
Noname manuscript No.
(will be inserted by the editor)

Towards Systematic Parallelization of Graph
Transformations over Pregel

Le-Duc Tung · Zhenjiang Hu

Received: date / Accepted: date

Abstract Graphs are flexible in modelling many kinds of data from tradi-
tional datasets to social networks or semi-structured datasets. To process large
graphs, many systems have been proposed in which Pregel programming model
is popular thanks to its scalability. Although Pregel is simple to understand
and use, it is of low-level in programming and requires developers to write
programs that are hard to maintain and need to be carefully optimized. On
the other hand, structural recursion is a high-level tool to systematically con-
struct efficient parallel programs on lists, arrays and trees, but it is still not
scalable for graphs. In this paper, we propose an efficient parallel evaluation
to the structural recursion on graphs, which is suitable for Pregel. As a result,
we design and implement a high-level parallel programming framework where
a domain-specific language (DSL) is provided to ease the programing burden
for users, and programs written in our DSL are automatically compiled into
Pregel programs that are scalable for large graphs. Experimental results show
that our framework outperforms the original evaluation of structural recursion
and achieves good scalability and speedup for real datasets.

Keywords Structural recursion · Graph transformation · Parallel program-
ming

Notes

LD. Tung
SOKENDAI (The Graduate University for Advanced Studies),
Shonan Village, Hayama, Kanagawa 240-0193, Japan
E-mail: tung@nii.ac.jp

Z. Hu
SOKENDAI / National Institute of Informatics (NII),
2-1-2 Hitotsubashi, Chiyoda,
Tokyo 101-8430, Japan
E-mail: hu@nii.ac.jp

2 Le-Duc Tung, Zhenjiang Hu

Fig. 1: A Graph of Paper Citation Network

1 Introduction

With the explosion of data on the Internet, graph has recently received much
attention due to its flexibility in describing many complex data from tra-
ditional datasets to semi-structured data [2]. However, efficiently processing
large graphs is challenging. At the system side, many problems need to be
considered such as locality issues, failure tolerance and scalability. At the user
side, it is difficult to design efficient graph algorithms due to the existence of
cycles making graph algorithms easily go to an infinite loop or lead to incorrect
results. Moreover, inefficient graph traversals also result in poor performance.

Many graph processing models have been proposed, in which Pregel [8]
has emerged as an efficient and scalable model. It was inspired by the Bulk-
Synchronous Parallel (BSP) model [15] whose computation consists of a se-
quence of supersteps. During a superstep, every vertex executes exactly once
a common function Vertex.compute(). Inside Vertex.compute(), a vertex
receives messages from the previous superstep, does its computation (i.e. up-
dating its value, adding/removing edges and vertices), and sends messages to
other vertices in the next superstep. Any changes related to vertices and edges
will be available in the next superstep. Supersteps alternate with barriers that
are used to synchronize communication data.

Although Pregel is scalable for large graphs, its programming model is of
low-level [12]. Users need to care about many low-level things, such as when a
vertex sends a message out, to whom the message will be sent, what is the type
for vertices in a specific superstep, when the whole computation terminates,
etc, this makes Pregel difficult to express complex computations in practice.
To see this, let us consider the graph in Fig. 1, which represents a paper
citation network. Assume that we would like to know citation relationships
among all conferences in the graph. We expect a result of a new graph of
conferences whose links denote citation relationships among these conferences.
It is not so difficult to extract conference information. However, it is non-
trivial to reorganize them into a new graph because, in Pregel, edges are quite
independent. Moreover, we need to carefully design graph traversals to make
sure that conferences are paired with right conferences.

Towards Systematic Parallelization of Graph Transformations over Pregel 3

On the other hand, structural recursion is a high-level programming model
that has been shown to be powerful to build high-level parallel programming
frameworks for lists, arrays and trees [9]. For graphs, structural recursion plays
an important role in manipulating unstructured data; UnCAL, a powerful “cal-
culus” for unstructured data, is based on structural recursion [3]. For instance,
the “citation relationship” example can be easily written using structural re-
cursive functions as follows.

eval conf where
conf ({Paper : $g}) = {Conference : (cname($g) ∪ cite($g))}
conf ({$l : $g}) = {}

cname ({Conference : {String : $g}}) = $g
cname ({$l : $g}) = {}

cite ({refer to : $g}) = {Cite : conf ($g)}
cite ({$l : $g}) = {}

The function conf shows that, for each edge in the graph, if it is labeled Paper
and points to a subgraph g, then we extract conference information from the
graph g. For each conference, we need a union of two pieces of information:
name and corresponding citations. These are returned by two recursive func-
tions cname and cite. The function cname follows the path Conference.String
to extract only the conference name. At the same time, the function cite follows
the edges refer to to find cited conferences.

The key to implementing the structural recursion in UnCAL, as described
in [3], is the use of ε-edges (that work as ε-transitions of automata) for glue-
ing computation results in a bulk computation on edges which enables parallel
evaluation and makes it easier to prove termination properties. However, prob-
lems come from its scalability. Experiments for a sequential version of struc-
tural recursion only dealt with graphs up to ten thousand nodes [3]. Later, a
distributed evaluation was proposed in theory, in which a performance guaran-
tee in terms of communication complexity was given [13]. Unfortunately, too
much intermediate data is generated during the evaluation, which is a serious
problem in practice when processing large graphs. Moreover, for large graphs,
there potentially exists a bottleneck since its reachability computation is done
at a single site [14].

This paper aims to bridge the gap between structural recursion and Pregel
to combine their advantages of high-level programming and practical scalibil-
ity. We show that a class of structural recursion can be efficiently mapped to
Pregel. As a result, we design and implement a graph transformation frame-
work on top of Pregel, which is actually inspired by high-level frameworks
on top of MapReduce such as Generate-Test-Aggregate [4]. Our framework
accepts graph transformations written in a domain-specific language as its in-
put and automatically compiles these transformations into an efficient Pregel
implementation.

