
Generators-of-generators Library with
Optimization Capabilities in Fortress

Kento Emoto1, Zhenjiang Hu2, Kazuhiko Kakehi1, Kiminori Matsuzaki3, and
Masato Takeichi1

1University of Tokyo
{emoto@mist.i / k kakehi@ducr / takeichi@mist.i}.u-tokyo.ac.jp

2National Institute of Informatics
hu@nii.ac.jp

3Kochi University of Technology
matsuzaki.kiminori@kochi-tech.ac.jp

Abstract. To resolve difficulties in parallel programming, a large num-
ber of studies are conducted on parallel skeletons and optimization the-
orems over skeleton programs. However, two nontrivial tasks still remain
unsettled when we need nested data structures: One is composing skele-
tons to generate and consume them; the other is applying optimization
theorems to obtain efficient parallel programs. In this paper, we propose
a novel library named GoG (Generators of Generators) library. It pro-
vides a set of primitives, GoGs, for production of nested data structures.
A program developed with these GoGs is automatically optimized, even
in asymptotic complexity, by the optimization mechanism in the library.
We show its implementation on the Fortress language and report some
experimental results.

1 Introduction

Consider the following variant of the maximum segment sum problem: given a
sequence of numbers, find the maximum sum of 4-flat segments. Here, ‘4-flat’
means that each difference of successive elements in the segment is less than 4.
For example, the answer of a sequence below is 13 contributed by bold numbers.

[2, 1,−5, 3, 6,2,4,3,4,−5, 3, 1,−2, 8]

This is a simplified example of combinatorial optimization [1] that is one of the
most important classes of computational problems.

Developing an efficient parallel program to solve the problem, especially in a
cost linear to the length, is difficult. Even if one can use parallel skeletons [2, 3]
such as map, reduce, and scan, it is still difficult to generate all the segments by
composing them. In addition, we often require to optimize skeleton programs,
but deriving efficient programs from naive programs is still a difficult task even
though we have various theorems for shortcut derivation [4–7].

If we have a generation function segs that returns all the segments, then we
can solve the problem rather easily. Such a program is written as follows with

2 Kento Emoto et al.

comprehension notation [8–12]. Here, x is the given sequence, s is bound to each
segment of x, flat4 is a predicate to check 4-flatness, and

∑
and MAX means

reductions to take summation and the maximum, respectively.

MAX
〈∑

s | s← segs x,flat4 s
〉

Normal execution of this naive program clearly has a cubic cost w.r.t. the length
of x. Therefore, we need to optimize the program to obtain an efficient one.

In this paper, we propose a novel library with which we can run the above
naive program efficiently with a linear cost parallel reduction (i.e., it runs in
O(n/p + log p) parallel time for an input x of length n on p processors). Main
features of the library are as follows. (1) It provides a set of primitives, GoGs
(Generators of Generators), for production of nested data structures. (2) It is
equipped with an automatic optimization mechanism that exploits knowledge of
optimization theorems developed in the field of skeletal parallel programming so
far. (3) Its optimization is lightweight and applying optimization theorems re-
quires no deep analysis of program code. The main contributions of this paper are
the novel design of the library as well as its implementation in Fortress [12]. Note
that the implementation has been merged into the Fortress interpreter/compiler.

The rest of this paper is organized as follows. Section 2 clarifies the problems
we tackle with the GoG library. Section 3 describes our GoG library. Section 4
shows programming examples and experimental results of the library. Finally,
Section 5 reviews related work, and Section 6 concludes this paper.

2 Motivating Example and Problems We Tackle

Let’s consider again the maximum 4-flat segment sum problem (MFSS for short)
shown in the introduction. We point out the two problems we tackle in this paper,
through making an efficient parallel program for MFSS via parallel skeletons and
optimization theorems. Notation in this section follows that of Haskell [13].

