
Think Like a Vertex, Behave Like a Function!
A Functional DSL for Vertex-Centric Big Graph Processing

Kento Emoto

Kyushu Institute of Technology, Japan

emoto@ai.kyutech.ac.jp

Kiminori Matsuzaki

Kochi University of Technology, Japan

matsuzaki.kiminori@kochi-tech.ac.jp

Zhenjiang Hu

National Institute of Informatics, Japan

hu@nii.ac.jp

Akimasa Morihata

The University of Tokyo, Japan

morihata@graco.c.u-tokyo.ac.jp

Hideya Iwasaki

The University of Electro-Communications, Japan

iwasaki@cs.uec.ac.jp

Abstract

The vertex-centric programming model, known as “think like a
vertex”, is being used more and more to support various big graph
processing methods through iterative supersteps that execute in
parallel a user-defined vertex program over each vertex of a graph.
However, the imperative and message-passing style of existing
systems makes defining a vertex program unintuitive. In this paper,
we show that one can benefit more from “Thinking like a vertex”
by “Behaving like a function” rather than “Acting like a procedure”
with full use of side effects and explicit control of message passing,
state, and termination. We propose a functional approach to vertex-
centric graph processing in which the computation at every vertex
is abstracted as a higher-order function and present Fregel, a new
domain-specific language. Fregel has clear functional semantics,
supports declarative description of vertex computation, and can
be automatically translated into Pregel, an emerging imperative-
style distributed graph processing framework, and thereby achieve
promising performance. Experimental results for several typical
examples show the promise of this functional approach.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages; E.1 [Data

Structures]: Graphs and networks

Keywords Pregel, big graph processing, domain-specific lan-
guage, skeletal parallel programming

1. Introduction

The rapid growth of large-scale graphs in real life is driving de-
mand for dependable and productive programming models for sup-
porting highly efficient and parallel implementation of big graph
processing. The vertex-centric programming model (McCune et al.
2015) is one such model. It has been intensively studied and has
served as the basis for a number of practically useful distributed

graph processing systems, such as Pregel (Malewicz et al. 2010)
and GraphLab (Low et al. 2012). In contrast to the randomly ac-
cessible, global perspective of data reflected in conventional graph
computation models, the vertex-centric computation model reflects
a vertex-local perspective of computation, encouraging practi-
tioners to “think like a vertex”. This vertex-centric approach has
demonstrated its advantages in improving locality and scalability
for large-scale graph processing.

Pregel (Malewicz et al. 2010), one of the most promising frame-
works for big graph processing, uses a vertex-centric computa-
tion model based on the bulk synchronous parallel (BSP) model
of computation (Valiant 1990). In Pregel, various graph compu-
tations are achieved through iterative supersteps. Each superstep
consists of parallel execution of a user-defined program over ver-
tices distributed among computation nodes, communications be-
tween vertices, and global barrier synchronization, which ensures
the delivery of communication messages. The user-defined vertex
function typically accepts messages sent from incoming edges as
input, sends results to other vertices along outgoing edges, and will
vote for halt if nothing needs to be done.

As an example, we consider a simple problem of marking all
vertices of a graph that are reachable from the source vertex (vertex
id = 0). We call it the “all-reachability problem” hereafter. Using
the vertex-centric approach, we define the vertex function by using
the pseudo code presented in Fig. 1 and iteratively execute it on all
vertices. If all vertices are initially marked false, the vertex pro-
gram in Fig. 1 accepts a vertex and its received messages as input
and marks the vertex if it is a neighbor of a vertex marked reachable
from the source vertex. If the program is at the first superstep (Line
2), the source node is marked true, and this information is sent
to the neighboring vertices. Otherwise, the vertex checks whether
there is any message containing true but the vertex has not been
marked yet. If this is the case, the vertex marks itself (Line 9) and
notifies the neighboring vertices (Line 10).

During this execution, each vertex is either active or inactive.
Initially all vertices are active. A vertex becomes inactive by calling
the voteToHalt function (Lines 5 and 12). In each superstep,
only active vertices execute their calculations and send messages
if necessary. An inactive vertex becomes active again by being sent
a message from another vertex. The entire processing for a graph
terminates when all vertices become inactive and there remain no
unreceived messages. Figure 2 demonstrates how three supersteps
are used to mark all reachable vertices for an input graph with five
vertices.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICFP’16, September 18–24, 2016, Nara, Japan
c© 2016 ACM. 978-1-4503-4219-3/16/09...$15.00

http://dx.doi.org/10.1145/2951913.2951938

200

1 vertex.compute(v, messages) {
2 if(superstep == 0) {
3 v.rch = v.vid == 0;
4 if(v.rch) sendToNeighbors(v.rch);
5 else voteToHalt();
6 } else {
7 newrch = v.rch || or(messages);
8 if(newrch != v.rch) {
9 v.rch = newrch;

10 sendToNeighbors(newrch);
11 }
12 voteToHalt();
13 }
14 }

Figure 1. Pregel-like code for all-reachability problem.

Input Graph

End of SS-0

T

F

F

F

F

T

T

Start of SS-1

T

F

F

F

F

T

T

End of SS-1

T

T

F

T

F

T

T

Start of SS-2

T

T

F

T

F

T

T

End of SS-2

T

T

T

T

F

 inactive vertex. No message sent, no vertex active W�Termination

Figure 2. Example of marking all reachable vertices using three
supersteps (SSs); with the left being SS0, the middle being SS1,
and the right being SS2.

Despite the power of the vertex-centric approach, the imperative
and message-passing style of existing systems makes defining the
vertex program unintuitive. We can see several problems from the
program in Fig. 1.

• Full use of side effects. vertex.compute is a procedure rather
than a function. It is imperative in the sense that it computes and
passes important results through side effects, updating the local
vertex value and sending information through implicit channels.

• Explicit message-passing. The behavior of vertex.compute
is difficult to understand because it requires inferring back-
wardly the meaning of the input messages from how and what
messages are sent (in the previous superstep) as defined in the
body. This becomes more difficult as the vertex program gets
bigger and more complex.

To see more problems, suppose that we want to mark the reach-
able vertices and stop when we have a sufficient number of them
(say 100). For simplicity, we assume that there are more than
100 reachable vertices in the target graph. We call this the “100-
reachability problem”. At each superstep, we need to count the
number of currently reachable vertices to determine whether we
should go further or halt. To enable acquiring such global informa-
tion, Pregel supports a mechanism called aggregation, which col-
lects data from all active vertices and aggregates them by using a
specified operation such as sum or max. Every vertex can use the
aggregation result in the next superstep. By using aggregation to
count the number of vertices that are marked true (Line 9), we
can solve the 100-reachability problem by using the vertex pro-
gram in Fig. 3. Note that aggregation should be done before the

1 vertex.compute(v, messages) {
2 if(superstep == 0) {
3 v.rch = v.vid == 0;
4 if(v.rch) sendToNeighbors(v.rch);
5 else voteToHalt();
6 } else {
7 if(superstep % 2 == 1) {
8 v.newrch = v.rch || or(messages)
9 aggregate("cnt", v.newrch ? 1 : 0);

10 } else {
11 cnt = read_agg("cnt");
12 if(cnt > 100) {
13 voteToHalt();
14 return;
15 }
16 if(v.newrch != v.rch) {
17 v.rch = v.newrch;
18 sendToNeighbors(v.newrch);
19 }
20 }
21 }
22 }

Figure 3. Pregel-like code for 100-reachability problem.

check for halting (Line 12). This order is guaranteed by using the
odd supersteps to compute aggregation and the even supersteps to
do checking (Line 7). The value of newrch is set in an odd super-
step (Line 8) and read in the next even superstep (Line 17). Thus,
we have to change newrch from a local variable in Fig. 1 to a mem-
ber variable of a vertex in Fig. 3. This example shows an additional
problem.

• Explicit state control. Because aggregation is used to acquire
global information, programmers must explicitly assign states
to supersteps so that different supersteps behave differently,
resulting in dependency consistency between the local states
and the global information.

In the program in Fig. 3, voteToHalt() is carefully used. On
the one hand, all vertices marked true should be active because
they should take part in the aggregation. On the other hand, they
should finally vote to halt for termination. As a consequence, ter-
mination of the whole system is far from obvious. For instance, if
we simply swapped the “if” statement in Lines 12–15 and the “if”
statement in Lines 16–19, we would have a vertex program that
continues marking even after finding all reachable vertices. This
reveals the following problem.

• Explicit termination control. The complicated uses of the ter-
mination control statement voteToHalt() in the vertex pro-
gram for explicitly stopping the vertex would make it hard to
write a program that terminates appropriately.

Why do we have these problems? How can we avoid these
problems? The explicit message-passing style could be avoided if
we changed the thinking of vertex computation from passive action
over the pushed messages to active computation on each vertex
with peeking in neighboring vertices for information necessary
for computation. This would change the vertex program from a
procedure to a function, which is our solution to the problems.