Our main contributions in this paper are summarized as follows.

4 Le-Duc Tung, Zhenjiang Hu

– We propose a domain-specific language (DSL) to help users write their
scalable graph transformations as structural recursive functions in a declar-
ative way. The DSL is a subset of the UnCAL language [3] but it covers a
wide class of structural recursion that can be efficiently evaluated in par-
allel. Moreover, fusion rules can be freely applied to the composition of
structural recursive functions.

– We improve the bulk semantics in UnCAL in order to efficiently evaluate
structural recursive functions written in our DSL. This improvement mini-
mizes the amount of data generated during the evaluation and utilizes the
basic Pregel “skeletons” that have been proved to be efficient and scalable.

– We design and implement a high-level parallel processing framework for
graphs in which transformations written in our DSL are automatically
compiled into Pregel programs. Preliminary results for real-world graphs
(citation network, youtube) show that our framework achieves good scala-
bility and speedup compared to the original bulk semantics used in UnCAL.

This paper is organized as follows. Section 2 introduces basic concepts to
represent and construct a graph. A domain-specific language and its inter-
nal structural recursion are given in Sec. 3. We present our efficient evaluation
strategy for programs written in our DSL in Sec. 4. Section 5 shows our frame-
work in detail and how to map our evaluation to Pregel. Experimental results
are described in Sec. 6. Finally, we discuss related works in Sec. 7, and conclude
our paper in Sec. 8.

2 Preliminary

Our framework is based on UnCAL (Unstructured CALculus), a powerful
graph algebra for queries on graph databases [3] and graph-based model trans-
formations [6]. In this model, graphs are up to bisimulation and constructed
in a recursive way. Structural recursion on graphs is described as the one on
infinite regular trees.

2.1 Graph Data Model

UnCAL’s data model is a directed edge-labeled graph extended by markers
and ε-edges [3]. Edge-labeled graphs are in the sense that data are stored on
edges, while vertices are unique identity objects without labels. Markers are
symbols to designate certain vertices as input vertices or output vertices. ε-
edges are edges labeled with a special symbol ε. One could consider ε-edges
as “empty” transitions and markers as initial/final states in automata.

Let Label be a set of labels,M be an infinite set of markers denoted by &x,
&y, &z, . . . There is a distinguished marker & ∈M called a default marker.

Definition 1 (Graph with Markers [3]) A graphG is a quadruple (V,E, I,
O), where V is a set of vertices, E ⊆ V × {Label ∪ ε} × V is a set of edges,

Towards Systematic Parallelization of Graph Transformations over Pregel 5

&
a b

c
b

a bulk
↪→

&
d b

d

b

eelim
↪→

&
d b

bd

Fig. 2: Transformation a2d xc: Change Edges a to d and Delete Edges c

&

G0

l

{l : G0}
↪→

&

G0

G

l
&z

G0

&y1 &y2
&z := G0

↪→ G

&z ·&y1 &z ·&y2
G1

&z1&z2

G2

&z1&z2

G1 ∪G2
↪→ G1 G2

&z1 &z2

ε ε ε ε

G1

&x1&x2

G2

&y1&y2

G1 ⊕G2
↪→ GG1 G2

&x1 &x2 &y1&y2

{}
↪→ & ()

↪→ ∅

&y
↪→ &

&y

G1

&x1 &x2

&y1 &y2

G2

&y1 &y2

G1

G

&x1 &x2

G2

ε εG1 @G2↪→
G0

&x1 &x2

&x1 &x2

cycle(G0)
↪→ G

&x1 &x2

Fig. 3: Graph Constructors

I ⊆ M× V is an one-to-one mapping from a set of input markers to V , and
O ⊆ V ×M is a many-to-many mapping from V to a set of output markers.

For &x,&y ∈M, let v = I(&x) be the unique vertex such that (&x, v) ∈ I,
we call v an input vertex. If there exists a (v,&y) ∈ O, we call v an output
vertex. Note that there are no edges coming to input vertices or leaving from
output vertices. Let DBXY denote data graphs with sets of input markers X and

output markers Y. When X = {&}, DBXY is abbreviated to DBY , and DB∅ is
abbreviated to DB . A rooted graph is the one that has only one input marker
X = {&} and no output markers Y = ∅, in which the vertex v = I(&) is called
the root vertex of the graph. Graphs with multiple markers are internal data
structures for graph constructors.

The left graph in Fig. 2 is an example of a rooted directed edge-labeled
graph in which V = {1, 2, 3, 4, 5}, E = {(1, a, 2), (2, b, 3), (2, c, 4), (4, b, 5), (5, a,
2)}, I = {(&, 1)}, and O = {}. The vertex marked with & is the root of the
graph. In this paper, we ignore vertex ids when drawing graphs.

2.2 Graph Constructors

Before looking at graph constructors in detail, we need to define an additional
operation “·” to generate new markers. The operation “·” returns a differ-
ent marker for every pair of &x and &y. We assume “·” to be associative,
(&x·&y)·&z = &x· (&y·&z), and & to be its identity, &·&z = &z·& = &z.

6 Le-Duc Tung, Zhenjiang Hu

≡l

a

b

c

l

a a

b
b

c c

Fig. 4: Meaning of ε-Edges. The left graph with ε-edges is value equivalent to
the right graph without ε-edges

There are nine graph constructors in UnCAL. From these constructors,
we can build arbitrary directed edge-labeled graphs. Definitions of the con-
structors are given in Fig. 3 (Dotted arrows denote ε-edges). Informally, {}
constructs a graph of only one vertex labeled with a default input marker &,
{l : G} constructs a new graph G′ from the graph G by adding the edge l
pointing to the root of G. The source vertex of l becomes the root of G′. The
operator ∪ unions two graphs of the same input markers with the aid of ε-
edges. The next two constructors allow us to add input and output markers:
&z := G takes a graph G ∈ DBXY and relabels input vertices with the input

marker &z, thus the result is in DBZ·XY ; &y returns a graph of a single vertex
labeled with the default input marker & and the output marker &y. () con-
structs an empty graph without any markers and vertices. The disjoint union
G1 ⊕ G2 requires two graphs G1 and G2 have disjoint sets of input markers.
The operator G1 @G2 vertically constructs a graph by plugging output mark-
ers of G1 to input markers of G2. It requires G1 ∈ DBXY and G2 ∈ DBYZ , thus

G1 @G2 ∈ DBXZ . Finally, the last operator allows us to introduce cycles by
adding ε-edges from an output marker to the input marker named after it.