2.1 Composing Parallel Skeletons to Make Naive Program

We introduce the following parallel skeletons [2, 14] on lists to describe a naive
parallel program. Here, map applies a function to each element of a list, reduce
takes a summation of a list with an associative operator, scan and scanr produce
forward and backward accumulations with associative operators, respectively,
and filter removes elements that do not satisfy a predicate.

map f [a1, a2, . . . , an] = [f a1, f a2, . . . , f an]
reduce (⊕) [a1, a2, . . . , an] = a1 ⊕ a2 ⊕ · · · ⊕ an
scan (⊕) [a1, a2, . . . , an] = [b1, b2, . . . , bn] where bi = a1 ⊕ · · · ⊕ ai
scanr (⊕) [a1, a2, . . . , an] = [c1, c2, . . . , cn] where ci = ai ⊕ · · · ⊕ an
filter p = reduce (++) ◦map (λa.if p a then [a] else [])

Here, ++ means list concatenation, and an application of reduce (⊕) to an empty
list results in the identity of ⊕.

Generators-of-generators Library with Optimization Capabilities in Fortress 3

Now, we can compose a naive parallel program mfss for MFSS as follows.
Here, ↑ is the max operator, segs generates all segments of a list, inits and tails
generate all initial and tail segments, respectively, and flat4 checks the 4-flatness.

mfss = reduce (↑) ◦map (reduce (+)) ◦ filter flat4 ◦ segs
segs = reduce (++) ◦map inits ◦ tails
inits = scan (++) ◦map (λa.[a])
tails = scanr (++) ◦map (λa.[a])
flat4 = rpred (λ(u, v).|u− v| < 4)
rpred r [a1, a2, . . . , an] = reduce (∧) (map r [(a1, a2), (a2, a3), . . . , (an−1, an)]

Since mfss is described with parallel skeletons, it is a parallel program.
The program mfss is clear, once we know segs generates all segments. How-

ever, composing skeletons to make segs is difficult for usual programmers.
In general, such composition of skeletons to generate nested data structures

is a difficult task. For example, generation of all subsequences (subsets) of a list
is far more difficult and complicated.

2.2 Applying Theorem to Derive Efficient Parallel Program

We introduce a theorem to derive efficient program from the naive program.
Among various optimization theorems studied so far [4–7,15], the following the-
orem [15] is applicable to the naive program mfss.

Theorem 1. Provided that ⊕ with the identity ı⊕ is associative and commuta-
tive, and ⊗ is associative and distributive over ⊕, the following equation holds.

reduce (⊕) ◦map (reduce (⊗)) ◦ filter (rpred r) ◦ segs = π1 ◦ reduce (�) ◦map hex
where
(m1, t1, i1, s1, h1, l1)� (m2, t2, i2, s2, h2, l2)
=(m1⊕m2⊕(t1⊗i2)l1,h2 , (t1⊗s2)l1,h2⊕t2, i1⊕(s1⊗i2)l1,h2 , (s1⊗s2)l1,h2 , h1, l2)
hex a = (a, a, a, a, a, a) ; (a)l,h = if r l h then a else ı⊕ ut
Applying this theorem tomfss, we can get an efficient parallel program shown

in the right hand side of the equation. The resultant parallel program is a simple
reduction with a linear cost, and thus runs in O(n/p + log p) parallel time for
an input of size n on p processors. However, a difficult task here is to select the
theorem from a sea of optimization theorems. Moreover, it is also difficult to
implement the derived new operators/functions correctly without bugs by hand.

In general, there are two difficult tasks in applying optimization theorems:
finding a suitable theorem from a sea of optimization theorems; and implement-
ing the given efficient program correctly.

2.3 Problems We Tackle

The problems we tackle are the following two difficult tasks in the development
of efficient parallel programs: (1) composing skeletons for producing nested data
structures used to describe naive programs; and (2) selecting and applying suit-
able optimization theorems to derive efficient programs. To tackle these prob-
lems, we will propose a library to hide these difficult tasks from users.

