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Abstract—Code clones are prevalent in software systems due
to many factors in software development. Detecting code clones
and managing consistency between them along code evolution can
be very useful for reducing clone-related bugs and maintenance
costs. Despite some early attempts at detecting code clones and
managing the consistency between them, the state-of-the-art tool
can only handle simple code clones whose structures are identical
or quite similar. However, existing empirical studies show that
clones can have quite different structures with their evolution,
which can easily go beyond the capability of the state-of-the-art
tool. In this paper, we propose CCSync, a novel, rule-directed
approach, which paves the structure differences between the code
clones and synchronizes them even when code clones become
quite different in their structures. The key steps of this approach
are, given two code clones, to (1) extract a synchronization rule
from the relationship between the clones, and (2) once one code
fragment is updated, propagate the modifications to the other
following the synchronization rule. We have implemented a tool
for CCSync and evaluated its effectiveness on five Java projects.
Our results shows that there are many code clones suitable for
synchronization, and our tool achieves precisions of up to 92%
and recalls of up to 84%. In particular, more than 76% of our
generated revisions are identical with manual revisions.

I. INTRODUCTION

Software systems commonly contain a large amount of
code clones due to many factors in software development
and maintenance such as copy-and-paste, refactoring, design
patterns, and limitations in the API libraries or frameworks.
Empirical studies [22], [19] show that code clones account
for 7-23% of the code, and in an extreme case [8], code
clones even account for 59% of the code. Code clones place
additional burdens to understanding and maintaining code,
and attract much attention from both academia and industry.
Researchers have proposed various approaches that detect and
visualize code clones (e.g., [19], [39]).

Traditionally, code clones are considered harmful (e.g.,
[3], [15]). Thus, researchers (e.g., [9]) have proposed ap-
proaches that remove code clones by refactoring. However,
recent empirical studies (e.g., [16], [37]) show that it is
tricky to determine whether code clones are harmful or not,
since some code clones are beneficial to understanding code
and improving software quality. For example, Rajapakse and
Jarzabek [31] show that unifying all the code clones can be
inefficient and inconvenient for comprehension. As another
example, Aversano et al. [1] show that refactoring code clones
can increase running time. As a result, programmers have
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to live with code clones, although in many cases, they have
to modify code clones simultaneously to maintain consistent
changes across the clones.

Researchers have conducted many empirical studies to ana-
lyze code clones and their evolution [2], [20], [21], [25], [26],
[28]. All of these studies recognized that most of the clone
instances in each clone group co-evolve with one another. On
the other hand, it is quite difficult to manage code clones,
leaving many defects in software. In particular, Jiang ef al. [13]
show that when fixing a bug in a piece of code, programmers
may forget to fix the bugs in its clones. Barbour et al. [2] also
find that programmers can forget to modify some clones, so
they have to modify such code in the latter commits. Therefore,
it is beneficial to synchronize code clones in time to avoid the
buggy inconsistent changes.

In order to manage code clones and eliminate the disadvan-
tages introduced by code clones, researchers have proposed
various approaches for managing code clones, synchronizing
code clones and keeping their consistency. Zhang et al. [36]
propose an approach that notifies the programmers when a
code clone is modified. Their work allows the programmers
to update code clones manually. However, as code clones
abound in software projects and it is error-prone to manually
update code clones, there is an urgent need for a tool that can
update code clones automatically. Nguyen et al. [30] propose
an approach that synchronizes clones whose Abstract Syntax
Trees (ASTs) are identical or with minor differences. When
synchronizing clones, their approach records edits on an AST
of a code fragment and applies recorded edits on its clones.
Kim et al. [17] show that most clones become less similar to
each other along the evolution of software. When this happens,
the state-of-the-art approach [30] is insufficient to keep the
consistency of clones with diverging code clones, due to the
following challenges:

Challenge 1. The change rules of clones can become com-
plicated. When clones become less similar, their ASTs can
become quite different. As a result, it becomes challenging
to record AST changes from a piece of code and apply the
recorded changes to its clones as Nguyen ef al. [30] do.