Example 1 The left graph in Fig. 2 can be constructed as follows. (but not
uniquely)

&z@ cycle((&z := {a : &z1})
⊕ (&z1 := {b : {}} ∪ {c : {b : &z2}})
⊕ (&z2 := {a : &z1}))

For brevity, we write {l1 : G1, . . . , ln : Gn} to denote {l1 : G1} ∪ . . . ∪ {ln :
Gn}, and (G1, . . . , Gn) to G1 ⊕ . . .⊕Gn.

2.3 Meaning of ε-edges

Theoretically, an ε-edge from a vertex v to v′ means that all edges emanating
from v′ should be emanating from v [3]. Eliminating an ε-edge (v, ε, v′) means
removing this ε-edge and for each edge emanating from v′, (v′, a, w), a new
edge (v, a, w) is added. Figure 4 shows an example of two equivalent graphs:
one contains ε-edges and the other has no ε-edges. In this paper, we use dotted
arrows to denote ε-edges.

Towards Systematic Parallelization of Graph Transformations over Pregel 7

prog ::= eval f [◦ f] where decl · · · decl { program }
decl ::= f({l : $g}) = t { structural recursive function }

t ::= {} | {l : t} | t ∪ t |&x := t |&y | () { graph constructors }
| t⊕ t | t@ t | cycle(t) { graph constructors }
| $g { graph variable }
| f($g) { function application }

l ::= a | $l { label (a ∈ String) and label variables }

Fig. 5: Syntax of our DSL Language

3 A Domain-Specific Language

In this section, we will show our domain-specific language (DSL) and explain
how to map programs written in our DSL to structural recursion. Although the
DSL is simplified from the UnCAL language, it covers a wide class of structural
recursion that can be efficiently evaluated in parallel. Moreover, thanks to
the simplification, fusion rules can be freely applied to the composition of
structural recursive functions [3].

3.1 Syntax and Semantics

Figure 5 shows the syntax of our language. A program starts with a header
that specifies a composition of functions followed by a sequence of function
declarations. Declarations are defined in the way of pattern matching and
its body is an expression. For a function f , its argument is in the form of
{l : $g} that is one of graph constructors presented before (Fig. 3). Note that,
l can be a real label a or a label variable $l. Declarations of f are based on
pattern matching for {l : $g}. Only one f({$l : $g}) is allowed and must be
located after all other declarations of f({a : $g}). The declaration f({$l : $g})
will apply for graphs that do not match previous patterns. The body of a
declaration is an expression including nine graph constructors, a graph variable
and a function application. We require a strict form for function applications
in which graph variable is the only argument, which avoids computations that
may lead to infinite loop.

The semantics of our language is as follows. Given a set of structural recur-
sive functions (defined by declarations), and a rooted edge-labeled graph, the
program returns a new rooted edge-labeled graph by applying a transformation
defined by the composition of structural recursive functions. Function composi-
tion is denoted by “ ◦ ”, and, from its definition, we have (f2 ◦ f1)x = f2 (f1 x).
A declaration f({l : $g}) means, for each edge labeled l and its following sub-
graph $g in the input graph, we do some computations on l and then apply
the structural recursive functions f on $g. Results returned by applying a
function f on adjacent edges are automatically combined by the constructor
∪ as follows: f(G1 ∪G2) = f(G1) ∪ f(G2).

8 Le-Duc Tung, Zhenjiang Hu

Example 2 The following specification a2d xc relabels edges a to d and con-
tracts edges c. Figure 2 shows input and output graphs for this specification.

eval a2d xc where
a2d xc ({a : $g}) = {d : a2d xc ($g)}
a2d xc ({c : $g}) = a2d xc($g)
a2d xc ({$l : $g}) = {$l : a2d xc ($g)}

Example 3 The following specification c b2d changes all edges b, that are
reachable from the edge c, to edges d. In this example, we need two mutually
recursive functions.

eval c b2d where
c b2d ({c : $g}) = {c : b2d ($g)}
c b2d ({$l : $g}) = c b2d ($g)

b2d ({b : $g}) = {d : b2d ($g)}
b2d ({$l : $g}) = {$l : b2d ($g)}

Remark 1 (Our DSL and UnCAL) Our DSL consists of the essential part of
UnCAL including graph constructors and function applications. Conditions
isempty over graphs and the comparison of two label variables are omitted.

Fact 1 Our language is powerful enough to described many interesting graph
queries and graph transformations. For instance, it has been shown that any
regular path queries can be described as mutually recursive functions [13], and
graph updating can be compiled into structural recursion [6]. ut

3.2 Programs as Parallelizable Structural Recursions

Given a function e :: {Label ∪ ε} → DBZZ , where Z = {&z1, . . . ,&zn}. A func-
tion h :: DBXY → DBX ·ZY ·Z is called a parallelizable structural recursive function
if the following data value equalities for nine graph constructors hold [3]:

h ({}) ≡ (&z1 := {}, . . . ,&zn := {}) (1)

h ({$l : $g}) ≡ e($l) @h ($g) (2)

h ($g1 ∪ $g2) ≡ h ($g1) ∪ h ($g2)

h (&x := $g) ≡ &x ·h ($g) (3)

h (&y) ≡ (&z1 := &y ·&z1, . . . ,&zn := &y ·&zn)

h () ≡ ()

h ($g1 ⊕ $g2) ≡ h ($g1)⊕ h ($g2)

h ($g1 @ $g2) ≡ h ($g1) @h ($g2)

h (cycle($g)) ≡ cycle(h ($g))

In Eq. (3), &x · (&z1 := $g1, . . . ,&zn := $gn) denotes (&x ·&z1 := $g1, . . . ,
&x ·&zn := $gn).