Given this observation, here we show that one can benefit more
from “Thinking like a vertex” by “Behaving like a function” rather
than “Acting like a procedure” with full use of side effects and
explicit control of message passing, state, and termination. We
present a new functional model for vertex-centric graph processing
and describe the design and implementation of Fregel, a functional
domain-specific language (DSL), which not only supports declar-

201

ative description of vertex computation but can be automatically
translated into code runnable on existing systems.

Our technical contributions can be summarized as follows.

Peek-based vertex-centric functional model. We abstract
and formalize the Pregel computation as a higher-order function
that captures the higher-level behavior of Pregel computation by
using a recursive execution corresponding to dynamic program-
ming on a graph (Section 2). In contrast to the traditional vertex-
centric computation model, which pushes (sends) information from
a vertex to other vertices so that the vertex computation can be done
in the next superstep, our model is peek-based in the sense that a
vertex peeks (receives) necessary information from other vertices
to enable computation on the vertex at the current superstep.

Functional DSL for programming vertex-centric graph pro-
cessing. We propose Fregel, a functional DSL for declarative-
style programming on big graphs that is based on the peeking-style
vertex-centric model. It abstracts aggregation and communication
by using comprehension with a specific generator. Fregel also en-
courages concise, compositional-style programming on big graphs
by providing four higher-order functions on graphs. It allows arbi-
trary nesting of expressions that include operations over graphs, as
opposed to having only one top-level graph-oriented computation
in Pregel. Fregel is purely functional without any side effects. This
functional nature enables various transformations during the com-
pilation of Fregel programs. As Fregel is a subset of Haskell, it is
possible to use Haskell tools to test and debug Fregel programs.

Implementation with promising performance. We show

that a Fregel program can be compiled into a single Giraph1 pro-
gram with reasonable and promising performance. The compilation
process is two-fold. First, given a Fregel program, normalization
flattens the program’s multiple uses of the graph higher-order func-
tions into a single use of one general higher-order function. Then,
code generation produces a Giraph program from the normalized
Fregel program by simply mapping the general higher-order func-
tion to a single run of Giraph computation. This flattening is impor-
tant for reasonable performance; a naive compilation that mapped
each graph higher-order function to a single Giraph computation
without flattening would suffer heavy start-up costs of multiple
runs of Giraph computation. This compilation process frees pro-
grammers from the problematic programming burden, e.g., split-
ting supersteps into two modes (sending/referring data) for aggre-
gation. We have implemented and tested our method with several
nontrivial examples. The experimental results show the promise of
our approach.

The organization of the rest of the paper is as follows. We start
in Section 2 by presenting our peek-based functional model for
vertex-centric computation and then abstract it as a higher order
function. Next, we define Fregel, a functional DSL for declarative-
style programming on big graphs in Section 3, the normalization
procedure in Section 4, and the automatic compilation in Section
5. Evaluation results are reported in Section 6. Related work is
discussed in Section 7. Section 8 concludes with a summary of the
key points and a look at future work.

To avoid confusion, we use this font to denote code frag-
ments in Haskell and this font to denote those in Fregel except
for some reserved words.

2. Functional Model for Pregel

We modeled the vertex-centric computation in Pregel as a higher-
order function and designed Fregel, a functional DSL, on the basis
of this model. In this section, we introduce our model by using the
notation of Haskell.

1 an open source implementation of Pregel: http://giraph.apache.org/

In this paper, we impose the following restrictions on Pregel.

• Computation on a vertex does not change the shape of the
graph.

• Each message is exchanged between two adjacent vertices di-
rectly connected by a directed edge.

A model with the latter restriction is called the GAS (gather-
apply-scatter) model and is regarded as realistic (Bae and Howe
2015; Gonzalez et al. 2012; Sengupta et al. 2015). Under these
restrictions, it impossible to represent algorithms that apply the
pointer jumping technique to the graph. Nevertheless, we impose
these restrictions because we want to establish the foundation for
an appropriate model for Pregel.

2.1 Definition of Datatypes

First, we define the datatypes needed for our functional model. Let
Graph a b be the type of graph for which the vertices have the
type Vertex a b and the incoming edges have the type Edge a b.
Graph a b is a list of vertices, each of which has the type Vertex
a b. A vertex of type Vertex a b has a unique vertex identifier, a
value of type a, and a list of incoming edges with type Edge a b.
An edge of type Edge a b is a pair of the edge value of type b and
the adjacent vertex connected by this edge.

data Vertex a b =
Vertex { vid :: Int, val :: a, is :: [Edge a b] }

type Edge a b = (b, Vertex a b)
type Graph a b = [Vertex a b]

As an example, the lower-right graph (End of SS-2) in Fig. 2 can
be defined by the following cyclic data structure, where v0, v1, v2,
v3, and v4 are the upper-left, upper-right, lower-left, middle, and
lower-right vertices, respectively. We assume that all edges have
the value 1.

g :: Graph Bool Int
g = let v0 = Vertex 0 True []

v1 = Vertex 1 True [(1,v0)]
v2 = Vertex 2 True [(1,v0)]
v3 = Vertex 3 True [(1,v1),(1,v2),(1,v4)]
v4 = Vertex 4 False []

in [v0, v1, v2, v3, v4]

2.2 Description of our Model

In vertex-centric parallel computation, each vertex periodically and
synchronously performs the following processing steps, which we
call a logical superstep, or LSS for short, in the rest of this paper.

1. Each vertex receives the data computed in the previous LSS
from the adjacent vertices connected by incoming edges.

2. In accordance with the problem to be solved, the vertex does its
computation by using the received data and the data it computed
in the previous LSS. If necessary, the vertex acquires global in-
formation that is needed by using aggregation during its com-
putation.

3. The vertex sends the results of the computation to all adja-
cent vertices along its outgoing edges. Every adjacent vertex
receives the data in the next LSS.

An LSS is “logical” because it might contain aggregation and thus
might be realized by more than one Pregel superstep.

We represent an LSS as a function and call it LSS function.
As explained later, an LSS function does not explicitly describe
sending and receiving data; instead it uses recursive calls on itself.

The arguments of an LSS function are an integer value (the
clock), which represents the number of iterations of the LSS func-

202

tion, and the vertex on which the LSS function is repeatedly per-
formed. Thus, the type of an LSS function is Int -> Vertex a b
-> r, where r is the type of the result. Let lss be an LSS function.
Then, lss 0 v represents the initial value of the computation on
vertex v. In addition, lss t v for t > 0 performs computation
on vertex v at clock t by using its own result at clock t-1, i.e.,
lss (t-1) v, and every result at clock t-1 of an adjacent vertex
connected by an incoming edge, i.e., lss (t-1) u, where u is the
adjacent vertex. Such an LSS function can be characterized by two
functions. One is an initialization function, which defines the be-
havior for t = 0, and the other is a step function, which defines the
behavior for t > 0. On the basis of these two functions, a general
form of LSS function, lssGen, can be defined as follows.

lssGen :: (Vertex a b -> r) ->
(r -> [(b,r)] -> Vertex a b -> r) ->
Int -> Vertex a b -> r

lssGen f0 ft 0 v = f0 v
lssGen f0 ft t v =
ft (lssGen f0 ft (t-1) v)

[(e, lssGen f0 ft (t-1) u) | (e,u) <- is v]
v

An LSS function for a specific problem is defined by giving
appropriate initialization and step functions, say init and step,
as arguments to lssGen, i.e., lss = lssGen init step.

Let g = [v0, v1, v2, . . .] be the target graph of the Pregel
computation. The list of computation results of LSS function lss
on all vertices in the graph at clock t is [lss t v0, lss t
v1, lss t v2, . . .]. In addition, let makeGraph g [r0, r1,
r2, . . .] return a graph with the same shape as g for which the
i-th vertex has the value ri and the edges have the same values as
those in g. Then, the infinite list of graphs

[makeGraph g [lss 0 v0, lss 0 v1, lss 0 v2, . . .],
makeGraph g [lss 1 v0, lss 1 v1, lss 1 v2, . . .],
makeGraph g [lss 2 v0, lss 2 v1, lss 2 v2, . . .],
. . .],

for which the t-th element corresponds to a graph constructed from
the results of lss on all vertices at clock t, represents infinite
iterations of LSS function lss. The infinite list can be produced
by using the following higher-order function pregelIter, which
takes as its arguments initialization and step functions for lss and
a target graph (a list of vertices).

pregelIter :: (Vertex a b -> r) ->
(r -> [(b,r)] -> Vertex a b -> r) ->
Graph a b -> [Graph r b]

pregelIter f0 ft g =
map (\t -> makeGraph g (map (lssGen f0 ft t) g))

[0..]

Though pregelIter produces an infinite list, we want to ter-
minate its computation at an appropriate point and take the graph
at this point as the final result. A typical termination point is
when the computation falls into a steady state, after which the in-
finite list never changes. With this approach, letting fixedValue
:: (Eq r, Eq b) => [Graph r b] -> Graph r b return the
graph of the steady state of a given infinite list, we can obtain the
desired result by using fixedValue (pregelIter init step
vs). Another potential termination condition is that the results of
lss satisfy some condition. With this approach, we can use the
higher order function untilValue :: (Graph r b -> Bool)
-> [Graph r b] -> Graph r b, which takes a predicate func-
tion specifying the condition and returns the first graph that satisfies
this predicate from a given infinite list.