Challenge 2. When being maintained, code fragments can be
similar, but may not need to be changed simultaneously. When
the state-of-the-art tool [30] records and applies code changes,
it becomes quite challenging to distinguish those changes from
the ones that need to be changed simultaneously, and the
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TABLE I

A CLONE-SYNCHRONIZATION RELATED BUG

ciy

\ iz

ci

Iprivate int getColumn (Point point) {

2 int colCnt = fTableViewer.getTable().
getColumnCount () ;

3 TablelItem item = null;

4 for (int i=0; i<fTableViewer.getTable().
getItemCount (); i++){

5 item = fTableViewer.getTable() .getItem(i);

6}

7+ if

8 for

(item != null){ // a check here
(int 1i=0; i<colCnt; i++){

9 Point start = new Point (item.getBounds (i) .x,

item.getBounds (i) .y);
10 e
1 if (start.x < point.x && end.x > point.x)
12 return i;

tprivate int getColumn (Point point) {

2 int colCnt = fTableViewer.getTable ()
.getColumnCount () ;

3 Tableltem item = fTableViewer.
getTable () .getItem(0);

4 for (int i=0; i<colCnt; i++){

5 Point start = new Point (item.
getBounds (1) .x, item.getBounds (
i).y);

6 B

7 if (start.x < point.x && end.x >
point.x)

8 return i;

9}
10 return -1;

Iprivate int getColumn (Point point) {

2 int colCnt = fTableViewer.getTable ()
.getColumnCount () ;

3 TablelItem item = fTableViewer.
getTable () .getItem(0);

4 if (item != null){ // a check here

5 for (int i=0; i<colCnt; i++) {

6 Point start = new Point (item.
getBounds (1) .x, item.
getBounds (i) .y);

7 -

8 if (start.x < point.x && end.x >

point.x)

9 return i;

10 }

13 } 1}
14+ }

15 return -1;
16 }

11 }
12 return -1;
13}

synchronized code can be incorrect.

If the consistency of the code clones are not carefully
maintained, it can introduce bugs in the code under de-
velopment. For example, we have found a clone-related
bug in Eclipse!. Table I shows the involved two meth-
ods (ci; and ciz), and they are code clones with differ-
ent ASTs at the method level. In particular, ci; is taken
from AbstractAsyncTableRendering. java, and cig
is taken from AbstractTableRendering. java. Line 5
of ci; (or line 3 of ciy) obtains an item by calling the method
getTable () .getItem (). In a previous buggy version of
ci1, this line leads to an exception, when item is null. The
bug was reported, and in Line 7 of ci;, programmers fix the
bug by calling an extra check. However, the bug is not fully
fixed, since its code clones are not synchronized accordingly.
For example, Line 5 of ciy can still throw exceptions, when
item is null. With a proper clone management tool, we
believe, the above bug can be fully fixed, since the fixes in
ci1 can also be applied to cio. However, the state-of-the-art
tool [30] is insufficient to synchronize the above two methods,
since their ASTs are different.

In this paper, we propose a novel rule-directed approach
called CCSync. Instead of recording changes in ASTs of code
clones, CCSync generates synchronization rules and allows
programmers to tailor such rules. With tailored rules, CCSync
propagates changes on a code construct to its allelic code
construct that locates at a comparable position in other clones.
Compared with Nguyen et al. [30], CCSync is more general,
since it allows synchronizing clones no matter whether they
have identical structures or not. This paper makes the follow-
ing contributions:

e We formally define synchronization rules for keeping
the consistency of code clones. A synchronization rule
describes the relation between two allelic code constructs
and the strategy to propagate changes from one code
construct to its allelic one.

« We propose a novel rule-directed approach that synchro-
nizes code clones. Our approach includes (1) an algorithm

Thttps://bugs.eclipse.org/bugs/show_bug.cgi?id=174722

for generating synchronization rules from code clones and
allowing customization by the programmers; and (2) an
algorithm for utilizing such rules to direct the propagation
of code changes in appropriate positions.

« We implemented a tool for CCSync, and with its support,
we conducted an evaluation on five projects. The results
show that our tool achieves precisions of up to 92% and
recalls of up to 84%. In particular, more than 76% of our
generated revisions are identical with manual revisions.

The rest of the paper is organized as follows: Section II

presents the terminologies on code clones. Section III utilizes
a running example to illustrate how CCsync works. Section
IV presents the details of our approach. Section V evaluates
CCSync. Section VI discusses related issues. Section VII
presents the related work. Section VIII concludes.

II. TERMINOLOGY

In this section, we introduce the terminologies briefly.
Code Fragment. A code fragment (cf) is a sequence of code
lines such as code statements.

Code Clone. Two pieces of code fragments (cf; and cfa)
are code clones, if there exists a similarity function f and
f(efi,efa) < o. For example, Jiang et al. [12] define the
similarity function as the edit distances between two pieces
of code fragments. Here, o is a predefined threshold. We
use (cf1,cf2) to denote that c¢f; and cfy are code clones,
and call it a clone pair. If (cf;,cf;) holds for cfi,...,cfn,
(efr,cfa, -+ ,cfn) is called a clone group.