Towards Systematic Parallelization of Graph Transformations over Pregel 9

For brevity, we denote the function h by homZ(e), and define it by the
following equality.

homZ(e) ({$l : $g}) = e($l) @ homZ(e) ($g)

Structural recursive functions in our language are homZ(e) functions whose
function e is obtained by transforming pattern matchings into the construct
if . . . then . . . else and substituting recursive calls by markers.

For example, the specification a2d xc is equivalent to hom{&}(e), where,

hom{&}(e)({$l : $g}) = e($l) @ hom{&}(e)($g)

e($l) = if $l = a then {d : &}
else if $l = c then {ε : &} else {$l : &}

The specification c b2d is equivalent to &z1 @ hom{&z1,&z2}(e) by tupling
two mutually recursive functions c b2d and b2d as follows. (Note that, here we
extract the result of the function c b2d by using the expression &z1 @).

e($l) = (&z1 := if $l = c then {c : &z2} else &z1,

&z2 := if $l = b then {d : &z2} else {$l : &z2})

Lemma 1 (Fusion rule [3]) Given two parallelizable structural recursions
homZ1

(e1) and homZ2
(e2), the following equality holds.

homZ2
(e2) ◦ homZ1

(e1) = homZ2
(homZ2

(e2) ◦ e1)

Theorem 1 A program written in our DSL language is equivalent to an ex-
pression &zi @ homZ(e), where zi ∈ Z.

4 Strategy for Deriving an Efficient Evaluation

The definition of parallelizable structural recursive function in Sec. 3 suggests a
bulk semantics whose idea is to delay computations by introducing ε-edges. In
general, to evaluate an expression homZ(e), the bulk semantics first creates a
bulk graph by using ε-edges to connect results of the application of the function
e on each edge. After that, the final result is obtained by computing transitive
closure for ε-edges. In particular, the bulk graph is created as follows. For each
vertex v, |Z| disjoint copies of v are created, then the function e is applied
to every edge to create subgraphs with |Z| input markers and |Z| output
markers. The bulk graph is created by, based on input and output markers,
connecting disjoint vertices and subgraphs via ε-edges. It is clear that the bulk
semantics enables a parallel evaluation. The following equation captures the
above computation.

homZ(e) = eelim ◦ bulkZ(e)

where the function bulkZ(e) is to compute a bulk graph and eelim is to elim-
inate ε-edges. Figure 2 shows an example of the above computation for the

10 Le-Duc Tung, Zhenjiang Hu

specification a2d xc. Subgraphs surrounded by a shaded rectangle are results
of the application of the function e on edges.

Now, we consider the situation where we use the bulk semantics to evaluate
our program, &zi @ homZ(e). Recall that the result of homZ(e) is a graph with
|Z| input markers, and &zi is one of its input markers. Therefore. &zi @ is
actually a reachability computation that returns a graph whose edges and
vertices are reachable from the vertex v, where v = I(&zi). The reachability
computation is a basic computation “skeleton” in Pregel model [8], so we
consider it an efficient and scalable one from the standpoint of Pregel model.
Now, we have

&zi @ homZ(e) = reach{&zi} ◦ eelim ◦ bulkZ(e)

where the function reach{&zi} denotes the reachability computation for &zi @ .
To minimize the amount of ε-edges as well as redundant edges produced

by bulkZ(e), we propose a hybrid approach of recursive semantics and bulk
semantics. The recursive semantics is to compute a marker graph whose each
vertex u consists of a set of possible markers Xu ⊆ Z. After that, in the
bulk semantics, for each vertex u, we create exactly |Xu| disjoint vertices, and
then the function e, instead of computing a graph of |Z| disjoint subgraphs,
computes a graph of only |Xu| disjoint subgraphs. It is important to note that
intermediate graphs generated are very close to the final result.

In order to express both semantics, we extract two functions e→ and eπ
from the function e of homZ(e)

e→ :: (Mt, {Label ∪ ε})→M
e→(&z, $l) = let (vs, es, is, os) = &z@ e($l) in map snd os

eπ :: (Mt, {Label ∪ ε})→ DBMZ

eπ(&z, $l) = &z@ e($l)

where, Mt is a type for markers; function e→ is like a transition function in
automaton, where, for each label $l and input marker &z we compute a set
of (output) markers reachable from &z in the graph generated by function e;
function eπ is simply a project function. Note that these two functions are
statically derived from a given function e.

Our program is now evaluated as follows.

&zi @homZ(e) = reach{&zi} ◦ eelim ◦ bulk
′
Z(eπ) ◦mark{&zi}(e→) (4)

The function mark{&zi}(e→) is to compute a marker graph using recursive
semantics. It starts from the root of an input graph with the input marker &zi,
and recursively uses e→ to find all markers a vertex can have. Vertices having
no markers will be removed after that. The function bulk′Z(eπ) is similar to
bulkZ(e) but eπ is applied with respect to markers &z of source vertices. Note
that, although the function bulk ′Z(eπ) now generates a graph with only one
input marker, the function reach{&z1} is necessary to find a smaller equivalent

Towards Systematic Parallelization of Graph Transformations over Pregel 11

&
a b

c

b

a

(a) Input Graph

{&z1}
&

{&z1,&z2}

{&z2}

{&z1,&z2}

{&z2}

a b

c

b

a

(b) Marker Graph

&

ε ε

c

d

c a

d

(c) Bulk Graph

Fig. 6: Intermediate Graphs During the Computation for the Specification
c b2d. Values inside a box are vertex values not vertex ids

graph because the ε-edge elimination might produce redundant edges and
vertices that are unreachable from the root.