4 Kento Emoto et al.

Collection of GoGs
for describing specifications

⊕
〈
⊗
〈f y |y←ys〉 |ys← inits xs〉

⊕
〈
⊗
〈f y |y←ys〉 |ys←tails xs〉

⊕
〈
⊗
〈f y |y←ys〉 |ys←segs xs〉

⊕
〈
⊗
〈f y |y←ys〉 |ys←subs xs〉

...

Growing

Collection of theorems
for optimizing reductions

Thm1: (Condition1, EfficientImpl1)

Thm2: (Condition2, EfficientImpl2)

Thm3: (Condition3, EfficientImpl3)

Thm4: (Condition4, EfficientImpl4)

Thm5: (Condition5, EfficientImpl5)

...

Growing

generate2 (⊕,⊗, f)

for i = 1, 2, . . .

if Conditioni(⊕,⊗, f) then

return EfficientImpli(⊕,⊗, f)

Growable Optimizing Library

A user
program

×

◦

Fig. 1. Two collections form an optimizing GoG library. It optimizes naively-described
computation using knowledge of optimization theorems.

3 GoG Library in Fortress

To overcome the problems, we propose a novel library named GoG library. The
library provides a set of GoGs equipped with an optimization mechanism. The
whole structure of the library is illustrated in Figure 1.

A GoG is, basically, an object representing a nested data structure, such
as a list of all segments. It also has the ability to carry out a computation
(nested reductions, specifically) on the nested data structure. The combination of
GoGs and comprehension notation gives a concise way to describe naive parallel
programs.

For example, a naive program for MFSS can be written with GoGs and
comprehension notation as follows. Here, segs is a function to create a GoG
object that represents a list of all segments of the given list x. Note that the
resultant is not a simple list of all segments.

MAX
〈∑

s | s← segs x,flat4 s
〉

Since the generation of all segments is implemented in the GoG, users are freed
from the difficult task of composing skeletons to produce segments. They only
need to learn what kind of GoGs are given.

The outstanding point of the library among others is that a GoG does op-
timization at the execution of the computation. A GoG automatically checks
whether given parameters (such as functions, predicates, and operators) satisfy
application conditions of optimization theorems. Once it finds an applicable the-
orem, it executes the computation using an efficient implementation given by
the theorem. For example, the library applies Theorem 1 to the above naive
program, so that it runs with a linear cost. This mechanism clearly frees users
from the difficult task of applying optimization theorems.

In the rest of this section, we explain GoGs and the optimization mechanism
as well as their implementation in Fortress. Also, we mention how the library
can be extended. Details are found in thesis [15]. We have selected Fortress as
an implementation language, because it has both comprehension notation and
generators, which share the same concept as GoGs.

Generators-of-generators Library with Optimization Capabilities in Fortress 5

3.1 GoG: Generation and Consumption of Nested Data Structures

First of all, we introduce generators in Fortress. A generator is basically an object
holding a set of elements. For example, a list is a generator. Its difference from a
simple data set is that it also carries out parallel computation on the elements.
The computation is implemented in a method generate, and has the following
semantics. Here, generator g is a list, and its method generate takes the pair of
an associative operator (enclosed in an object) and a function.

g.generate(⊕, f) ≡ reduce (⊕) (map f g)

Important is that a generator (a data structure) itself carries out the com-
putation, which enables optimization of the whole computation at its execution.
For example, a generator may fuse the above reduce and map, and may use
specific efficient implementation exploiting the zero of ⊕ when it exists.

Generators are equipped with comprehension notation; we can use the concise
notation instead of direct invocations of the method. An expression described in
the comprehension notation is desugared into invocations of generate as follows.⊕

〈f a | a← g〉 ⇒ g.generate(⊕, f)

It is worth noting that a generator has a method filter to return another gen-
erator holding filtered elements. Also, expression 〈e | a← g, p x〉, which involves
filtering by predicate p, is interpreted as 〈e | x← g.filter(p)〉. The actual filtering
is delayed until the resultant generator of g.filter(p) carries the computation on
its elements. This may enable optimization exploiting properties of the predi-
cate. It is also worth noting that the body of a comprehension expression can
contain another comprehension expression to describe complex computation.