Finally, we define pregelModel as the composition of a termi-
nation function and pregelIter.

1 reInit :: Vertex a b -> Bool
2 reInit v = vid v == 0
3
4 reStep :: Bool -> [(b,Bool)] -> Vertex a b -> Bool
5 reStep p eqs v = p || or [q | (e,q) <- eqs]
6
7 reAllPregelModel :: Graph a b -> Graph Bool b
8 reAllPregelModel =
9 pregelModel reInit reStep fixedValue

10
11 re100PregelModel :: Graph a b -> Graph Bool b
12 re100PregelModel =
13 pregelModel reInit reStep
14 (untilValue ((> 100) . numTrueVertices))
15 where numTrueVertices vs = length (filter val vs)

Figure 4. Formulation of reachability problems in our model.

pregelModel :: (Vertex a b -> r) ->
(r -> [(b,r)] -> Vertex a b -> r) ->
([Graph r b] -> Graph r b) ->
Graph a b -> Graph r b

pregelModel f0 ft term = term . pregelIter f0 ft

We regard the function pregelModel as representing Pregel’s
computation.

2.3 Simple Example

On the basis of the above model of Pregel, the reachability prob-
lems can be formulated as shown in Fig. 4, where reAllPregel
Model is for the all-reachability problem and re100PregelModel
is for the 100-reachability problem. We assume that numTrue
Vertices returns the number of vertices with a value of True
for the target graph. The only difference between these two so-
lutions is the termination condition: the all-reachability problem
formulation uses fixedValue while the 100-reachability problem
one uses untilValue. Note that the LSS function characterized
by reInit and reStep has no description for the aggregation that
appears in the original Pregel code (Fig. 3).

The definitions in Fig. 4 are Haksell functions and thus can
be executed in Haskell. However, executing reAllPregelModel
or re100PregelModel is not efficient because there are many
duplicate calls of the LSS function for the same arguments. Thus,
in our model, we assume a memorization mechanism that prevents
such duplicate executions.

2.4 Features of our Model

An LSS function defined in terms of lssGen has the form of struc-
tural recursion on the basis of the structure of the input graph. Al-
though a graph has a cyclic structure, a recursive call of an LSS
function does not cause an infinite recursion because a recursive
call always uses the prior clock, i.e., t-1. In addition, assuming a
memorization mechanism, as mentioned above, allows us to con-
sider that such a clock-decreasing recursive execution of an LSS
function corresponds to performing dynamic programming on a
graph.

In an LSS function, there is no explicit description of sending
or receiving data between adjacent vertices. The original Pregel
views data communication as explicit-poking style communication,
in which a vertex sends data to an adjacent vertex along its outgoing
edge. In contrast, our model views data communication as implicit-
peeking style communication, in which a vertex peeks at data of an
adjacent vertex connected by an incoming edge via an argument of
the step function. Figure 5 illustrates the difference between these
two view.

203

poke poke

use

v

u1 u2

peek peek

use

v

u1 u2

(a) Original model (b) Our model

Figure 5. Views of communication. Data on u1 and u2 are being
used in computation on v. In the original model, the initiators of
the communication (u1 and u2) are different from the consumer
(v) while in our model, they are the same (v peeks at and uses the
data).

In summary, our model solves the problems described in the
Introduction.

• For the first problem (Full use of side effects), our model is
purely functional; computation that is periodically and syn-
chronously performed at every vertex is defined as an LSS func-
tion without any side effects that have the form of a structural
recursion on the graph structure. The recursive execution of
such an LSS function is regarded as dynamic programming on
the graph on the basis of memorization.

• For the second problem (Explicit message passing), an LSS
function has no explicit description of sending or receiving data
between adjacent vertices. Instead, it uses recursive calls of the
LSS function for adjacent vertices, which can be regarded as an
implicit-peeking style of communication.

• For the third problem (Explicit state control), an LSS function
describes a processing sequence that is unwillingly divided into
small supersteps due to the BSP model’s barrier synchroniza-
tion.

• For the fourth problem (Explicit termination control), the entire
computation for a graph is represented as an infinite list of re-
sultant graphs in ascending clock time order. The LSS function
has no description for the termination of the computation. In-
stead, termination is described by a function that appropriately
chooses the desired result from an infinite list.

3. Fregel: A Functional DSL for Big Graphs

In this section, we introduce Fregel, a functional DSL for declar-
ative style programming on big graphs. Fregel’s computation is
based on pregelModel discussed in Section 2.

3.1 Main Features of Fregel

Fregel captures data access, data aggregation, and data communica-
tion in a functional manner and is equipped with four higher-order
functions that support concise ways of writing various graph com-
putations in a compositional manner. The main features of Fregel
are summarized as follows.

First, Fregel abstracts access to vertex data by using tables
indexed by vertices. The prev table is used to access vertex data
(i.e., results of recursive calls of LSS function) at the previous
clock t − 1. The curr table is used in the normalization of a
Fregel program and is described in Sect. 4. These tables explicitly
implement the memorization mentioned in Sect. 2. An index given
to a table is not the identifier of a vertex or the position of a vertex

prog := f g = e
e := let decl1 · · · decln in e

| if e1 then e2 else e3
| f e1 · · · en
| comb [e | gen, e1, . . . , en]
| table v .̂ fld1 .̂ · · · .̂ fldn

| fregel f1 f2 tc g
| gmap f g
| gzip g1 g2
| giter f1 f2 tc g

decl := f x1 · · · xn = e
| f v prev curr = e

gen := u ← g | (ed , u) ← is v | (ed , u) ← rs v
table := prev | curr | val
tc := Fix | Until (λ g.e) | Iter e
f := variable representing a function / operator
g := variable representing a graph
u, v := variable representing a vertex
ed := variable representing an edge
fld := field name
comb := max | or | · · ·

Figure 6. Core part of Fregel syntax.

in a list of incoming edges but is a vertex itself. This enables the
programmer to write in a more “direct” style for data accesses.

Second, Fregel abstracts aggregation and communication by a
comprehension with a specific generator. Aggregation is described
by a comprehension for which the generator is the entire graph
(list of all vertices) while communication with adjacent vertices is
described by one for which the generator is the list of the adjacent
vertices.

These features are the foundation of the functional model dis-
cussed in Sect. 2. In addition, Fregel is equipped with four higher-
order functions for graphs that provide ways to concisely write var-
ious graph computations. Function fregel corresponds to functional
model pregelModel shown in Sect. 2. Function gzip pairs values
on every corresponding vertices in two graphs of the same shape,
and gmap applies a given function to every vertex. Function giter
abstracts iterative computation.

Moreover, a Fregel program can be run on Haskell interpreters
like GHCi because Fregel’s syntax follows that of Haskell. This
feature is quite useful for testing and debugging a Fregel program.
After testing and debugging, the Fregel program is compiled into
a Pregel program for big graph processing. Note that the compiled
Pregel program does not handle lazy evaluation.

In the following sections, we first introduce the core part of
Fregel’s language constructs and then explain Fregel programming
by using specific examples. Fregel does not currently allow user-
defined recursive functions.

3.2 Fregel Language Constructs

A vertex in Fregel has two lists of edges: a list of incoming edges
in the original graph and one of incoming edges in the reversed
(transposed) graph. In the rest of paper, ‘reversed edge’ means an
edge in the latter list (an incoming edge in the reversed graph is an
edge produced by reversing an outgoing edge in the original graph).
The latter list does not exist in the datatype for our functional model
described in Sect. 2.1, but we decided to let every vertex have this
list to make it easier for programmers to write programs in which
part of the computation needs to be carried out on the reversed
graph. An example is an algorithm for decomposing a directed
graph into its strongly connected components, which is described
in Sect. 3.6.

Figure 6 presents the core part of the syntax of Fregel. The
tokens in bold-slant font are important reserved words in Fregel.

204

A Fregel program defines a function that takes a single input
graph and returns a resultant graph. An LSS function is abstracted
as two functions: the initialization function and the step function.
Since an LSS function returns multiple values in many cases, the
programmer must often define a record for them ,and each vertex
holds the record data. Fregel provides a concise way to access a
record field.

The expressions in Fregel are standard ones in Haskell: a com-
bine function applied to a comprehension with specific generators,
table access on a vertex v followed by the field selection operator
denoted by “.̂ ”), and a graph expression with higher-order func-
tions on graphs such as fregel. There are three generators in Fregel:
a graph variable to generate all vertices, and is v / rs v to generate
every pair of v’s adjacent vertex u connected by an incoming or
reversed edge and the value on this edge.

There are two kinds of definitions in let-expressions: ones for a
definition of a normal function or constant including an initializa-
tion function and ones for a step function, which is the only higher-
order function that a user can define. A step function takes two ta-
bles, prev and curr, as well as vertex v, which repeatedly executes
the step function. There is another table val that is used to access
the values in the input graph. There are three kinds of termination
conditions for higher-order functions fregel and giter.