We consider the example c b2d to see in detail how to evaluate it with
our approach. From its function e:

e($l) = (&z1 := if $l = c then {c : &z2} else &z1,

&z2 := if $l = b then {d : &z2} else {$l : &z2})

we have two functions e→ and eπ as follows.

e→ =λ(&z, $l).

(&z, $l) match {
case (&z1, c)⇒ {&z2}
case (&z1,)⇒ {&z1}
case (&z2, b)⇒ {&z2}
case (&z2,)⇒ {&z2}
}

eπ =λ(&z, $l).

(&z, $l) match {
case (&z1, c)⇒ &z1 := {c : &z2}
case (&z1,)⇒ &z1 := &z1

case (&z2, b)⇒ &z2 := {d : &z2}
case (&z2,)⇒ &z2 := {$l : &z2}
}

Figure 6 shows intermediate graphs for the example c b2d. The marker
graph in Fig. 6(b) is the result of our recursive semantics and the bulk graph in
Fig. 6(c) is the result of our bulk semantics. The marker graph is computed as
follows. First, the root vertex is initialized with a singleton set {&z1}, where
&z1 is the marker in our program. We evaluate the first edge (u, a, v) from
the root. Its result, e→(&z1, a) = {&z1}, is written to the vertex v. Next, we
concurently evaluate two edges (v, b, w1) and (v, c, w2) emanating from v, and

12 Le-Duc Tung, Zhenjiang Hu

Fig. 7: Overview of Our Framework

results are written to respective targets w1, w2. This procedure is iterated and
then terminated when it can not find new markers to add to vertices. The bulk
graph is then computed as follows. For a vertex u, and its set of markers Xu,
we create |Xu| disjoint vertices. Next, we apply the function eπ on each edge
(u, l, v) and each marker in Xu, producing a subgraph of |Xu| input markers.
In Fig. 6(c), these subgraphs are surrounded by a shaded rectangle. Finally,
we use ε-edges to connect disjoint vertices and subgraphs.

5 A High-Level Parallel Programming Framework for Graphs

In this section, we present our high-level framework that automatically com-
piles transformations written in our DSL into Pregel programs based on Eq. 4.
We formalize some efficient Pregel computations and use them as basic skele-
tons to describe our evaluation.

5.1 Overview

Figure 7 shows components in our framework. It accepts a rooted directed
edge-labeled graph and a specification written in our DSL language as inputs.
It returns a rooted directed edge-labeled graph. The component “Code Gener-
ator” analyses the specification and generates a main program. In particular,
it generates two functions e→ and eπ. It is also the place to do optimizations
such as fusion rule or tupling rule. The component “Parameterized Pregel Al-
gorithms” contains a set of efficient Pregel algorithms for functions such as
mark , bulk , eelim, reach. The main program utilizes these functions in order
to construct a complete program for the input specification. Next sections will
focus on designing efficient Pregel algorithms for the component “Parameter-
ized Pregel Algorithms”.

5.2 Basic Skeletons in Pregel Programming Model

In order to describe our evaluation, we first formalize some efficient compu-
tations in the Pregel programming model. We refer to these computations as
basic skeletons. Our formalization is inspired by APIs of GraphX library [18],

Towards Systematic Parallelization of Graph Transformations over Pregel 13

a functional implementation of the Google Pregel model. However, the signif-
icant difference is that GraphX allows users to access to the full information
of both the source vertex and the destination vertex of an edge, while our
skeletons only access to the full information of the source vertex, and the id of
destination vertex. In that sense, our skeletons are closer to the Google Pregel
model.

We consider a distributed graph of a type of Graph[VD, ED], where VD is
a type for vertex values and ED is a type for edge values. Vertex ID has a type
of VID. Our function descriptions are written in functional programming style,
in particular we borrow the syntax of Scala functional language. The notation
(a => b) is a lambda abstraction (λa.b). Returned value of a function is the
returned value of the last statement in the function. Functions i is to take
the i-th element in a tuple, i.e. (a, b). 2 returns the value b.

The first skeleton is pregel. This skeleton executes in a series of supersteps
in which vertices receive an aggregate of incomming messages from the previ-
ous superstep, compute a new value for the vertex value, and send messages to
neighbouring vertices in the next superstep. Only vertices receiving messages
are involved in the next superstep. Its computation finishes when there are no
messages in transit. Below is the signature of the pregel skeleton:

pregel[A](initialMsg : A)(

vprog = (VID, VD, A) => VD,

sendMsg = (VID, VD, ED, VID) => Message[(VID, A)],

mergeMsg = (A, A) => A)

where, vprog is to update vertex values, its arguments include a vertex (id
and value) and an aggregate of incoming messages. In the first superstep, the
aggregate of incoming messages is initialized by the message intializeMsg

and sent to all vertices. The argument of sendMsg is an edge including its
source vertex, its source vertex value, edge label, and its target vertex id. The
function mergeMsg is to define an aggregate operator over incoming messages.

In addition to the skeleton pregel, we have three one-step skeletons
(mapVertices, subgraph, mutateGraph) and one two-step skeleton (pregel2):

mapVertices(vprog = (VID, VD1) => VD2)

subgraph(vpred = (VID, VD) => Bool,

epred = (VID, VD, ED, VID) => Bool)

mutateGraph(efunc = (VID, VD1, ED1, VID)

=> Set[(VID, VD2, ED2, VID)])

pregel2[A](sendMsg = (VID, VD, ED, VID) => Message[(VID, A)],

mergeMsg = (A, A) => A,

vprog = (VID, VD, A) => VD)

The skeleton mapVertices applies a function to vertices to update their
values, it might change the type of vertex values but always keep the vertex id
unchanged. The skeleton subgraph filters a graph based on vertices or edges
or both. The skeleton mutateGraph generates a new graph from the union of
sets of edges generated by applying the function efunc on edges. Users must

14 Le-Duc Tung, Zhenjiang Hu

ensure the consistence of ids and values for vertices. The pregel2 is quite sim-
ilar to MapReduce computation, vertices send a message to its neighbouring
vertices, then, in the next superstep, vertices combine the incoming messages
and update their values.