Now, we introduce our GoGs extending the concept of generators. A GoG is
an object representing a nested data structure, such as a list of all segments, but
it also carries out computation on the nested data structure. The computation
is implemented in a method generate2 , and has the following semantics. Here,
GoG gg is a list of lists, such as segs x for list x.

gg .generate2 (⊕,⊗, f) ≡ reduce (⊕) (reduce (⊗) (map f gg))

Again, the encapsulation of the computation into a GoG enables optimization
of the whole computation. Its details are shown in the next section.

The combination of GoGs and comprehension notation gives us a concise
way to describe naive nested computations, which may be optimized by GoGs.
A nested comprehension expression is desugared into an invocation of generate2
as follows. ⊕〈⊗

〈f a | a← g〉
∣∣∣ g ← gg

〉
⇒ gg .generate2(⊕,⊗, f)

It is worth noting that we have extended the desugaring process of the Fortress
interpreter to deal with our GoGs. The extension of desugaring will be im-
plemented completely within our library, when the syntax extension feature of
Fortress becomes available in the future.

6 Kento Emoto et al.

The library gives a set of functions to make GoG objects, such as segs.
Using such functions, we can write a naive parallel program for MFSS with
comprehension notation as shown in the beginning of this section. Note that the
generation of all segments is delayed until the GoG carries out the computation,
and also that the generation may be canceled when an efficient implementation
is used there.

3.2 Optimization Mechanism in GoGs

The outstanding point of the library is GoG’s optimization of the computation.
In the previous section, we have designed GoGs to carry out the computation
by themselves so that they can do the optimization.

We need the following functionalities to implement the optimization exploit-
ing knowledge of theorems: (1) knowing mathematical properties of parameters
such as predicates and operators; (2) judging application conditions of theorems;
and (3) dispatching efficient implementations given by applicable theorems. Once
these are given, the optimization is straightforward: if an applicable theorem is
found, a GoG executes the computation with the dispatched implementation.

Now we see the implementation of required functionalities below.

Knowing Mathematical Properties of Parameters For example, to use
Theorem 1, we have to know whether the operators have mathematical proper-
ties such as distributivity. In general, it is very difficult to find such properties
from definitions of operators and functions. Therefore, we take another way:
parameters are annotated about such properties beforehand by implementors.

The annotation about properties is put on types of parameters. We use types
as place of the annotation, because the annotation is not a value necessary for
computation, and the type hierarchy is useful for reuse.

For example, Figure 2 shows annotation about the distributivity of + (en-
closed in an object SumReduction) over ↑ (enclosed in an object MaxReduc-
tion). To indicate the distributivity, the object SumReduction extends the trait
DistributesOverJMaxReductionK. In Fortress, type arguments are enclosed in J·K.

It is worth noting that we can annotate predicates in another way. Since a
predicate is just a function, we cannot add annotation on its type directly like
objects of reduction operators. However, we can add annotation on the type of
its return value, because Fortress allows extension of Boolean.

Judging Application Conditions To use knowledge of optimization theorems
correctly, we have to judge their application conditions about parameters. Since
properties of parameters are annotated on their types, we can implement such
judgment by expressions branching based on types.