3.3 Haskell Implementation of Fregel

As stated in Sect. 3.1, a Fregel program can be run on Haskell
interpreters. We thus implemented Fregel as a library of Haskell.
Though this Haskell implementation is used only in the testing and
debugging phases during the development of a Fregel program, we
present here to help the reader understand the behaviors of a Fregel
program.

Figure 7 presents the core part of the implementation. The
datatypes for graphs are the same as those described in Sect. 2.1
except that each vertex has a list of reversed edges in its record
under the field name rs. The termination point is defined by the
Termination type, where Fix means a steady state, Until means a
termination condition specified by a function, and Iter specifies the
number of iterations of LSS to perform. Function termination
applies a given termination point to an infinite list of graphs.

The higher-order function fregel takes as its arguments an ini-
tialization function, a step function, a termination condition, and
an input graph and returns the resultant graph after its pregel com-
putation. The definition of fregel here differs somewhat from that
of pregelModel because it has to implement the memorization
mechanism. To do so, fregel uses two lists of computation results
for all vertices, which are accessed via the vertex identifiers.

Function gmap applies the given function to every vertex in the
target graph and returns a new graph with the same shape for which
the vertices have the application results. This is simply defined in
terms of makeGraph.

Function gzip is given two graphs of the same shape and returns
a graph, for which each vertex has a pair of values that correspond
to those of the vertices of the two graphs. A pair is defined by the
Pair type, which has fst and snd fields. This function can be
also defined in terms of makeGraph.

Function giter is given four arguments: init, iter, term, and
an input graph. It first applies init to the input graph and then
repeatedly applies iter to the result to produce a list of graphs.
Finally, it uses term to terminate the iteration and obtain the final
result. It can be defined by using a standard function, iterate.

3.4 Examples: Reachability Problems

Our first example Fregel program is one for solving the all-
reachability problem (Fig. 8(a)). Since the LSS function for this
problem returns a Boolean value indicating whether the vertex that

1 data Vertex a b = Vertex { vid :: Int, val :: a,
2 is, rs :: [Edge a b] }
3
4 data Termination a =
5 Fix | Iter Int | Until (a -> Bool)
6
7 data Pair a b = Pair {_fst :: a, _snd :: b}
8
9 termination :: Eq a => Termination a -> [a] -> a

10 termination Fix xs =
11 fst . head . dropWhile (\(a,b) -> (a /= b)) $
12 zip xs (tail xs)
13 termination (Iter n) xs = head (drop n xs)
14 termination (Until p) xs =
15 head $ dropWhile (not . p) xs
16
17 fregel :: (Vertex a b -> r) ->
18 (Vertex a b -> (Vertex a b -> r) ->
19 (Vertex a b -> r) -> r) ->
20 Termination (Graph r b) ->
21 Graph a b -> Graph r b
22 fregel init step term g =
23 let rs0 = map init g
24 f rs_old = let rs_new =
25 map (\v -> step v prev curr) g
26 prev u = rs_old !! (vid u)
27 curr u = rs_new !! (vid u)
28 in rs_new
29 rss = iterate f rs0
30 in termination term (map (makeGraph g) rss)
31
32 gmap :: (Vertex a b -> r) -> Graph a b -> Graph r b
33 gmap f g = makeGraph g (map f g)
34
35 gzip :: Graph a1 b -> Graph a2 b ->
36 Graph (Pair a1 a2) b
37 gzip g1 g2 =
38 makeGraph
39 g1
40 (zipWith (\u v -> Pair (val u) (val v)) g1 g2)
41
42 giter :: (Eq r, Eq b) => (Vertex a b -> r) ->
43 (Graph r b -> Graph r b) ->
44 Termination (Graph r b) ->
45 Graph a b -> Graph r b
46 giter init iter term g =
47 let g0 = gmap init g
48 gs = iterate iter g0
49 in termination term gs

Figure 7. Haskell implementation of Fregel.

calls the LSS function is currently reachable or not, we define a
record RVal that contains only this Boolean value at the rch field
in this record.

The function reAll is the main part of the program, and it de-
fines the initialization and step functions. The initialization func-
tion, init, returns an RVal record in which the rch field is True
only if the vertex is the staring point (vertex identifier is zero).
The vertex identifier can be obtained by using a special predefined
function, vid. The step function, step, collects data at the previous
clock from every adjacent vertex connected by an incoming edge.
This is done by using the syntax of comprehension, in which the
generator is is v. For every adjacent vertex u, this program obtains
the result at the previous clock by prev u and accesses its rch field.
Then step combines the results of all adjacent vertices by using
the or function and returns the disjunction of the combined value
and its own rch value at the previous clock.

205

1 data RVal = RVal { rch :: Bool } deriving Eq
2 reAll g =
3 l e t init v = RVal (vid v == 0)
4 step v prev curr =
5 l e t newrch =
6 prev v .^ rch ||
7 or [prev u .^ rch | (e, u) ← i s v]
8 in RVal newrch
9 in fregel init step Fix g

(a) Program for all-reachability problem

1 data RVal = RVal { rch :: Bool } deriving Eq
2 re100 g =
3 l e t init v = RVal (vid v == 0)
4 step v prev curr =
5 l e t newrch =
6 prev v .^ rch ||
7 or [prev u .^ rch | (e, u) <- i s v]
8 in RVal newrch
9 in fregel init step

10 (Until
11 (\g -> sum [1 | u <- g, val u .^ rch] > 100))
12 g

(b) Program for 100-reachability problem

Figure 8. Fregel programs for solving reachability problems.

1 data SVal = SVal { dist :: Int } deriving Eq
2 sssp g =
3 l e t init v = SVal (i f vid v == 0 then 0 else bigNumber)
4 step v prev curr =
5 l e t newdist =
6 prev v .^ dist ‘min‘
7 minimum [prev u .^ dist + e | (e, u)← i s v]
8 in SVal newdist
9 in fregel init step Fix g

Figure 9. Fregel program for single-source shortest path problem.

In reAll, init and step are given to the function fregel. Its
third argument, Fix, specifies the termination point, and the fourth
argument is the input graph.

Figure 8(b) presents a Fregel program for solving the 100-
reachability problem. This program is almost the same as that in
Fig. 8(a) except for the termination condition. The termination
condition in Fig. 8(b) is Until, which corresponds to untilValue
in our functional model. Until takes a function that defines the
condition. This function gathers the number of currently reachable
vertices by aggregation.

3.5 Example: Single-Source Shortest Path

The next example is similar to the reachability computation, but it
uses values on edges to find the shortest path length from the source
vertex (0) to every vertex rather than simply detecting whether a
vertex is reachable from the source vertex. Figure 9 presents the
program. Its structure is the same as that shown in Fig. 8 (a). The
LSS function for this problem returns the (tentative) shortest path
length to the vertex from the source vertex, so record SVal for these
return values consists of an integer field, dist. The step case of the
LSS function uses values on edges, i.e., the first component e of
the pair generated in the comprehension, to update the tentative
shortest path length for a vertex, it takes the minimum of sums of
the tentative shortest path length of every neighbor vertex (prev
u .^ dist) and the edge length (e) from it. In general, an edge
value can be a tuple of multiple values.

3.6 Example: Strongly Connected Components

As an example of using higher-order functions for graphs, Fig. 10
presents a Fregel program for solving the strongly connected com-
ponents problem. The output of this program is a directed graph
with the same shape as the input graph; the value on each vertex is
the identifier of the component to which it belongs. This program is
based on the min-label algorithm presented by Yan el al. (Yan et al.
2014).

This program repeats the following four operations until every
vertex belongs to a component.

(1) Initialization. Every vertex for which its component have not
been found yet sets the notfound flag value. This means that the
vertex must participate in the following computations.

(2) Forward propagation. Each notfound vertex first sets its
minv value to its own identifier. Then it repeatedly calculates the
minimum value of its own (previous) minv value and the minv
values of the adjacent vertices to obtain the minimum value of those
that can be propagated to the vertex through the incoming edges.
This is repeated until the computation falls into a steady state.

(3) Backward propagation. This is the same as forward prop-
agation except that the direction of minv propagation is reversed;
each notfound vertex updates its minv value through the reverse
edges.

(4) Component detection. Each notfound vertex judges whether
the results (identifiers) of forward propagation and backward prop-
agation are the same. If they are, the vertex belongs to the compo-
nent represented by the identifier.

The program in Fig. 10 has a nested iterative structure.
The outer iteration, which is described in terms of giter, repeat-

edly performs the above operations for the remaining subgraph un-
til no vertices remain. In this outer loop, each vertex has a record
C that has only the sccId filed. This field has the identifier of the
component, which is the minimum identifier of the vertices in the
component, or −1 if the component has not been found yet.

In the processing of (1)–(4), each vertex has a record MN with
two fields. The minv field holds the minimum of the propagated
values, and the notfound field holds the flag value explained
above. The initialization uses gmap to create a graph ga. There
are two inner iterations: one is to perform forward propagation
and the other is to perform backward propagation, both of which
are described in terms of fregel. Both propagations take the same
graph created in the initialization. Their results, gf and gb, are
combined by gzip and passed to component detection, which is
simply defined by gmap.