For example, the following code computes a graph whose vertices and edges
are reachable from a given vertex, say, a vertex with id 1.

g.mapVertices((vid, vd) => (vid==1 ? true : false, false)

.pregel(false)(

(vid, (re, flag), ms) => {

(re && !ms) ? (re, true) : (ms, !re)

},

(srcid, (re, flag), l, dstid) => {

flag ? Message[(dstId, true)]: Message[Empty]

},

(a, b) => a | b)

.subgraph(vpred = (vid, vd) => vd._1)

Next sections will show how to use these skeletons to express our evaluation.

5.3 Marker Graph Computation

A marker graph is computed by the skeleton pregel. Each vertex maintains
a triple (x, ys, zs), where x denotes whether the vertex is the root or not, ys
is a set of markers and zs is a set of new markers received from other vertices
but not in ys. Let r be the id of the root in the input graph. Following is the
computation of the function mark{&z}(e→).

mark = (&z, e→, g) => {
g.mapVertices((id,_) => ((id==r)? true:false, ∅, ∅))
.pregel(∅)(
(vi, vd, msg) => { /* vprog */

let (isRoot, curr_mrk, new_mrk) = vd in
if (isRoot) {

(isRoot, &z, &z)
} else {

(isRoot, curr_mrk ∪ msg, msg \ (msg ∩ curr_mrk))

}
},
(si, sd, ed, di) => { /* sendMsg */

outMrk = sd._3.flatMap(mrk => e→(mrk, ed))

(!outMrk.empty) ? Message((di, outMrk)) : Message[Empty]

},
(a, b) => a ∪ b) /* mergeMsg */

.mapVertices((id, v) => (v._1, v._2)) }

Towards Systematic Parallelization of Graph Transformations over Pregel 15

5.4 Bulk Graph Computation

To compute a bulk graph from a marker graph, we need only one superstep
and use the skeleton mutateGraph.

bulk = (eπ, g) => {g.mutateGraph(
(si, sd, ed, di) => {
sg = sd._2.map(mrk => eπ(mrk, ed))

.reduce((a, b) => a ⊕ b) /*disjoint subgraphs*/

InEps = sg.I._1.map((m,id) => Edge(genId(m, si), sd, ε, id)

OutEps = sg.O._2.map((m,id)

=> Edge(id, (false,∅), ε, genId(m, di))

InEps ∪ sg.E ∪ OutEps

}).mapVertices((vi, vd) => vd._1) }
We apply a function eπ on edges to create a “forest” of disjoint subgraphs.

Disjoint vertices are created from markers and source/target vertex ids. We
need a function genId to generate a unique id for a pair of a marker and a
vertex id, which helps Pregel model correctly merge new vertices to form a
new graph. Note that, all vertices in the graph sg are initialized to a default
value (false, ∅), while disjoint vertices of a source vertex are initialized to
the value of the source vertex.

5.5 Elimination of ε-edges

We propose a parallel implementation to eliminate ε-edges in a graph. It in-
cludes two phases, the first one is to send information of ε-edges and the
second one is to contract ε-edges. Consider two consecutive edges (u, ε, v) and
(v, l, w), eliminating the edge (u, ε, v) means (1) adding an edge (u, l, w) and
(2) removing the edge (u, ε, v). The removing of the edge (u, ε, v) should be
done at the vertex u, and the adding of an edge (u, l, w) should be done at
the vertex v because only the vertex v has the information of l and w. How-
ever, the vertex v has no information of its incoming vertex u, so we need an
additional superstep to send the information of the vertex u to v. Note that,
this parallel implementation can not deal with cycles of ε-edges (all edges in
the cycles are ε-edges), but we believe this problem can be easily solved by
computing strongly connected components in advance.

Figure 8 shows a simple example of the ε-edge elimination with 5 super-
steps. Values inside a box denote the id of a vertex, and values below a vertex
are content of incoming messages. After the first phase (sending ε information),
vertices 2, 3 and 4 know their sets of incoming edges {1}, {2} and {3} respec-
tively. Then, they use these sets to contract ε-edges in the second phase. In the
fifth superstep, we can not find any ε-edges so we stop the ε-edge elimination.

We use the skeleton pregel2 to aggregate ε-edges information and use the
skeleton mutateGraph to contract ε-edges.

16 Le-Duc Tung, Zhenjiang Hu

1&

{}
2

{1}
3

{2}
4

{3}
5

{}

a
step 1: send ε-edges

1&

{}
2

{1}
3

{2}
4

{3}
5

{}

a a
step 2: contract ε-edges

1&

{}
2

{}
3

{1}
4

{2}
5

{}

a a
step 3: send ε-edges

1&

{}
2

{}
3

{1}
4

{2}
5

{}

a

a

a a step 4: contract ε-edges

1&

{}

2

{}

3

{}

4

{}

5

{}

a

a

a a step 5: send ε-edges

Fig. 8: Parallel Elimination of ε-edges. Here, a value inside a vertex is a vertex
id, and a set below a vertex is the union of messgages the vertex received

epsElim = g => {
let epsAgg = pregel2(

(si,sd,ed,di) => {
(ed == ε) ? Message((di,{(si,sd)})) : Message[Empty]

},
(a, b) => a ∪ b,

(vi, vd, ms) => (vd._1, ms))

in
g = epsAgg(g)

epsInfo = g.subgraph(vpred = (vi,vd) => !vd._2.empty)

while (epsInfo.vertices.count() > 0) {
g = g.mutateGraph(

(si, sd, ed, di) => {
res = sd._2.map((vi, vd) => Edge(vi, vd, ed, di))

if (ed == ε) {
res /* delete ε-edge */

} else {
res ∪ Edge((si, sd, ed, di))