Clone Instance. A code fragment cf; in a clone pair or a clone
group is called a clone instance (ct).

Clone Type. We follow the definition of Bellon et al. [4], and
define the following three types of code clones:

o Type I All the clone instances are identical with modifi-

cations only on layouts and comments.

« Type II All the clone instances are syntactically identical
with modifications on only names of identifiers, types,
literals, and methods.

« Type III All the other code clones, where clone instances
can have further modifications (e.g., inserting, deleting,
and updating statements).



III. RUNNING EXAMPLE

First, let us revisit the example in Section I. We use this
example to further illustrate the problem and how our approach
works. Table I shows the two clone instances ci; and ciy of
the clone pair. By the definition in Section II, c¢i; and cio are
Type III code clones, since they are not syntactically identical.
As the ASTs of the two methods are different, it is challenging
to simply record changes in the AST of ci; and apply those
changes on that of cis. As a result, the state-of-the-art tool [30]
cannot synchronize the code clone.

Instead of recording and applying changes in ASTs, our key
insight is that we can build the mapping relations between
common code fragments directly, and update a code fragment
when its mapped code fragments are edited. For this example,
after we build the mapping relation between Line 8 in ci; and
Line 4 in ciy, when programmers add a check in Line 7 of
ci1, we can add the same check before Line 4 in cio to avoid
the same buggy behavior. The synchronized code is shown as
cil, in Table I, where a check is added correctly.

To generate the above synchronized code, CCSync first
identifies the mapping relation between two clone instances.
In particular, the for loop in ci; (Line 8 to Line 13) is aligned
to the for loop in ciy (Line 4 to Line 9). The two for loops
are called node constructs and consist of a construct multiset
(see in Section IV-B). According to the rule that contains
the construct multiset and attached action set, the aligned
identical constructs (e.g., the for loops) should be changed
simultaneously (e.g., inserting the same check before them).
The detailed algorithm in the approach will be presented in
Section IV-C and Section IV-D.

IV. APPROACH

In this section, we present the overview of our approach
(Section IV-A), our definition of synchronization rules (Sec-
tion IV-B), the steps of generating such rules (Section IV-C),
the steps of synchronizing with such rules (Section IV-D), and
our extension for clone groups (Section IV-E).

A. Overview

The overview of our CCSync approach is presented in
Figure 1. Each rectangle represents an entity in the synchro-
nization steps, and each ellipse represents an action or an
operation that connects two entities. The inputs of CCSync
are: (1) the project under development or maintenance, which
contains code clones, (2) changes in a clone instance, and (3)
the choices of tailoring the actions in synchronization rules.
The output is a set of synchronized clone pairs (or groups).
The whole process is divided into two main parts, i.e., rule
generation and rule-directed change propagation:

1) Rule Generation. This part aims to identify synchro-
nization rules automatically from known code clones to
reduce the effort of writing them. Meanwhile, a user can
also customize the rule (Section IV-C).

2) Rule-Directed Change Propagation. This part aims to
utilize the rules to propagate changes (i.e., updating,
deleting, or inserting the corresponding code constructs

Clone
Repositories

Rule
Generation

Edit
Synchronized Change
Clone Propagation Changes

Fig. 1. Overview of CCSync

in appropriate positions) from one clone instance to the
other clone instance (Section I'V-D).

We understand that existing tools cannot effectively identify
the exact intention for changes in Type III code clones, so we
allow manual edits of synchronization rules to accommodate
code clones with significant differences. In addition, although
CCSync mainly focuses on synchronization of clone pairs, we
discuss its extensibility for clone groups in Section IV-E.

B. Synchronization Rule

Before we introduce synchronization rules, we define the
basic units of the synchronization, code constructs, as follow:

Definition 1: Code Construct. A code construct is a token in
a code fragment (token construct) or a sequence of tokens in
a code fragment, which can be parsed as a node in the parse
tree (node construct), or €, i.e., a placeholder code construct
(e construct), e.g.,

construct = token | node | €

In this paper, code construct is shortened as construct.

Lin et al. [24] have proposed an approach, called MCIDiff,
to detect differences across clone instances. They use multisets
to represent the results. We follow the term multiset and
extend it from tokens to code constructs for the ease of
synchronization by defining construct multiset.

