipwith, an extension of map, takes two arrays of the same shape,
applies a function f to corresponding elements of the arrays and returns a new array of
the same shape. The skeletons scan and scanr, extensions of reduce, hold all values
generated in reducing an array by reduce. The scan generates the result of reducing
the upper-left subarray, while the scanr generates that of the lower-right subarray. We
omit the formal definition of zipwith, scan and scanr for the space limitation.

4 Developing Parallel Programs for Matrix-Convolutions

In this section, focusing on the matrix-convolutions such as image filters and difference
methods, we give the general form described with parallel skeletons, and then give the
theorem to get optimized program from the general form.

The matrix-convolution is computation in which each element of the resulting array
depends on the surrounding elements. For example, the sharpen-filter that sharpens the
input image is one instance of the matrix-convolution. A pixel of the resulting image is
the weighted sum of the surrounding pixels of the input image. Similarly, the difference
method is another instance of matrix-convolution since it calculates the new value of
each point from the old values of the surrounding points. We show a code in C++ for
the sharpen-filter in Fig. 2, to give a concrete image of the problems dealt with here.

The idea of our general from is illustrated in Fig. 3 that shows an image of execu-
tion of the sharpen-filter: (1) surrounds gathers all the surrounding elements for each
element, (2) shrink picks he necessary parts up from those gathered elements, and (3)
f calculates the resulting element from them. This general form has clear correspon-
dences to the code in Fig. 2. The function f corresponds to £ of the code, shrink cor-
responds to which elements are the arguments passed to f, and surrounds corresponds
to for-loops. Thus, users can easily write their programs using the general form.

4.1 A General Form Described with Parallel Skeletons

As argued in the introduction, the most general form of this kind of computation is
thought to consist of three components: gathering all the surrounding elements of each
element to it, shrinking those to the necessary amount, and applying a function to get a
new element from them. Thus, the program is described as follows:

mconv f shrink = map f omap shrink o surrounds .

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

6 K. Emoto et al.

int sharpen_filter(int **b, int **a, int n, int m){
for(int i = 0; i < m; i++)
for(int j = 0; j < m; j++)
bl[il[j] = f(alil[j], ali-11[j1, ali+11[jl1, alill[j+1]1, alill[j-11,
ali-11[j+11, ali-11[j-11, ali+1]1[j+11, ali+11[j-11);
}
int f(int c, int n, int s, int e, int w, int ne, int nw, int se, int sw){
return 5%c + (-1)*n + (-1)*s + (-1)*e + (-1)*w + Oxne + O*nw + O*se + O*sw;}

Fig. 2. C++ Code of the Sharpen Filter (Sequential Program)

nw |l o 6 61| me 0 1 o
w 3 4][3][3 6 [] e sum o zipwith(x) {—1 5 —1}
4 5||5(|5 6 shrink 0 -1
swll 6 5159 7] se
L6 alel7 7]
s
02 2 6 6 o\e o o/¢ 19 18
34336 surrounds o o\|e|/6 o | map shrink —5 15
4555 6| ——%|o oo o0 oc|l——2loo o o o 2 12
6 55 9 7 6 o o o o 6 o o o o 21 13
66 6 7 T 6 o o o o 6 6 o o o 13 21

Fig. 3. An Image of the Sharpen Filter in the General Program

This general form is parameterized by the two functions shrink and f, and users can
solve many problems by specifying application-specific ones, as shown below. The
function surrounds, which is commonly used in those problems, has two-phase cal-
culation as follows: (1) calculation of the parts of the north-west (i.e. ¢, n, w and nw)
by scan, and (2) that of the other parts by scanr. Its definition is as follows.

surrounds = scanr(®,., ®,) omap f. oscan(®s, ®¢) omap ff

where

fr a = (a, Nil, Nil, Nil)

(CarNa, Wa, MWa) Df (Co, Ny, Wy, nwy) = (b, Nae|calony, wy ,nNwyewqenwy)
~ ———— S~ —— ——

c n w nw
(CasNa, Way MWa) @ (Co, M, Wy, nwy) = (5, My , Wa®|Ca|dwy, NWa Mg dNWYE)
—~