}
})

g = epsAgg(g)

epsInfo = g.subgraph(vpred = (vi,vd) => !vd._2.empty)

}
}

Towards Systematic Parallelization of Graph Transformations over Pregel 17

 20

 40

 60

 80

 100

 120

 140

 160

1M 2M 3M 4M 5M 6M 7M 8M

R
u
n
n
in

g
 T

im
e

(s
ec

o
n
d
)

The Number of Edges

our framework
pure bulk semantics

Fig. 9: Varying graph size (Cita-
tion)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 4 8 16

R
u
n
n
in

g
 T

im
e

(s
ec

o
n
d
)

The Number of CPUs

our framework
pure bulk semantics

Fig. 10: Varying CPU number (Ci-
tation)

 0

 50

 100

 150

 200

 250

 300

 350

5M 7M 9M 11M 13M 15M 17M

R
u
n
n
in

g
 T

im
e

(s
ec

o
n
d
)

The Number of Edges

our framework
pure bulk semantics

Fig. 11: Varying graph size
(Youtube)

 50

 100

 150

 200

 250

 300

 350

1 2 4 8 16

R
u
n
n
in

g
 T

im
e

(s
ec

o
n
d
)

The Number of CPUs

our framework

Fig. 12: Varying CPU number
(Youtube)

6 Preliminary Results

Apart from our framework, we implemented the pure bulk semantics [3], in
which we used our parallel algorithm for the phase of ε-edge elimination. We
will compare our framework with the pure bulk semantics to evaluate our
proposal. Both the pure bulk semantics and our framework1 are implemented
in GraphX system [18].

The environment of our experiments is the following: Intel(R) Xeon(R)
CPU E5620@2.40GHz 16 cores, 48GB memory, GraphX in Spark 1.3.0, Hadoop
2.4.2. We set up GraphX working in a distributed mode.

We used two following datasets: (a) Citation2, in which data are papers
(Title, Authors, Conference, Year, References), (b) Youtube3, in which data
are videos (Uploader, Category, Length, Related IDs, etc.). These datasets
need to be converted to rooted edge-labeled graphs. Figure 1 at the beginning
of this paper shows a snapshot of a graph for the citation network. The citation
graph has 7 462 913 vertices and 8 784 415 edges, and the youtube graph has
13 501 697 vertices and 17 179 944 edges.

1 source code: http://www.prg.nii.ac.jp/members/tungld/gito-graphxApr1.tar.gz
2 http://arnetminer.org/billboard/citation, dataset: citation-network V1
3 http://netsg.cs.sfu.ca/youtubedata/, dataset: 0222, Feb. 22nd, 2007

18 Le-Duc Tung, Zhenjiang Hu

We did experiments with transformations of four mutually recursive func-
tions. First, we changed graph size to see how our framework performs when
increasing the size of input data, while setting the number of cpus to 16. Fig-
ure 9 and 11 show results for citation and youtube graphs, respectively. It is
clear that, for the citation graph, our framework outperforms the pure bulk
semantics though the pure bulk semantics seems linear to the size of graph.
However, for the youtube graph, the pure bulk semantics can not deal with
a graph of 11 million edges. It can generate a bulk graph, but can not fin-
ish the ε-edge elimination due to an “out-of-memory” error. By contrast, our
framework works smoothly even for the graph of 17 million edges.

Next, we changed the number of cpus and fix the graph size at 5 million
edges for the citation graph (Fig. 10) and 17 million edges for the youtube
graph (Fig. 12). Both the pure bulk semantics and our framework follow the
same shape. When we double the number of cpus from 1 to 2, or 2 to 4,
both achieves a speedup of 2. But, after that, for 8 and 16 cpus, we do not
have the same performance. This is because when we increase the number
of cpus, we will have more partitions. The local computation time for each
partition is decreased but the communication time is increased. Also from
these experiments, we can see that our framework is about 2-3 times faster
than the pure bulk semantics. This is reasonable for the specifications with four
mutually recursive functions, because the pure bulk semantics generates a bulk
graph of about 4 times larger than the input, which makes its computation
time slower than our framework where there is no duplication data generated.

7 Related Work

Graph Processing: Systematically developing graph algorithms is non-trivial
due to the existence of cycles. Some works have tried to reduce problems on
graphs to the ones on trees whose systematic solutions have known. Wang et
al. [16] proposed a systematic approach for graph problems via tree decompo-
sition. Wei [17] used tree decomposition as an indexing method for answering
reachability queries. Another approach is to develop a new calculus for graphs.
UnCAL algebras is based on structural recursion [3]. GraphQL [5] is a graph
query language whose core is a graph algebra. Compositions of graph struc-
tures are allowed by extending the notion of formal languages from strings to
the graph domain. Graph grammars have been used for graph transformations
in various domains [11]. However, both UnCAL and GraphQL are different in
that their focus has been on graph databases. Our DSL is a subset of UnCAL
language.
Structural Recursion: Basically, there are two ways to evaluate a structural
recursion: recursive semantics and bulk semantics [3]. The idea of recursive
semantics is to apply a function on edges recursively from the root of an input
graph. Memorization is used to avoid infinite loops in which results of each
recursive call are stored at vertices. The advantage of recursive semantics is
that its computation produces only necessary data that are involved in the final

Towards Systematic Parallelization of Graph Transformations over Pregel 19

result. No redundant data are produced. However, the disadvantage is that we
have to do a heavy computation at each step, leading to a slow convergence. On
the other hand, bulk semantics is trying to delay computations by introducing
ε-edges. For each edge, it computes all possible results and the final result
is returned after computing transitive closure of ε-edges. The bulk semantics
potentially enables parallel evaluation, but in practice, it generates a lot of
redundant data so that it is impractical to large graphs. Our evaluation in this
paper is a hybrid approach of recursive and bulk semantics. It has both the
advantage of the recursive semantics in producing a small amount of redundant
data and the advantage of the bulk semantics in exploiting parallelism.
High-Level Framework: One of the few works on processing queries us-
ing Pregel is proposed by Nole et al. [10], in which Brzozowski’s derivation
of regular expressions are exploited. In consequence, queries are limited to
regular path queries. Krause et al. [7] proposes a high-level graph transfor-
mation framework on top of BSP model. In particular, they implemented the
framework in Giraph, an open-source implementation of Pregel model. The
framework is based on graph grammars. Another approach is done by Sali-
hoglu et al. [12], in which they have found a set of high-level primitives that
capture commonly appearing operators in large-graph computations. These
primitives are also implemented in GraphX library.