For example, Fortress has typecase expression that branches on types of the
given arguments. Figure 2 shows implementation of judgment about distributiv-
ity. The judgment checks whether the second reduction object (r) extends the
trait DistributesOverJQK, in which Q is the type of the first reduction object

Generators-of-generators Library with Optimization Capabilities in Fortress 7

trait DistributesOverJEK end (* used for annotation: distributive over E *)

object SumReduction extends
{
DistributesOverJMaxReductionK, . . .}

empty(): Number = 0; join(a: Number, b: Number): Number = a + b

end

distributesJQ,RK(q :Q, r :R) : Boolean = typecase (q, r) of
(
Q,DistributesOverJQK)⇒ true

else⇒ false end

Fig. 2. Annotation and judgment about distributivity.

generate2JRK(q: ReductionJRK, r: ReductionJRK, f :E → R
)
:R =

if distributes(q, r) ∧ commutative(q) ∧ relational(p) then efficientImpl(q, r, f)

else naiveImpl(q, r, f) end

Fig. 3. Simplified dispatching of efficient implementation about Theorem 1. Here,
commutative is judgment of commutativity, predicate p is stored in a field variable,
and relational is judgment to check if p is defined by rpred.

(q). If the second has the type, then it means that the second distributes over
the first. In this case, the judgment returns true. It is worth noting that we can
implement such judgments also by overloading functions.

Judgment of an application condition is implemented straightforwardly by
composing judgment functions about required properties.

Dispatching Efficient Implementations The dispatching process is straight-
forward, once we have judgments about application conditions.

Figures 3 shows a simplified dispatching process of the GoG for all segments.
The process is implemented in the generate2 method, and checks whether the
parameters satisfy the application condition of Theorem 1. If the condition is
satisfied, then it computes the result by the efficient implementation (i.e., RHS
of the equation in Theorem 1). Otherwise it computes the result by its naive
semantics. It is worth noting that each of the new operators in the efficient
implementation uses the original operators for a fixed number of times.

In general, each GoG has a list of theorems (pairs of conditions and efficient
implementations). It checks their application conditions one by one. If an ap-
plicable theorem is found, then it computes the result of computation by the
efficient implementation. If no applicable theorem is found in the list, then it
computes the result based on its naive semantics.

3.3 Growing GoG Library

The library is extended easily. We can add GoGs and accompanying functions to
extend the application area of the library. Also, we can add new pairs of appli-
cation conditions and efficient implementations to strengthen its optimization.

We have grown the library to have the following GoGs (and accompanying
functions): all segments of a list (segs), all initial segments of a list (inits), all tail
segments of a list (tails), and all subsequences of a list (subs). Naive semantics
of the former three is shown in Section 2. The last one is trivial.

8 Kento Emoto et al.

Also, we have added various optimization theorems to the library as well
as Theorem 1. The following optimizations were used during the experiment
in Section 4. Here, x is an input of the computation, and each of the LHS
programs can be replaced with the corresponding efficient program in the RHS
under some conditions. The common application condition is that the associative
operator ⊗ distributes over the other associative operator ⊕. In addition, the
theorem for segs requires commutativity of ⊕, and theorems involving predicates
require predicate p to be defined by a certain relation r as p = rpred r. We
omit definitions of new constant-cost reduction operators

⊙
x. See thesis [15] for

details.⊕
〈
⊗
〈f a | a← i〉 | i ← inits x 〉 = π1 (

⊙
i〈(f a, f a) | a← x 〉)⊕

〈
⊗
〈f a | a← t〉 | t ← tails xs〉 = π1 (

⊙
s〈(f a, f a) | a← x 〉)⊕

〈
⊗
〈f a | a← s〉 | s ← segs x 〉 = π1 (

⊙
t〈(f a, f a, f a, f a) | a← x 〉)⊕

〈
⊗
〈f a | a← i〉 | i ← inits x , p i〉 = π1 (

⊙
i′〈(f a, f a, a, a) | a← x 〉)⊕

〈
⊗
〈f a | a← t〉 | t ← tails x , p t〉 = π1 (

⊙
t′〈(f a, f a, a, a) | a← x 〉)

It is worth noting that these optimization are applicable to not only the usual
plus and maximum operator but also any operators that satisfy the required
conditions. It is also worth noting that the RHSs run in O(n/p+ log p) parallel
time for an input of size n on p processors, when ⊕ and ⊗ have constant costs.