Generally, it is difficult to describe a computation that consists
of multiple phases of different processing and / or iterative process-
ing as a Pregel program. The four higher-order functions provided
by Fregel abstract computations on graphs and thereby enable the
programmer to write a program as a combination of these higher-
order functions. This functional style of programming in Fregel
makes it easier for the programmer to develop a complicated pro-
gram, like one for solving the strongly connected components prob-
lem.

In the following section, we show that a Fregel program de-
scribed as a combination of the four higher-order functions can be
transformed into a Fregel program with a single fregel.

4. Normalization of Fregel Programs

A Fregel program can use the graph higher-order functions multiple
times. In a naive compilation of such a program, the underlying
Pregel system is invoked once for each use of a graph higher-order
function. This is inefficient due to the high cost of starting up the
Pregel system. To avoid this problem, we introduce a normalization
process that transforms a Fregel program with multiple uses of

206

1 data MN = MN { minv :: Int, notfound :: Bool } deriving Eq
2 data C = C { sccId :: Int } deriving Eq
3 scc g =
4 l e t f_init v = i f val v .^ sccId < 0 then MN (vid v) True else MN (val v .^ sccId) False
5 f_fw v prev curr =
6 l e t c’ = (prev v .^ minv) ‘min‘ minimum [prev u .^ minv | (e,u) <- i s v, prev u .^ notfound]
7 in i f prev v .^ notfound then MN c’ (prev v .^ notfound) else prev v
8 f_bw v prev curr =
9 l e t c’ = (prev v .^ minv) ‘min‘ minimum [prev u .^ minv | (e,u) <- rs v, prev u .^ notfound]

10 in i f prev v .^ notfound then MN c’ (prev v .^ notfound) else prev v
11 detect v = i f val v .^ _fst .^ minv == val v .^ _snd .^ minv then C (val v .^ _fst .^ minv) else C (-1)
12 f0 v = val v
13 sccInner0 v = C (-1)
14 sccInner g = l e t ga = gmap f_init g
15 gf = fregel f0 f_fw Fix ga
16 gb = fregel f0 f_bw Fix ga
17 gfb = gzip gf gb
18 g’ = gmap detect gfb
19 in g’
20 gr = giter sccInner0 sccInner Fix g
21 in gr

Figure 10. Fregel program for solving strongly-connected components problem.

graph higher-order functions into an equivalent Fregel program
with a single use of fregel.

A normalized Fregel program uses fregel with Fix as its only
use of a graph higher-order function in the following form.

1 prog g = l e t (bindings)...
2 in fregel init step Fix g

Intuitively, normalization of a Fregel program means building a
step function that emulates computation of the program. The step
function is basically a phase transition machine. A phase corre-
sponds to a use of a graph higher-order function in the program, and
the step function in the phase runs the original step function used
in the graph higher-order function. When the computation of the
phase (the graph higher-order function) is finished, the step func-
tion moves to the next phase. The emulated computation runs on a
tupled graph in which each vertex has a tuple of values of all graphs
computed in the original program.

As our running example, we will use program scc shown in
Fig. 10. Its normalized version is shown in Fig. 11.

4.1 Normalization Algorithm

For brevity, we assume (1) that the result of a graph higher-order
function is bound to a variable (i.e., A-normal form for graph
expressions), (2) that variable names are unique throughout the
program, (3) that giters use different step functions, (4) that user-
defined functions are inlined in step functions, and (5) that the types
of subexpressions are known. It is easy to satisfy these assumption
by using standard techniques.

The normalization process consists of five steps, which are
explained in the following sections.

4.1.1 Enumerating Phases

The first step is to enumerate the phases corresponding to uses
of graph higher-order functions. By the assumption, this simply
means enumerating the variables of graph types. In the following
explanation, we will use variables and phases interchangeably.

Let P be the set of phases: P = { all variables of graph types }.
Since giters need special treatment later, we define a subset of P :
I = { p | p ∈ P , p binds the giter result } .

For scc in Fig. 10, we have P = {gr, ga, gf, gb, gfb, g’} and
I = {gr}.

4.1.2 Building a New Record Type

The next step is to define a new record type, ND, for use in the
normalized program. Here, vType(p) is the vertex type of a graph
bound by variable p.

data ND = ND { phase :: Int, ss :: Int }
∪
⋃

p∈P
{datp :: vType(p) }

∪
⋃

p∈I
{ ssp ::Int }

In the first clause, phase is used to hold the current executing phase
(represented by an integer) and ss is used to count the number of
supersteps in the phase. In the second clause, for each phase p,
datp is used to hold the result of the computation of phase p. The
third clause is for uses of giter, in which ssp holds the number of
iterations of the giter bound by p.

The new record data for scc is shown at the head of Fig. 11.

4.1.3 Building a Step Function and Termination Judgment
for Each Phase

For all phase p in P , the normalized program needs two pieces of
code: step function body stepp for implementing the computation

in the phase and termination judgment expression fexpp for de-

tecting the end of computation. These are built from components in
the expression that p binds in the original program.

During the building process of stepp and fexpp , curr, prev,

and val used in the original components must be replaced with
suitable counterparts. We define two substitutions, σgo,gi and σ′

g .

σgo,gi= {prevx 7→ prevx.̂ datgo , currx 7→ currx.̂ datgo}
∪ σ′

gi

σ′
g = if g is the input for the whole program

then { }
else {val x 7→ prevx.̂ datg}

Intuitively, these substitutions mean that data access to each graph
in the original program is replaced with data access to its corre-
sponding component in the tupled graph in the normalized pro-
gram.

Since stepp and fexpp depend on the expression p binds, we

will explain the building process case by case.

• Case of p = fregel f0 ft tc g
Here, stepp performs initialization using the original initializa-

tion function f0 when the number of supersteps in this phase is 0
and then uses ft to proceed with the computation afterwards.

207

1 data ND = ND { phase :: Int, ss :: Int,
2 dat_gr :: C, dat_ga :: MN, dat_gf :: MN, dat_gb :: MN, dat_gfb :: Pair MN MN, dat_g’ :: C,
3 ss_gr :: Int} deriving Eq
4 scc g =
5 l e t step v prev curr =
6 l e t d_gr = i f prev v .^ phase == 1
7 then i f prev v .^ ss_gr == 0 then C (-1) else prev v .^ dat_g’
8 else prev v .^ dat_gr
9 d_ga = i f prev v .^ phase == 2

10 then i f prev v .^ dat_gr .^ sccId < 0 then MN (vid v) True else MN (prev v .^ dat_gr .^ sccId) False
11 else prev v .^ dat_ga
12 d_gf = i f prev v .^ phase == 3
13 then i f prev v .^ ss == 0 then prev v .^ dat_ga
14 else
15 l e t c’ = (prev v .^ dat_gf .^ minv) ‘min‘
16 minimum [prev u .^ dat_gf .^ minv | (e,u) <- i s v, prev u .^ dat_gf .^ notfound]
17 in i f prev v .^ dat_gf .^ notfound then MN c’ (prev v .^ dat_gf .^ notfound) else prev v .^ dat_gf
18 else prev v .^ dat_gf
19 d_gb = i f prev v .^ phase == 4
20 then i f prev v .^ ss == 0 then prev v .^ dat_ga
21 else
22 l e t c’ = (prev v .^ dat_gb .^ minv) ‘min‘
23 minimum [prev u .^ dat_gb .^ minv | (e,u) <- rs v, prev u .^ dat_gb .^ notfound]
24 in i f prev v .^ dat_gb .^ notfound then MN c’ (prev v .^ dat_gb .^ notfound) else prev v .^ dat_gb
25 else prev v .^ dat_gb
26 d_gfb = i f prev v .^ phase == 5 then Pair (prev v .^ dat_gf) (prev v .^ dat_gb) else prev v .^ dat_gfb
27 d_g’ = i f prev v .^ phase == 6
28 then i f prev v .^ dat_gfb .^ _fst .^ minv == prev v .^ dat_gfb .^ _snd .^ minv
29 then C (prev v .^ dat_gfb .^ _fst .^ minv) else C (-1)
30 else prev v .^ dat_g’
31 pend = (prev v .^ phase == 1 && prev v .^ ss_gr > 0 && and [prev u .^ dat_gr == curr u .^ dat_gr | u <- g])
32 || (prev v .^ phase == 2 && True)
33 || (prev v .^ phase == 3 && prev v .^ ss > 0 && and [prev u .^ dat_gf == curr u .^ dat_gf | u <- g])
34 || (prev v .^ phase == 4 && prev v .^ ss > 0 && and [prev u .^ dat_gb == curr u .^ dat_gb | u <- g])
35 || (prev v .^ phase == 5 && True) || (prev v .^ phase == 6 && True)
36 phase’ = i f pend then next (prev v .^ phase) else stay (prev v .^ phase)
37 ss’ = i f prev v .^ phase > 0 && prev v .^ phase == curr v .^ phase then prev v .^ ss + 1 else 0
38 ss_gr’ = i f prev v .^ phase == 1 then i f pend then 0 else prev v .^ ss_gr + 1 else prev v .^ ss_gr
39 in ND phase’ ss’ d_gr d_ga d_gf d_gb d_gfb d_g’ ss_gr’
40 init v = ND 1 0 (C 0) (MN 0 False) (MN 0 False) (MN 0 False) (Pair (MN 0 False) (MN 0 False)) (C 0) 0
41 in fregel init step Fix g

Figure 11. Normalized version of scc in Fig. 10. Actual definitions of stay and next are omitted, but an equivalent definitions are given:
stay i = if i == 1 then 2 else i and next i = if i == 1 then 0 else if i == 6 then 1 else i + 1.

stepp = if prev v .^ ss == 0 then σp,g(f0 v)
else σp,g(ft v prev curr)

Here, substitution expression σp,g(f0 v) means applying the sub-
stitution after inlining the function call f0 v. Other substitutions
are done in the same manner.