8 Conclusion

In this paper, we have proposed a systematic framework for transformations
over big graphs. Our approach is to combine the advantages from a solid
foundation of graph algebra and a practical scalable graph processing model.
Preliminary results show that this combination is very promising where our
framework outperforms the original bulk semantics and achieves both good
scalability and speedup. We consider this work an important step in order to
port the whole UnCAL language to the Pregel model.

In the future, we will extend our framework in two directions. The first
direction is to deal with more complex computations such as providing condi-
tions over graphs. In our current language, we only allow to use the variable
$g of a function f({$l, $g}) in its recursive call. It is possible to allow con-
ditions over the graph $g, i.e. if isempty($g) then . . . else . . . However, we
have not known yet the way to efficiently compute such structural recursive
functions in the Pregel model. The second direction is to optimize the core of
our framework. Although our DSL allows compositions of structural recursion
and fusion rules can be freely applied, we have not made fusion mechanism
be automatically done yet. Efficient computation of transitive closure (TC)
in Pregel environment is also an important improvement to our framework.
Afrati et al. [1] proposes an efficient distributed algorithm to compute TC on
clusters. That would be interesting to integrate that algorithm into our frame-
work to eliminate ε-edges efficiently. Last but not least, we need to compare
our framework with others to see more details of its performance.

20 Le-Duc Tung, Zhenjiang Hu

References

1. Afrati, F.N., Ullman, J.D.: Transitive Closure and Recursive Datalog Implemented on
Clusters. In: Proceedings of the 15th International Conference on Extending Database
Technology, EDBT ’12 (2012)

2. Buneman, P.: Semistructured Data. In: Proceedings of the Sixteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’97, pp. 117–
121. ACM, New York, NY, USA (1997)

3. Buneman, P., Fernandez, M., Suciu, D.: UnQL: A Query Language and Algebra for
Semistructured Data Based on Structural Recursion. The VLDB Journal 9(1) (2000)

4. Emoto, K., Fischer, S., Hu, Z.: Generate, Test, and Aggregate: A Calculation-based
Framework for Systematic Parallel Programming with Mapreduce. In: Proceedings of
the 21st European Conference on Programming Languages and Systems, ESOP’12, pp.
254–273. Springer-Verlag, Berlin, Heidelberg (2012)

5. He, H., Singh, A.K.: Graphs-at-a-time: Query Language and Access Methods for Graph
Databases. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08 (2008)

6. Hidaka, S., Hu, Z., Kato, H., Nakano, K.: Towards a Compositional Approach to Model
Transformation for Software Development. In: Proceedings of the 2009 ACM Sympo-
sium on Applied Computing, SAC ’09, pp. 468–475. ACM, New York, NY, USA (2009)

7. Krause, C., Tichy, M., Giese, H.: Implementing Graph Transformations in the Bulk
Synchronous Parallel Model. In: S. Gnesi, A. Rensink (eds.) Fundamental Approaches
to Software Engineering, Lecture Notes in Computer Science, vol. 8411, pp. 325–339.
Springer Berlin Heidelberg (2014)

8. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski,
G.: Pregel: A System for Large-scale Graph Processing. In: Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, SIGMOD ’10 (2010)

9. Matsuzaki, K., Iwasaki, H., Emoto, K., Hu, Z.: A Library of Constructive Skeletons
for Sequential Style of Parallel Programming. In: Proceedings of the 1st International
Conference on Scalable Information Systems, InfoScale ’06. ACM, New York, NY, USA
(2006)

10. Nolé, M., Sartiani, C.: Processing Regular Path Queries on Giraph. In: EDBT/ICDT
Workshops (2014)

11. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Trans-
formation: Volume I. Foundations. World Scientific Publishing Co., Inc., River Edge,
NJ, USA (1997)

12. Salihoglu, S., Widom, J.: HelP: High-level Primitives For Large-Scale Graph Processing.
In: Proceedings of Workshop on GRAph Data Management Experiences and Systems,
GRADES’14, pp. 3:1–3:6 (2014)

13. Suciu, D.: Distributed Query Evaluation on Semistructured Data. ACM Trans.
Database Syst. 27(1) (2002)

14. Tung, L.D., Nguyen-Van, Q., Hu, Z.: Efficient Query Evaluation on Distributed Graphs
with Hadoop Environment. In: Proceedings of the Fourth Symposium on Information
and Communication Technology, SoICT ’13. ACM, New York, NY, USA (2013)

15. Valiant, L.G.: A Bridging Model for Parallel Computation. Commun. ACM 33(8),
103–111 (1990)

16. Wang, Q., Chen, M., Liu, Y., Hu, Z.: Towards Systematic Parallel Programming of
Graph Problems via Tree Decomposition and Tree Parallelism. In: Proceedings of the
2nd ACM SIGPLAN Workshop on Functional High-performance Computing, FHPC
’13, pp. 25–36 (2013)

17. Wei, F.: Efficient Graph Reachability Query Answering Using Tree Decomposition. In:
Proceedings of the 4th International Conference on Reachability Problems, RP’10, pp.
183–197 (2010)

18. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: A Resilient Distributed
Graph System on Spark. In: First International Workshop on Graph Data Management
Experiences and Systems, GRADES ’13, pp. 2:1–2:6 (2013)