Equipped with things above, GoG library enables us to describe various paral-
lel programs naively, and carry out efficient computation exploiting the theorems
implicitly.

4 Programming Examples and Experimental Results

We show how we can write naive parallel programs with GoG library, and give
experimental results that show the naive programs actually run efficiently.

4.1 Example Programming with GoG Library

Figure 4 shows complete code with GoG library for MFSS. Here,
∑JNumberKs

is an abbreviation of
∑JNumberK 〈a | a← s〉, relationalPredicate corresponds to

rpred, and type information (i.e., JNumberK) is explicitly written as workaround
of the current type system. The program clearly looks a cubic-cost naive pro-
gram. But it runs with a linear cost owing to the optimization mechanism im-
plemented in the GoG (in this program, the GoG is the object returned by the
expression segs x). This will be demonstrated in the next section.

It is worth noting that the expressiveness is at least equal to the set of our
list skeletons. This is because we can make scan and scanr by inits and tails as
follows: scan (⊕) x = 〈

⊕
i | i← inits x〉, and scanr (⊕) x = 〈

⊕
t | t← tails x〉.

Here, a comprehension expression without reduction operations results in a list
of the elements in the usual sense. Then, their computation can be executed
with a linear cost exploiting well-known scan lemmas.

Generators-of-generators Library with Optimization Capabilities in Fortress 9

component ExampleProgram

import List.{. . .}; import Generator2.{. . .}; export Executable

run() : () = do x = arrayJNumberK(400).fill
(
fn a⇒ brandom(10)− 5c

)
flat4 = relationalPredicateJNumberK(fn (a, b)⇒ |a− b| < 4

)
mfss = MAXJNumberK 〈 JNumberK ∑JNumberK s∣∣∣ s← segs x,flat4 s

〉
println(“the maximum 4-flat segment sum of x is ” mfss)

end end

Fig. 4. Complete code of an example program with GoG library for MFSS.

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000 1e+06

ex
ec

ut
io

n
tim

e
(s

)

the length of input

mis(w/ opt)
mais(w/ opt)
mtp(w/ opt)

mdtp(w/ opt)
mss(w/ opt)

mfss(w/ opt)
mis(w/o opt)

mais(w/o opt)
mtp(w/o opt)

mdtp(w/o opt)
mss(w/o opt)
mfss(w/o opt)

linear cost

Fig. 5. Execution time of micro programs. They achieve linear costs by optimization.

4.2 Experimental Results

We show experimental results to demonstrate effect of the optimization, parallel
performance, and the overhead of the dispatching process. The measurement
was taken on the current Fortress interpreter (release 4444 from the subversion
repository) running on a PC with two quadcore CPUs (two Intel R©Xeon R©X5550,
8 cores in total, without hyper-threading), 12GB memory, and Linux 2.6.31.

Figure 5 shows measured execution time of the following micro programs
with and without optimization in a logarithmic scale.

mis = MAX〈
∑

s | s← inits x 〉 ; mais = MAX〈
∑

s | s← inits x, ascending s 〉
mtp = MIN〈

∏
s | s← tails x 〉 ; mdtp = MIN〈

∏
s | s← tails x, descending s 〉

mss = MAX〈
∑

s | s← segs x 〉 ; mfss = MAX〈
∑

s | s← segs x,flat4 s 〉

Here, inits and tails make GoGs of all initial and tail segments, respectively, and
ascending and descending are predicates to check whether given arguments are
sorted ascendingly and descendingly, respectively. Note that the input for mtp
and mdtp is a list of positive real numbers.

The graph shows that the optimization works well so that the naively de-
scribed micro programs run with linear costs, while the naive execution of these
programs suffer from quadratic and cubic cost.

10 Kento Emoto et al.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4
sp

ee
du

p
FORTRESS_THREADS

mis
mais
mtp

mdtp
mss

mfss
linear

Fig. 6. Speedup of the micro programs for a large input with optimization.