(& n
fr (e,n,w, nw) = (¢, n, Nil, Nil,w, Nil, nw, Nil, Nil)
(Caa NaySas €ayWa, NEq, NWq, SEq, Swa) EBT’ (Cb7nb7 Sp, €b, Wh, NEY, NWp, S€p, swb)
= (Ca ; Ma ;84 [ch] ©5h, €q , Wa , Neq, MWy, S€4© € SEp, SWq © W © SW))
NN e/ N N N

w nw

C n s e w ne nw se sw
(Caa NaySas €ay Wa, NEq, NWq, SEq, Swa) ®’r’ (Cb7nb7 Sp, €b, Wh, NEH, NWp, SCp, wa)
=(Cq, Na, Sa ,€q®|Co|® ep, Wa ,NEG O Np & NEY, NWG, SE4 O Sp O SEp, SW,)
~~ O~~~ ~~ ~N —— =

c n S e w ne nw se Sw

Here, Nil is a special value to indicate that there is no value, and we treat it as an identity
of e and ¢ for simplification of the notation. Thus, Nilex = x, xeNil = x, Nilox = x,

Surrounding Theorem 7

and x ¢ Nil = x. Each element of the resulting array is a tuple of nine elements. The
meaning of each element of the tuple is as follows: c is the center element; s is an
array of the elements on the south of the element; similarly n, e and w are arrays of
the elements on the north, east and west respectively; ne, nw, se and sw are arrays
of the elements on the north-east, north-west, south-east and south-west. Note that this
surrounds needs O(n*) memory space for a matrix of n X n.

We show some examples written with the general form.

imagefilter ker = mconv (conv ker) shrink;

FDM n ker = iter n (mconv (conv ker) shrink)
where
shrinky = id X B xT X L X R X BL x BR x TL x TR
B =([|>0¢), T =(|]<0), L =(]]e<]), R=(
BL=(||,>,<|),BR=(||,>,>),TL=(||, <, < |), TR

|'|aea>> D;
(-, <>)

The function image filter ker is an image filter with the coefficient matrix ker,
which is used to weighted sum of the surrounding pixels. The shrink; reduces each
part of the gathered surrounding elements to the element closest to the center, and the
function conv ker calculates the weighted sum of them. The functions B and T take
the bottom row and the top row of the input array respectively. Similarly, each of L,
R, BL, BR, TL and TR takes corresponding part of the input array. Figure 3 shows
an image of execution of the sharpen-filter by the above general program. The function
EDM n ker performs the finite difference method, where iter is an iteration function
and each iteration step is the same as image filters with specific coefficients.

The following example calculates the array of which element at (4, j) is the maxi-
mum in the i-th row and the j-th column, i.e. the maximum in the cross. The shrink .,
reduces each part of the gathered surrounding elements to the biggest element in the
part, where the binary operator | takes the bigger element. The function mazxs takes the
maximum of the column and the row including the center element.

crossmax = mconv maxs Shrink y,qz:
where shrink.,,q,. = max X --- X max
maz = (id, 7,1)
mazs (¢,n,s,e,w, ., ,,)=clnlslelw

As shown in this example, shrink is allowed not only to shrink the shape of the sur-
roundings but to perform some calculation.

4.2 Surrounding Theorem

In this section, we give the theorem to optimize the general form by fusing shrink to
surrounds.

Image filters and difference methods usually have the shrink of the fixed size win-
dow that takes the fixed-size rectangle region (window) of the surrounding elements.
The function that takes a fixed number of columns (rows) can be written as a homo-
morphism. For example, the function right = (| |-|,-e, > |) takes the right-most column,

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

8 K. Emoto et al.

which is used in examples in the previous section. Thus, we here consider the general
shrink that consists of homomorphisms. It is defined as follows.

shrink = ge X hy X hg X he X Ry X Ape X Apw X hge X hgy
where
hn = (Igny@ru@n‘) 5 hs = (‘987 @s>®s‘) 5 he = (‘967 @e7®e|)
hw = (‘gw; @um@wl) 5 hne = (Igne; @ne; ®ne|) 5 hnw - qgnwa@nwa®nwD
hse = (|9567 Dse, ®se|) 5 hsw = (|gswa Dsw, ®sw|)

Here, ®x and ®x are extended to satisfy the following equations: Nil &x = = =,
x Bx Nil =z, Nil ®x « = z, and x ®x Nil = z. The general form using this shrink
uses O(n*) operations for a two-dimensional array of n x n.