Definition 2: Construct Multiset (CM). A construct multiset
is a pair (or a group) of corresponding code constructs
(one from each clone instance). A code construct from a
clone instance can only be in one multiset. If all pairs of
corresponding constructs in a CM are identical (i.e., they have
exactly the same category and attribute), the CM is a matched
CM. Otherwise, it is a differential CM.

Both the matched CM and differential reflect the cor-
responding relation among the construct from each clone
instance. The corresponding constructs in the CM are called
allelic constructs of each other.

Figure 2 shows a pair of code construct sequences of the
method body in two clone instances ci; and cio in Table 1.
Here, we omit the check statement in ci;. Each row of
rectangles contains a pair of allelic constructs and it represents
a CM. Different colors of the rectangles illustrate different
categories of construct multiset. The light blue ones (e.g.,
CM or CM5) denote that the matched CM. For the dark blue
ones (e.g., CM5 or CMyg), the constructs on the left side are
real constructs (i.e., a token or a sequence of tokens), and the
constructs on the right side are €. Here, the € construct denotes
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Fig. 2. Example of construct multisets

that no real construct from a clone instance corresponds to the
real construct from the other clone instance. The gray ones
(e.g., CM}) denote that the allelic constructs from different
clone instances are not identical but similar.

To compress long sequences of tokens, we use the marker;
which is mapped from the node construct as an identification to
denote node construct itself. For example, the two marker;s
in CM; denote the assignment statements in line 2 of ci; and
cio respectively in Table I:

int colCnt = fTableViewer.getTable () .getColumnCount () ;

The markers and markers in Figure 2 denote the for
loop (i.e., Line 8 to Line 13 in ci1) and the return statement
(i.e., Line 15 in cip) respectively.

Based on the concept of construct multisets, we define
synchronization rules as follows:

Definition 3: Synchronization Rule. A synchronization rule
is a pair (CM,action*), where CM is a construct multiset
and action™ is a set of synchronization actions on CM:

rule = CM, action*

Synchronization rules have two roles in our approach. First,
for the clone instances of each code clone, a synchronization
rule defines the mappings between their constructs. CCSync
aligns the token constructs in a CM by their category and
attributes. As each node construct is mapped with a marker,
CCSync aligns node constructs, if their markers are identi-
cal. CCSync aligns the remaining constructs to € constructs
(placeholder) at proper locations. Here, it decides the location
of an e construct by comparing its already mapped neighbor
constructs. Second, the right hand side of a synchronization
rule is a set of actions to be applied to a CM when any of
its two code constructs changes (including the gaps to the
immediate neighboring CMs - i.e., insertions before and after
CM in the ordered list of CMs). Table II lists a collection of
candidate actions, which can meet the basic requirement of
change propagation. If the matched CM contains the exactly
identical constructs, CCSync attaches all actions in Table II to

TABLE 11
ACTIONS

Action | Description |

Given a CM, when the left construct is changed
to left’, the right one will be replaced by le ft'.
Given a CM, when the right construct is
changed to right’, the left one will be replaced
by right’.

Given a CM, when a construct is inserted before
the left construct, the same construct will be
inserted before the right construct to form a new
CM’ before the given CM.

Given a CM, when a construct is inserted before
the right construct, the same construct will be
inserted before the left construct to form a new
CM’ before the given CM.

Given a CM, when a construct is inserted after
the left construct, the same construct will be
inserted after the right construct to form a new
CM' after the given CM.

Given a CM, when a construct is inserted after
the right construct, the same construct will be
inserted after the left construct to form a new
CM’ after the given CM.

Given a CM, when the left construct is changed
to left’, all the constructs in its clone instance

i left — right

ii left < right

iii left — right

iv left < right

v left — right

vi left < right

v leftx which have the same marker will be changed to
left’.
Given a CM, when the right construct is
. changed to right’, all the constructs in its clone
viii rightx

instance which have the same marker will be
changed to right’.

it. For example, a rule for the first CM in Figure 2 is repre-
sented as “(markery, markery), {i, ii, iii, iv, v, vi, vii, viii}”,
where the roman numerals reference the actions in Table II.
This indicates that the identical constructs should be changed
exactly alike. In particular, If the statement represented by
markery is changed to

int colCnt = fTableViewer.getTable () .getColumnCount () - 1;
The allelic constructs of ci; in ciy will be changed accordingly.