Here, fexpp depends on the termination condition, tc. When

tc is Fix, judgment is done by checking whether the value of this
phase remains unchanged on all vertices during this superstep. Note
that this check must be done after running the computation ft at
least once. Note also that curr u .^ datp refers to the result of
phase p computed in this superstep.

fexpp =
prev v .^ ss > 0 &&
and [prev u .^ datp == curr u .^ datp | u <- g]

When tc is Iter n, the judgment is done by checking whether the
number of supersteps in the current phase is equal to n.

fexpp = prev v .^ ss == n

Similarly, when tc is Until(\g -> exp), the condition expres-
sion becomes the judgment.

fexpp = σ′
g(exp)

• Case of p = gmap f g
Here stepp simply applies the original function f. Since gmap

does not need to be iterated, the termination judgment, fexpp , is

always true.

stepp = σp,g(f v)
fexpp = True

• Case of p = gzip g1 g2
Similar to the gmap case, here stepp simply pairs components

corresponding to two graph variables g1 and g2.

stepp = Pair (prev v .^ datg1) (prev v .^ datg2)

fexpp = True

• Case of p = giter f0 ft tc g
Here, stepp performs initialization by using f0 for the first

arrival at this phase and copies values computed by ft afterwards.
Note that stepp uses a specific counter ssp (the number of arrivals

at this phase) instead of the counter ss used in other cases. Here,
outputOf (ft) is the output variable of ft.

stepp = if prev v .^ ssp == 0 then σp,g(f0 v)
else prev v .^datoutputOf (ft)

Similar to fregel, the termination judgment expression, fexpp ,

depends on the termination condition, tc. The difference is that

208

Figure 12. Phase transition machine for scc.

the specific counter ssp is used instead of ss. When tc is Fix, the
judgment is as follows.

fexpp =
prev v .^ ssp > 0 &&
and [prev u .^ datp == curr u .^ datp | u <- g]

Similarly, other cases are as follows.

tc = Iter n ⇒ fexpp = prev v.^ssp== n

tc = Until (\g -> exp) ⇒ fexpp = σ′
g(exp)

4.1.4 Building a Phase Transition Machine

Now we define a phase transition machine by using two functions:
One is next :: P → P to indicate what phase will be executed
next when the computation of the current phase terminates (i.e.,
when the termination judgment expression returns True), and the
other is stay :: P → P to indicate what phase will be executed to
continue the computation in the current phase (i.e., the False case).
Basically, stay p = p for most phases, but for phases binding
giters, stay returns another phase because the computation in such
a giter phase consists of a chain of other phases.

Here, next is defined as the union of topological sorts done
using the dependencies of graph variables in each graph function
(i.e., function receiving a graph to return a graph; being the whole
program or used by giters). In addition, next(outputOf (ft)) = p

when p binds a giter expression, i.e., p = giter f0 ft tc g.
Here, stay is basically defined by stay p = p. An exception

is that, for p = giter f0 ft tc g, it is defined as stay(p) =
the first variable in the topological sort in ft .

For example, next and stay for scc are given as follows.
From the topological sort in sccInner, we have next(ga) = gf,
next(gf) = gb, next(gb) = gfb, next(gfb) = g’. Since gb and
gf have no dependency, we can swap them. In addition, because gr
binds a giter expression, we have next(g’) = gr . Similarly, we
have stay(gr) = ga . The rest of stay is given by stay(p) = p.
Figure 12 shows phase transition using these functions.

4.1.5 Building a Normalized Program

A normalized program is built by using the components built so far.
For simplicity, let phases p ∈ P be represented by different integers
in {1, . . . , |P |} and introduce a special phase 0 to indicate the end
of computation. In addition, let stay(0) = 0 and next(g) = 0 for
the output graph variable g in the original program, and also let the
giter phase set I be {i1, . . . , i|I |}.

Figure 13 shows a template of a normalized program. The main
part is the step function to emulate the original computation. It
runs one of the step function bodies stepp in accordance with

the current phase prev v .^ phase. The phase transition is con-
trolled by the termination judgments, fexpp , and the transition

functions, next and stay. Note that the step function returns the
same value as the input once prev .^ phase becomes 0, and

Fregel Compiler

Giraph code

(Java code)

Yet Another

Framework

Another

Framework

Haskell

Interpreter

For

Development

/Debugging

For Actual Use

Normalization

Normalized code

(single use of GHOF fregel)

Code Generation

Fregel code

(any use of GHOFs)

Figure 14. Flows of Fregel program compilation and interpreta-
tion (GHOF: graph higher-order function).

then the computation terminates. The initialization function init
simply initializes the current phase phase to 1, the counters ss,
ssi1

′, . . . , ssi|I |
′ to 0, and the other components for graph vari-

ables to their default values (e.g., 0 for integer components). The
normalized program in Fig. 11 is an instance of the template.

4.2 Optimization in Normalization

For brevity, the transformation explained so far disregards the ef-
ficiency of the normalized program and introduces much redun-
dancy. We can perform optimization to reduce the redundancy.

An easy optimization deals with redundancy related to the em-
ulation of gzips. Instead of creating a pair to emulate gzip, we can
supply its components directly to its consumers. For example, in
the normalized program in Fig. 11, prev .^ dat_gfb .^ _fst
and prev .^ dat_gfb .^_snd in line 28 can be replaced with

prev .^ dat_gf and prev .^ dat_gb , respectively.
Another simple optimization is to fuse a gmap into another

higher-order function when it is the only consumer of the gmap’s
output. These are typical fusion transformations in functional pro-
gramming. They can reduce the size of the tupled graph and the
number of phases (supersteps), thereby improving the efficiency of
the normalized program.

In addition, we can run multiple independent phases simultane-
ously to reduce the total number of supersteps although the phase-
transition machine explained so far runs only one phase at a time
for simplicity. In the BSP model, the number of supersteps has the
greatest effect on efficiency. For example, gf and gb in scc are
independent, so they can be run simultaneously.

5. Compiling Fregel Programs into Giraph Code

We have developed a prototype system for compiling Fregel pro-
grams into Giraph code (Giraph is a widely-used open-source
Pregel-like framework). In this section, we briefly describe how
the normalized Fregel program is compiled into a Giraph program.
Since we do not use any Giraph-specific features in our prototype
system, we can implement it in other Pregel-like frameworks. The
whole flow of the Fregel compiler is shown in Fig. 14.

After normalization in the previous section, the normalized pro-
gram is compiled using the following steps.

1. Unwind the (circular) dependencies

2. Split an LSS function into physical supersteps

3. List the fields for vertices

209

1 prog g = l e t step v prev curr =
2 l e t d1 = i f prev v .^ phase == 1 then step1 else prev v .^ dat1
3 · · · −− snip

4 d|P| = i f prev v .^ phase == |P | then step|P| else prev v .^ dat|P|

5 pend = (prev v .^ phase == 1 && fexp1) || · · · || (prev v .^ phase == |P | && fexp|P|)

6 phase’ = i f pend then next (prev v .^ phase) else stay (prev v .^ phase)
7 ss’ = i f prev v .^ phase > 0 && prev v .^ phase == curr v .^ phase then prev v .^ ss + 1 else 0

8 ssi1
′ = i f prev v .^ phase == i1 then i f pend then 0 else prev v .^ ssi1 + 1 else prev v .^ ssi1

9 · · · −− snip

10 in ND phase’ ss’ d1 · · · d|P| ssi1
′ · · · ssi|I |

′

11 init v = ND 1 0 . . . 0 · · · 0
12 in fregel init step Fix g

Figure 13. Template of normalized Fregel program.

4. List the comprehensions and convert them to communication

5. Generate code for the vertex.compute function

5.1 Unwind Dependencies

As we mentioned in Sect. 3.1, the syntax of Fregel follows that of
Haskell. Since the compiled Giraph program (written in Java) is
not evaluated in a lazy manner, we first rearrange the let-bindings
so that we can evaluate them in order.

As a running example of the compilation, let us consider the
following fragment of a Fregel program. The curr table is used
here to access the vertex data at the current clock. Note that the curr
table could be introduced in the normalization of Fregel programs
even though user-defined Fregel programs do not have it.