Then, we give the result of the optimization by fusing shrink to surrounds.

Theorem 1 (Surrounding). Let the function shrink be defined by homomorphisms as
above. Then, there exist a projection function proj and operators @'f, ®'f, @) and ®!,
where complexity is the same of Dx and Rx, and the program

mconv f shrink
is optimized to the following program.
map (f o proj) o scanr(®.,®") omap f.' o scan(®';, @) o map i

Proof. The theorem is proved by the promotion of map shrink with extending the
tuples. See the master’s thesis [7] for its details .

The resulting program uses O(n?) operations for a two-dimensional array of n x n ,
while the original general form uses O(n*) operations. The parallel complexity of the
resulting program is O((n?/P + /n?/Plog P)T(a y)) for P processors, provided
that the calculational complexity of @y and ®x in the homomorphisms are Tig @) -

All the examples shown in the previous section have the shrink functions described
with homomorphisms. Thus, we can apply this theorem to all of them, and they are
executed in O(n?/P + y/n2/Plog P) complexity using the skeletons.

As mentioned above, the function that takes a fixed number of columns (rows) can
be written as a homomorphism. Thus, this theorem holds for the shrink of the fixed
size window that shrinks the surrounding elements to a fixed size, which is often seen
in image filters and difference methods.

Corollary 1 (Fixed Size Window). Let the function shrink be the fixed size window.
Then, the program mconv f shrink is optimized to that of O(n?) operations.

Note that the homomorphism taking h x w subarray of a two-dimensional array has the
operators of O(wh) complexity. Thus, the total complexity of the program of fixed size
window is O(n?wh).

Finally, we note that we may perform more optimization by using the shifting of the
edges instead of butterfly computation for the global computation of scan and scanr,
provided that the operators influences only a fixed number of elements. This leads to
the parallel complexity of O((n?/P + \/n?/P)T (¢, &) for P processors.

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Surrounding Theorem 9

10

\ \
16 Processors gy

T

60 | 1000 x 1000
2000 x 2000

= f]
G 3
w 1 E axn® ~ctoooooo E
50 linear _q E B
W < L]
g 40 o &
£ W S 01 & e E
< g E E
& a0 K = L]
o A g F :
20 a / = 001
> = YU E 3
o 1 E E
10 7% | £]
> |- .
0 0.001
14 8 16 32 64 100 500 1000 2000 6000
#processors
height and width of image (log scale)

Fig.4. Speedup of Image Filter Fig. 5. Calculation Time vs. Size of Image

5 Experimental Results
We implemented the program' using our parallel skeleton library [?] and did our ex-
periment on a cluster (distributed memory). Each of the nodes connected with Gigabit
Ethernet has a CPU of Intel® Xeon®2.80GHz and 2GB memory, with Linux 2.4.21
for the OS, gcc 2.96 for the compiler, and mpich 1.2.7 for the MPL

Figures 4 and 5 show the speedups and the calculation times of the sharpen-filter.
The program is an optimized one from the general form (an equivalent of the program
in Fig. 2). The inputs are images of 1000 x 1000 and 2000 x 2000. The computation
times of the program on one processor are 0.70s and 3.85s respectively.

The result shows programs described with skeletons can be executed efficiently in
parallel, and proves the success of our framework. The program achieves almost linear
speedups by the parallel implementation of the skeletons, and the total computational
complexity of the optimized program is O(n?) (thus, its parallel complexity is O(n?/P)
for small P). However, the serial performance is rather poor due to the overhead of
using general skeletons (i.e. scan and scanr). We think this problem can be solved by
replacing the general skeletons with those specialized for this domain, and it can be
automatically done by compilers (future work).