CCSync allows customizing synchronization rules, and pro-
grammers can enable and disable the actions in a synchro-
nization rule. For example, a programmer can omit some
changes on a construct if they disable corresponding actions.
Identifying whether a change need to be propagated or not is
not discussed in the paper and left to be the future work.

C. Rule Generation

Figure 3 shows the process of rule generation. To generate
synchronization rules, CCSync has the following three steps:

1) producing the construct multisets;

2) selecting a set of actions for each multiset;

3) customizing the rules by enabling/disabling the actions
for the concerned multisets (optional).

To produce the construct multisets, CCSync first transforms
the source code of each clone instance to a sequence of
tokens, and generates an initial sequence pair. Due to the
similarity between clone instances, we find that subsequences
of tokens can appear frequently in each sequence of the
sequence pair. When synchronizing clones, programmers often
need to maintain the consistency of them. These subsequences
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of token constructs may be parsed into nodes or subtrees of
an AST. CCSync merges these tokens into a node construct.
As these constructs appear in all the sequences, we call them
common code constructs. For example, the for loop in ciy
(Line 8 to Line 13) appears in cio (Line 4 to Line 9) in Table I,
so the for loops are common code constructs.

A large common construct may cover some small common
constructs. For example, all the expressions (e.g., i = 0) and
statements (e.g., return 1i;) in the above for loops are
also common constructs, since the for loop is a common
construct. If a common construct is not covered by any
other common constructs, we call it a maximum common
construct. It is more convenient to maintain the maximum
common constructs, since aligning larger common constructs
can reduce the mismatches. For example, in Table I, “1=0",
“i < colCn” and “i++” (Line 8 in cz; and Line 4 in cis)
are identified as common code constructs, and the whole for
loops (line 8 to line 13 in ciy line 4 to line 9 in ci9) are also
identified as a maximum common constructs. The latter ones
cover the former ones. Aligning two for loops can prevent
from mismatching “1 = 0” in Line 4 of ci; to the same
construct in Line 4 of ciy. As a result, in the construct multiset,
CCSync detects the common construct as larger as possible.

Given a clone pair, CCSync first identifies their common
code constructs, and then excludes the small ones that covered
by larger ones. Algorithm 1 describes how to extract common
constructs from a clone pair. The input of Algorithm 1 is a
pair of ASTs such as left and right.

The algorithm has the following two steps:

1) It firstly classifies all of the nodes of each AST according
to their hash code of content (Line 1 to Line 11). The
nodes in the same list have the same hash value, which
implies they contains the same source code.

2) For each node list, it checks whether the nodes come
from left or right are identical or not. If these nodes are
found only in one AST, they will be excluded (Line 12 to
Line 16). The remaining lists contain all of the common
constructs (Line 18).

Algorithm 2 refines the found common constructs ccs to
obtain maximum common constructs mccs. The algorithm
visits all of the nodes in left and right starting from their
roots to selected maximum common code constructs.

CCSync builds mappings from maximum common con-
structs to markers according to the source code covered

Algorithm 1: Common Constructs Extraction (CCE)

Input: AST left, right
Output: List ccs // a list of code constructs

List cList < all nodes in left and right;

Map hc2cList < ¢; // a map from hash code to construct list
foreach node € cList do

if 1hc2cList.contain K ey(node.hashCode) then

List list < ¢;

list.add(node);

hc2cList.put(node.hashCode, list);

else
| he2cList.get(node.hashCode).add(node);
10 end
11 end
12 foreach (hashCode,list) € hc2cList do
13 if list N left = ¢ || list N right = ¢ then
14 | hc2cList.remove(hashCode);
15 end
16 end
17 List ccs < hac2cList.valSet;

18 return ccs;

Algorithm 2: Maximum Common Constructs Extraction
(MCCE)

Input: List ccs, AST left, right
Output: List mccs

Queue q <+ ¢;
Lis mces < ccs;
g.add(left.root);
q.add(right.root);
while ¢ # ¢ do

AST Node node < gq.poll();

if node € ccs then

| meces.add(node);

else
10 |
11 end
12 end
13 return mccs;

T R R . I NI TSI

g.add(node.children);

by common constructs. In particular, CCSync replaces each
maximum common construct with a marker (e.g., $_number).
The remaining parts, which exclude the common constructs,
are tokenized as token constructs.