The number of theorems 1 4 16 64 256 1024 4096

Time of dispatching (ms) 3.55 3.18 4.3 9.6 28.7 103 395
Table 1. Overheads of the dispatching process for various numbers of theorems.

It is worth noting that the program code used in the measurement of the
case without optimization is the same as the case with optimization, except
that annotations about mathematical properties were removed from reduction
objects. This means that the library applies its known theorems correctly. The
big task of applying suitable theorems is now of the GoG library, and we only
have a small task to tell mathematical properties of objects to the library. It is
also worth noting that well-used objects are annotated by library implementors.

Next, we see parallel performance of the programs. Figure 6 shows measured
speedup of the micro programs for a large input (218 elements) with optimization.
The graph shows good speedup of the programs, although it is a little less than
the ideal because of lightness of the computation. Unfortunately, the current
Fortress interpreter is not mature and has a problem of limitations on parallelism;
no Fortress program including our library can achieve more than 4 times speedup.
Therefore, the graph only shows the results of at most 4 native threads. This
limitation will be removed in the future Fortress interpreter or compiler, and
thus the programs will be able to achieve better speedup for a larger number of
threads. It is worth noting that a program achieves good speedup even if it was
not optimized and thus executed by the naive semantics. This is because the
naive semantics uses the existing generators of Fortress in the computation.

Finally, we mention about the overhead of dispatching process in generate2 .
We measured execution time of dispatching process of dummy GoGs with l
dummy non-applicable theorems. For the dummy GoGs, the dispatching process
checks application conditions l times, then fails in finding an applicable theorem,
and finally executes their dummy naive implementations that do nothing. Table 1
shows measured execution time of the dispatching process. The time is very small
and ignorable against that of the main computation, unless too many (more than
hundreds) theorems are given. If so many theorems are given, we would need to
organize them for efficient dispatching, which is a part of future work.

The results show naive programs with GoGs run efficiently in parallel.

Generators-of-generators Library with Optimization Capabilities in Fortress 11

5 Related Work

SkeTo library [4, 14] is a parallel skeleton library equipped with optimization
mechanisms. Its optimization is designed for fusions of successive flat calls of
skeletons, but not for optimization of nested use of skeletons. The work in this
paper deals with optimization of nestedly composed skeletons. It can be seen as
a complement of the previous work.

The FAN skeleton framework [3] is an skeletal parallel programming frame-
work with an interactive transformation (optimization) mechanism. It has the
same goal as ours. It helps programmers interactively to refine naive skeleton
compositions into efficient ones, by a graphical tool that locates applicable trans-
formations and provides performance estimates. Our GoG library is designed for
automatic optimization, and thereby is equipped with transformations (opti-
mization theorems) that always improve performance for specific cases. Also,
optimization mechanism of GoG library is lightweight in the sense that it does
not need extra tools such as preprocessors.

Programming using comprehension notation has been considered a promis-
ing approach for concise parallel programming, with a history of decades-long
research [8–11]. The previous work [16] studied optimization through flattening
of nested comprehension expressions to exploit flat parallelism effectively. Their
optimizations are focusing on balancing computation tasks. The work in this
paper mainly focuses on improving the complexity of computation.

6 Conclusion

We have proposed GoG library to tackle two difficult problems in the develop-
ment of efficient parallel programs. The library frees users from difficult tasks:
composing skeletons to generate nested data structures; and applying optimiza-
tion theorems (transformations) correctly by hand. In the paper, with the MFSS
problem, we demonstrated that a naively-composed program appearing to have
a cubic cost actually runs in parallel with a linear cost. The drastic improvement
is due to the automatic optimization based on theories of parallel skeletons. It is
worth noting that we can implement the library also in other modern languages.
For example, we can implement it in C++ using OpenMP [17] or MPI [18] for
parallel execution and template techniques for providing a new notation.