1 data RVal = RVal { rch :: Bool, spl :: Bool }
2 ...
3 l e t newv = prev v .^ rch || neighbor
4 neighbor =
5 or [prev u .^ rch | (e, u) <- i s v]
6 aggv = and [curr u .^ rch | (e, u) <- g]
7 supplement = neighbor && aggv
8 in RVal { newv, supplement }

Thanks to the lazy evaluation mechanism in Haskell, this pro-
gram runs correctly although the value curr u .^ rch is set in
the last constructor. To make this program executable Without lazy-
evaluation mechanism, we decompose the constructor into substitu-
tions and arrange the let-bindings. The result of this rearrangement
is as follows.

1 neighbor = or [prev u .^ rch | (e, u) <- i s v]
2 newv = prev v .^ rch || neighbor
3 curr v .^ rch = newv
4 aggv = and [curr u .^ rch | (e, u) <- g]
5 supplement = neighbor && aggv
6 curr v .^ spl = supplement

5.2 Split LSS Function into Physical Supersteps

The comprehensions in Fregel programs correspond to communi-
cation via messages in Giraph programs. Under the restriction of
the BSP model that the messages are available only in the next su-
perstep, we cannot compute some value and use it through commu-
nication in a single superstep. Such a situation happens when Fregel
programs access to the curr table, so we split the LSS function into
multiple supersteps. We call them physical supersteps (PSSs) to
clarify the superstep in Giraph programs.

In our running example, the value curr v .^ rch is set and
then used in the following comprehension. Therefore, we split the
LSS function into two physical supersteps as follows.

1 −−PSS1
2 neighbor = or [prev u .^ rch | (e, u) <- i s v]

3 newv = prev v .^ rch || neighbor
4 curr v .^ rch = newv
5

6 −−PSS2
7 aggv = and [curr u .^ rch | (e, u) <- g]
8 supplement = neighbor && aggv
9 curr v .^ spl = supplement

Note that the variable neighbor is defined in PSS1 and used in
PSS2. In the following step, we will add those variables that are
used over physical supersteps as the fields of vertices to remember
the values.

5.3 List the Fields for Vertices

In the third step, we list the fields that a vertex should have. A
vertex should have the following fields to compute the compiled
Giraph program:

• phase (v.phase),

• step count in phase (v.ss),

• iteration count for each phase that comes from giter,

• fields of records in the Fregel program, and

• variables that are used over physical supersteps.

5.4 List the Comprehensions and Convert them to
Communication

In the fourth step, we list up the comprehensions and convert them
as follows.

• For each comprehension with a generator for incoming edges
(is) or reversed edges (rs), we add message senders in the pre-
vious superstep and message handlers in the current superstep.

• For each comprehension with a generator for the entire graph,
we add an aggregation call in the previous superstep and its
reader in the current superstep.

In our running example, we have two comprehensions: one is
converted into message sending and handling, and the other is
converted into aggregation.

1 −−PSS0
2 sending prev u .^ rch through outgoing edges
3

4 −−PSS1
5 neighbor = or [messages]
6 newv = prev v .^ rch || neighbor
7 curr v .^ rch = newv
8 aggregate curr u .^ rch
9

10 −−PSS2
11 aggv = getAggregatedValue
12 supplement = neighbor && aggv
13 curr v .^ spl = supplement

210

Table 1. Results on a PC cluster

execution time (s) number of total
P=1 P=2 P=4 P=8 P=12 P=16 supersteps messages (MB)

Single-source shortest path (rand-s) 294.8 137.4 63.53 35.33 25.40 26.86 58 4,762
Single-source shortest path (rand-d) N/A N/A 391.8 192.1 150.8 135.1 50 40,810
Densest subgraph (rand-s) 95.94 52.11 31.17 19.60 16.16 13.91 185 389
Strongly connected components (rand-s) 404.7 160.0 73.07 41.00 30.53 28.32 58 4,622

In Giraph, and most Pregel-like systems, we should specify a
single class for the messages. After listing all the messages, we
generate a class that consists of a tag and those message values.

5.5 Generate Code for the vertex.compute Function

Finally, we generate the vertex.compute function of Giraph pro-
grams. The outline of the generated function is as follows.

1 public void compute(Vertex<...> vertex,
2 Iterable<MyMessage> msgs) {
3 MyVertex v = vertex.getValue();
4 if (getSuperstep() == 0) {
5 / / initializing phase and step
6 v.phase = new IntWritable(0);
7 v.ss = new IntWritable(0);
8 }
9 switch (v.phase.get()) {

10 case 0: {
11 switch (v.ss.get()) {
12 case 0: {
13 / / code for init-function for phase 0
14 v.ss = new IntWritable(1);
15 } break;
16 case 1: {
17 / / code for judging termination
18 if (...) { vertex.voteToHalt(); return; }
19 / / code for phase transition
20 if (...) { v.phase = new IntWritable(1);
21 return; }
22 ...
23 } break;
24 case 2: {
25 / / handling (received) messages
26 for (MyMessage msg : msgs) { ... }
27 / / computation in LSS function
28 ...
29 / / sending message for next superstep
30 / / update v.ss
31 } break;
32 ...
33 }
34 vertex.setValue(v);
35 }

After the preparation described in Sections 5.1–5.4, each line in
the Fregel program is basically translated into a few lines of Java
programs.

6. Evaluation

6.1 Performance and Overhead on a PC Cluster

To evaluate the performance of the code compiled from Fregel
programs, we conducted several experiments on a PC cluster for
three target problems.

• Single-source shortest-path problem (Figure. 9)

• Densest subgraph problem: for this problem (Bahmani et al.
2012), it is easy to write a sequential program and nontrivial to
write a Pregel program.

• Strongly connected components problem (in Sect. 3.6)

The data we used were two randomly generated graphs: “rand-s”
had |V | = 1×106 vertices and |E| = 1×107 edges, and “rand-d”

had |V | = 1× 106 vertices and |E| = 1× 108 edges.
The hardware environment of a PC cluster consisted of 16 PCs

connected by Gigabit Ethernet, where each PC had an Intel Core i5
CPU (Core i5-2500 in 9 PCs and i5-760 in 7 PCs), 8 GB of memory,
and a 128 GB SSD. The versions of the OS, Java, Hadoop, and
Giraph were Ubuntu 14.04.3 LTS, 1.8.0 66, 0.20.203.0, and 1.2.0-
SNAPSHOT, respectively.

Table 1 shows the execution times excluding the initial arrange-
ment of vertices and output, the number of supersteps, and the to-
tal size of messages for each run. These numbers are the medi-
ums among five runs for each set of parameters. P is the num-
ber of worker nodes involved in the parallel computation. All these
compiled code ran in a reasonable time, and resulted in parallel
speedups with the increase of worker nodes.

We expected factors of the overheads of compiled code to be (1)
the larger vertices, (2) the more message communication, (3) the in-
crease of supersteps, and (4) missing voteToHalt during the com-
putation. To analyze the overhead of generated code from Fregel,
we also executed several hand-written programs for the single-
source shortest-path problem and the densest subgraph problem.

For the single-source shortest-path problem, we used the fol-
lowing six programs: (a) a hand-written code similar to that in the
original Pregel paper (Malewicz et al. 2010), (b) the same algorithm
as the hand-written code except for the generated class for vertices,
(c) the same algorithm as the hand-written code except for the gen-
erated classes for vertices and messages, (d) a modified algorithm
so that it has the same number of supersteps as the compiled code,
(e) the modified algorithm that uses no voteToHalt until reaching
a fixpoint, and (f) the modified algorithm in which all the vertices
always send messages to neighbors. Table 2 shows the execution
times, number of supersteps, and the total size of messages for these
programs. We can see from the difference between (b) and (c), and
between (e) and (f), that the total size of messages is the main over-
head of the generated code from Fregel. The increase of supersteps
between (c) and (d) also slows down the computation (20–40% in
this case). Compared to these overheads, the larger vertices and the
missing voteToHalt affect the performance only a little.

For the densest subgraph problem, we used the following four
programs. (a) a carefully hand-written code so that the number of

supersteps and messages are minimized2; (b) the same algorithm
as the hand-written code except for the generated class for vertices;
(c) the same algorithm as the hand-written code except for the
generated class for vertices and messages; (d) a modified algorithm
so that it has almost the same number of supersteps as the compiled
code. Table 2 shows the execution times, number of supersteps, and
the total size of messages for these programs. We can also see in
these results that the size of messages affects the performance a
lot. In addition, the difference between (c) and (d) for the increase
of supersteps and the difference between (d) and Fregel are not
negligible: we consider the reason of these overheads is in quite a

2 This does not utilize voteToHalt during the computation. We require a
mechanism that activates all the inactive nodes to utilize voteToHalt.