6 Related Work

SKiPPER [?] is a skeleton-based parallel programming environment for real-time im-
age processing. They use skeletons specialized for image processing (not for images
or two-dimensional arrays), while we use general skeletons on two-dimensional arrays.
Thus, a program developed with SKiPPER may be faster than that written with our
skeletons, however, the latter program can be easily composed with other programs and
be optimized by fusion due to generality and solid foundation of our skeletons.

There are several other skeletal parallel approaches (libraries), such as eSkel [?],
Muesli [?] and P3L [?]. However, their formalization of skeletons on two-dimensional

! The source code of the test program as well as the skeleton library are available at the web
page http://www.ipl.t.u-tokyo.ac.jp/sketo/.

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

10 K. Emoto et al.

arrays are not enough, so that matrix-convolutions cannot be suitably dealt with. Our
skeletons have solid foundation, so that we can easily deal with matrix-convolutions
and perform optimizations.

7 Conclusion

In this paper, we focused on the set of matrix-convolution problems, and applied our
framework for that domain. This domain is important and fundamental including wide-
area of applications such as image filters, difference methods and N-body problems.
Applying our skeletal framework, we gave the general program for those computations
described with parallel skeletons. Users can easily develop instances of the general
form for their problems. We then proposed the surrounding theorem to optimize the
programs under the assumption that the shrinking function consists of abide-tree ho-
momorphisms. Users can easily get an application-specific program from the program
in general form with the theorem. The experimental results support that the optimized
program can be executed efficiently in parallel.

8 Acknowledgement

This work is partially supported by the Grant-in-Aid for Scientific Research (B), No.
17300005, Japan Society for the Promotion of Science. We are also grateful to the
referees for detailed and helpful comments.

References

1. R. S. Bird. Lectures on Constructive Functional Programming. Technical Report Technical
Monograph PRG-69, Oxford University Computing Laboratory, 1988.

2. R. S. Bird. Introduction to Functional Programming using Haskell. Prentice Hall, 1998.

3. R. S. Bird and O. de Moor. Algebras of Programming. Prentice Hall, 1996.

4. M. Cole. Algorithmic Skeletons : A Structured Approach to the Management of Parallel
Computation. Research Monographs in Parallel and Distributed Computing, Pitman, Lon-
don, 1989.

5. M. Cole. eSkel Home Page. http://homepages.inf.ed.ac.uk/mic/eSkel/,
2002.

6. E. Elmroth, F. Gustavson, I. Jonsson, and B. Kagstroom. Recursive Blocked Algorithms and
Hybrid Data Structures for Dense Matrix Library Software. SIAM Review, 46(1):3-45, 2004.

7. K. Emoto. A Compositional Framework for Parallel Programming on Two-Dimensional
Arrays. Master’s thesis, Graduate School of Information Science and Technology, the Uni-
versity of Tokyo, 2006. Available at http://www.ipl.t.u-tokyo.ac.jp/"emoto/master_thesis.pdf.

8. K. Emoto, Z. Hu, K. Kakehi, and M. Takeichi. A Compositional Framework for Developing
Parallel Programs on Two Dimensional Arrays. Technical Report METR2005-09, Depart-
ment of Mathematical Informatics, University of Tokyo, 2005.

9. J. D. Frens and D. S. Wise. QR Factorization with Morton-Ordered Quadtree Matrices
for Memory Re-use and Parallelism. In Proceedings of 4th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming(PPoPP’03), pages 144—154, 2003.

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

Zhenjiang Hu
ハイライト表示

10.

11.

12.

13.

Surrounding Theorem 11

G. Hains. Programming with Array Structures. In A. Kent and J. G. Williams, editors,
Encyclopedia of Computer Science and Technology, volume 14, pages 105-119. M. Dekker
inc, New-York, 1994. Appears also in Encyclopedia of Microcomputers.

L. Mullin, editor. Arrays, Functional Languages, and Parallel Systems. Kluwer Academic
Publishers, 1991.

F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and Distributed
Computing. Springer-Verlag, 2002.

D. B. Skillicorn. Foundations of Parallel Programming. Cambridge University Press, 1994.