One direction of our future work is to widen the application area of the
library. We will extend the set of GoGs as well as optimizations over them,
so that we can describe more applications such as combinatorial optimization
problems. Also, we will extend the optimization to higher-level nesting, though
the current implementation deals only with 2-level nesting. Moreover, we will
apply the idea of GoGs to programming on matrices and trees, based on our
previous research about parallel skeletons on them.

Another direction of our future work is to study automatic discovery of math-
ematical properties of operators and functions from their definitions. It will re-
duce users’ tasks more. We believe that the rapid growth of recent computers
will enable such automatic discovery in the near future.

12 Kento Emoto et al.

References

1. Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer-
Verlag (2003)

2. Rabhi, F.A., Gorlatch, S., eds.: Patterns and Skeletons for Parallel and Distributed
Computing. Springer-Verlag (2002)

3. Aldinucci, M., Gorlatch, S., Lengauer, C., Pelagatti, S.: Towards parallel pro-
gramming by transformation: the FAN skeleton framework. Parallel Algorithms
Applications 16(2-3) (2001)

4. Emoto, K., Hu, Z., Kakehi, K., Takeichi, M.: A compositional framework for
developing parallel programs on two-dimensional arrays. International Journal of
Parallel Programming 35(6) (2007)

5. Iwasaki, H., Hu, Z.: A new parallel skeleton for general accumulative computations.
International Journal of Parallel Programming 32(5) (2004)

6. Hu, Z., Takeichi, M., Iwasaki, H.: Diffusion: Calculating efficient parallel programs.
In: Proceedings of the 1999 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation. (1999)

7. Gorlatch, S.: Systematic efficient parallelization of scan and other list homomor-
phisms. In: Euro-Par ’96 Parallel Processing, Second International Euro-Par Con-
ference. Volume 1124 of Lecture Notes in Computer Science, Springer (1996)

8. Blelloch, G.E., Sabot, G.W.: Compiling collection-oriented languages onto mas-
sively parallel computers. Journal of Parallel and Distributed Computing 8(2)
(1990)

9. Chakravarty, M.M.T., Keller, G., Lechtchinsky, R., Pfannenstiel, W.: Nepal -
nested data parallelism in haskell. In: Euro-Par ’01: Proceedings of the 7th In-
ternational Euro-Par Conference on Parallel Processing, Springer-Verlag (2001)

10. Chakravarty, M.M.T., Leshchinskiy, R., Jones, S.P., Keller, G., Marlow, S.: Data
parallel haskell: a status report. In: DAMP ’07: Proceedings of the 2007 workshop
on Declarative aspects of multicore programming. (2007)

11. Fluet, M., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Manticore: a heterogeneous
parallel language. In: DAMP ’07: Proceedings of the 2007 workshop on Declarative
aspects of multicore programming. (2007)

12. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.W., Ryu, S., Jr.,
G.L.S., Tobin-Hochstadt, S.: The Fortress language specification version 1.0.
http://research.sun.com/projects/plrg/fortress.pdf (2008)

13. Peyton Jones, S., ed.: Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, Cambridge, UK (2003)

14. Matsuzaki, K., Emoto, K.: Implementing fusion-equipped parallel skeletons by
expression templates. In: Draft Proceedings of the 21st International Symposium
on Implementation and Application of Functional Languages (IFL 2009), Technical
Report: SHU-TR-CS-2009-09-1, Seton Hall University (2009)

15. Emoto, K.: Homomorphism-based Structured Parallel Programming. PhD thesis,
University of Tokyo (2009)

16. Leshchinskiy, R., Chakravarty, M.M.T., Keller, G.: Higher order flattening. In:
Computational Science - ICCS 2006, 6th International Conference. Volume 3992
of Lecture Notes in Computer Science, Springer (2006)

17. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory
Parallel Programming. The MIT Press (2007)

18. Gropp, W., Lusk, E., Skjellum, A.: Using MPI (2nd ed.): portable parallel pro-
gramming with the message-passing interface. MIT Press (1999)