211

Table 2. Overhead analysis for single-source shortest path

execution time (s) super- mes-
P=4 P=16 steps sage

a. hand-written 7.69 4.23 29 413
b. + gen. vertex 7.84 4.39 29 413
c. + gen. message 16.35 6.67 29 413
d. + twice supersteps 19.10 9.32 58 413
e. + no VoteToHalt 18.62 9.21 58 413
f. + always sending 59.98 26.00 58 4,762

Fregel 63.53 26.86 58 4,762

Table 3. Overhead analysis for densest subgraph

execution time (s) super- mes-
P=4 P=16 steps sage

a. hand-written 14.12 8.14 125 222
b. + gen. vertex 15.29 8.99 125 222
c. + gen. message 18.23 9.54 125 389
d. + 1.5 × supersteps 23.29 13.21 187 389

Fregel 31.17 13.91 185 389

Table 4. Execution time (s), number of supersteps and total mes-
sage size for single-source shortest path on Amazon EMR

P=8 P=16 P=24 P=36 P=48

Hand-written 341.3 152.1 106.3 77.8 75.7
Fregel 3208 2887 999.6 656.1 598.5

Hand-written: no. of supersteps = 42
total message size = 25.6 GB

Fregel: no. of supersteps = 84
total message size = 348.8 GB

few conversions between primitive values (type double, etc.) and
Hadoop-specific values (type DoubleWritable, etc.).

6.2 Performance on Amazon EMR Cloud Environment

We also made bigger experiments over Amazon EMR cloud envi-
ronments. The environment of computation nodes was m3.xlarge
(CPU Intel Xeon E5-2670 v2, Memory 15 GB, SSD), running Java
1.7, Hadoop 1.0.3, and Giraph 1.2.0-SNAPSHOT.

Table 4 shows the execution times for a randomly generated
graph with |V | = 5 × 107 vertices and |E| = 5 × 107 edges.
The compiled code has overhead (by a factor of 8–10) but it shows
reasonable parallel speedups even on this large cloud environment.

7. Related Work

Many researches have investigated recursive approaches to pro-
gramming graph algorithms in functional languages. There are
three approaches. The first approach is to represent cyclic and
shared structures using structured trees with binders and then to
define structural recursion over this new representation as a ba-
sic component for processing graphs (Fegaras and Sheard 1996;
Hamana 2010; Oliveira and Cook 2012). The second approach is
to use inductive but unstructured representations of graphs. Er-
wig (Erwig 1997, 2001) proposed an inductive representation with
two constructors: an empty graph constructor (the base case) and a
graph extended with a node together with its label and edges (the
inductive case). Active pattern matching is used to define graph
algorithms in a recursive way. The third approach is to use infi-

nite regular trees to simulate graphs so that graph algorithms can
be specified as structure recursions on infinite regular trees (Bune-
man et al. 2000; Hidaka et al. 2010, 2013). However, all these ap-
proaches focus on sequential computation of graphs while we pro-
vide a functional approach to parallel graph processing.

There has been much work on DSL for big graph processing on
Pregel. Green-Marl (Hong et al. 2012) is an imperative DSL with
built-in data types, operators and functions tailored for the imple-
mentation of graph algorithms. Hong et al. showed (Hong et al.
2014) that Green-Marl can be compiled into Pregel. Our approach
is different in that our DSL is based on a new functional model
and structured by structural recursive functions. Palovca (Lesniak
2012) is an embedded DSL using Haskell as the underlying host
language for specifying Pregel algorithms. Unlike our DSL, which
is based on a new functional model, it uses a monad to hide the
side effects and defines the vertex program in a lower-level way
like that in Giraph, which is less declarative than ours. Tung and
Hu (Tung and Hu 2015) proposed a DSL for querying graphs on
the basis of structural recursion and showed how to compile them
into Pregel. However, the language is limited to querying. More-
over, as it is based on tree simulation of graphs, it cannot deal with
aggregations on graphs.

It is also useful to design skeletons for describing graph algo-
rithms as they can not only capture a certain class of computa-
tion pattern but also be implemented efficiently. One representative
work is by Launchbury (Launchbury 1995), which showed that a
depth-first-search (DFS) computation pattern can be abstracted as
a higher-order function in Haskell and used to specify and reason
about many interesting graph algorithms.

The GAS (gather-apply-scatter) model (Bae and Howe 2015;
Gonzalez et al. 2012; Sengupta et al. 2015) has recently emerged
as a realistic parallel computational model for big graphs. The GAS
model and our Fregel model have the same structure of communi-
cation (i.e., communication only between neighbor vertices), but
their styles of computation differ. The GAS model allows asyn-
chronous computation among vertices to obtain realistic perfor-
mance by restricting the form of computation in a vertex while the
Fregel model allows only synchronous computation. It would be in-
teresting to investigate when and how we can compile Fregel code
for asynchronous computation to obtain realistic performance.

8. Conclusion

We have presented a novel functional DSL for supporting the devel-
opment of Pregel programs for processing big graphs. It resembles
the role of Pig (Gates et al. 2009) and Hive (Thusoo et al. 2009)
systems for supporting development of MapReduce programs from
a high-level specification for processing big key-value data. Differ-
ent from the imperative Pregel, Fregel is functional and declarative,
completely removing message passing and explicit state control.
The results for compiled Pregel programs generated by our proto-
type system (which has much room for further optimization) are
quite encouraging; the programs have good speedup, are scalable,
and are only five to ten times slower than carefully handwritten
programs although the system does no optimization.

Fregel’s current absolute performance is not sufficient for prac-
tical systems for big graph processing. Further work is needed to
analyze the performance weaknesses and to develop optimization
methods to resolve them. In addition, we will study formal proofs
of the correctness of the compilation and normalization and develop
sophisticated optimization methods on top of the formal proofs.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers
15K15974 and 26280020.

212

References

S.-H. Bae and B. Howe. GossipMap: A distributed community detection
algorithm for billion-edge directed graphs. In Proceedings of the In-

ternational Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’15, pages 27:1–27:12. ACM, 2015.

B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest subgraph in streaming
and MapReduce. Proceedings of the VLDB Endowment, 5(5):454–465,
2012.

P. Buneman, M. Fernandez, and D. Suciu. UnQL: A query language and
algebra for semistructured data based on structural recursion. The VLDB
Journal, 9(1):76–110, 2000.

M. Erwig. Functional programming with graphs. In Proceedings of the

1997 ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’97, pages 52–65. ACM, 1997.

M. Erwig. Inductive graphs and functional graph algorithms. Journal of

Functional Programming, 11(5):467–492, 2001.

L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes with
embedded functions (or, programs from outer space). In Proceedings

of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’96, pages 284–294. ACM, 1996.

A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. Building a high-
level dataflow system on top of Map-Reduce: The Pig experience. Pro-

ceedings of the VLDB Endowment, 2(2):1414–1425, 2009.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph:
Distributed graph-parallel computation on natural graphs. In Proceed-

ings of the 10th USENIX Conference on Operating Systems Design and

Implementation, OSDI’12, pages 17–30. USENIX Association, 2012.

M. Hamana. Initial algebra semantics for cyclic sharing tree structures.
Logical Methods in Computer Science, 6(3):1–23, 2010.

S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidi-
rectionalizing graph transformations. In Proceedings of the 15th ACM

SIGPLAN International Conference on Functional Programming, ICFP
’10, pages 205–216. ACM, 2010.

S. Hidaka, K. Asada, Z. Hu, H. Kato, and K. Nakano. Structural recursion
for querying ordered graphs. In Proceedings of the 18th ACM SIGPLAN

International Conference on Functional Programming, ICFP ’13, pages
305–318. ACM, 2013.

S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: A DSL for
easy and efficient graph analysis. In Proceedings of the Seventeenth

International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVII, pages 349–362.
ACM, 2012.

S. Hong, S. Salihoglu, J. Widom, and K. Olukotun. Simplifying scalable
graph processing with a domain-specific language. In Proceedings of

Annual IEEE/ACM International Symposium on Code Generation and

Optimization, CGO ’14, pages 208–218. ACM, 2014.

J. Launchbury. Graph algorithms with a functional flavour. In Advanced

Functional Programming, First International Spring School on Ad-

vanced Functional Programming Techniques-Tutorial Text, pages 308–
331. Springer-Verlag, 1995.

M. Lesniak. Palovca: Describing and executing graph algorithms in haskell.
In Proceedings of the 14th International Conference on Practical As-
pects of Declarative Languages, PADL’12, pages 153–167. Springer-
Verlag, 2012.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Heller-
stein. Distributed GraphLab: A framework for machine learning and
data mining in the cloud. Proceedings of the VLDB Endowment, 5(8):
716–727, 2012.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: A system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’10, pages 135–146. ACM, 2010.

R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: A
survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys, 48(2):25:1–25:39, 2015.

B. C. Oliveira and W. R. Cook. Functional programming with structured
graphs. In Proceedings of the 17th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP ’12, pages 77–88. ACM, 2012.

D. Sengupta, S. L. Song, K. Agarwal, and K. Schwan. GraphReduce: Pro-
cessing large-scale graphs on accelerator-based systems. In Proceedings

of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’15, pages 28:1–28:12. ACM, 2015.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive: A warehousing solution over a Map-
Reduce framework. Proceedings of the VLDB Endowment, 2(2):1626–
1629, 2009.

L. D. Tung and Z. Hu. Towards systematic parallelization of graph transfor-
mations over Pregel. In Proceedings of the 8th International Symposium

on High-level Parallel Programming and Applications, HLPP ’15, 2015.

L. G. Valiant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103–111, 1990.

D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. Pregel algorithms for
graph connectivity problems with performance guarantees. Proceedings

of the VLDB Endowment, 7(14):1821–1832, 2014.

213