CCSync includes an algorithm, called eMCIDiff, that
extends the MCIDiff algorithm [24] to generate construct
multisets. MCIdiff generates a sequence of tokens for each
clone instance, and then computes the Longest Common Sub-
sequence (LCS) of generated token sequences. Based on the
LCS, MCIDiff identifies matched and unmatched tokens. It is
inconvenient to maintain the consistency among tokens, since
tokens provide limited information on syntaxes. Instead of the
token level, CCSync extends the MCIDiff to analyze clone in-
stances at the construct level. Furthermore, CCSync introduces
an additional node construct category, called Marker, to define
mapping relations between common code constructs. CCSync
assigns each code construct to a marker. During the process,
it aligns code constructs by their categories such as Type,
Method/Filed/Variable/Literal, Label, Keyword, Separator, and
Operator. As each code construct is mapped with a marker,
code constructs are matched if their markers are identical.



Algorithm 3: Multiset Generation

Input: List seqs // a list of construct lists
Output: List multisets

List constructs < 0;
foreach seq € seqs do
constructs.add(seq);
ranges.add([0 ~ seq.size() — 1]);
end
List multisets < eMCIDiff (constructs, ranges);
return multisets;

B Y N T

Markers thus can prevent the subsequences of code constructs
from being mismatched. Algorithm 3 calls eMCIDiff to
generate construct multisets. Due to space limitation, we omit
its details, since its general concept is similar to MCIDiff [24].

CCSync adopts a conservative strategy to infer rules and
attaches some actions for a rule by default. For example, it
attaches Actions i to viii in Table II to the construct multisets
which consist of node constructs, and Actions iii to vi to
the construct multisets which consist of token constructs or
e constructs. CCSync allows customizing rules since code
fragments in clones may not change simultaneously. If pro-
grammers determine that a modification of a code fragment
shall not be propagated to its clone instances, they can disable
the actions on the code fragment during synchronization. The
programmers can later enable the actions. For example, if
programmers decide that the for loops in ci; and ciz in
Table I shall be evolved independently, they can disable the
actions attached to the for loop, and then the changes will
not be propagated.

D. Rule-Directed Change Propagation

Figure 4 shows the process of propagating changes from
one clone instance to the other clone instances, under the
guide of synchronization rules. CCSync utilizes eMCIDiff to
compare the modified clone instance with the original one, and
identifies modification actions such as updating, deleting, and
inserting. After that, CCSync looks up the corresponding rules
for modified constructs and propagates modification actions
to their allelic constructs accordingly. After synchronization,
CCSync refreshes rules, if modification actions change their
related multisets. Particularly, if there are two subsequent
CMs: CM; and CMs, where CM; has an insertion rule
for additions after C M7 and C' M5 has an insertion rule for
additions before C'Ms. If X is added in between C'M; and
CMs. CCSync will check the actual actions of consecutive
CM: s to avoid inserting X twice.

For example, in Table I, CCSync detects that the check in
Line 7 and the right curly bracket in Line 14 of ci; are inserted
constructs before and after the for loop, respectively. The rule
for the for loop contains Action iii and Action v that directly
insert the same check before and the right curly bracket after
the allelic for loop in cis. In this way, the bug is fully fixed.
Meanwhile, the rule before the for loop contains Aaction
vthat also directly insert the same check before the for loop.

Action Set

nable/Disable Construct
Actions Multisets

Composed

Clone
Instance

Modified
IClone Instance|

Rules
<CM1, actions1>
<CM2, actions2>

<CMn, actionsn>

Maximum Common
Constructs List
Luckup )l

Synchronized
Clone
Fig. 4. Process of rule-directed change propagation

However, CCsync finds that the two actions of the consecutive
rules has the same effect, it only inserts the check once.

To generate the synchronized code, CCSync prints the
constructs sequences in order and formats them appropriately:
for the token construct, CCSync prints it directly; for the node
construct (marker), CCSync looks up the Maximum Common
Construct List to get the source code of these node constructs
and prints them; CCsync skips all € constructs.

E. Extension for Clone Groups

We further extend CCSync to support to synchronize clone
groups, whose clone instances are more than two. The key
point to support synchronization for groups is the generation
of synchronization rules:

1) generating construct multisets consisting of n code con-

structs (one from each clone instance).

2) assigning actions to each construct multiset.

We extend Algorithm 1 and 2 for more than two clone
instances and our extended CCSync searches for common
constructs and maximum common constructs from more than
two clone instances. For clone pairs, common constructs ap-
pear in both clone instances, while for clone groups, common
constructs appear in all clone instances. As MCIDiff [24]
supports representing differences in more than two clone
instances, we easily extend Algorithm 3 to get constructs
multisets consisting of code constructs from more than two
clone instances.

In addition, as each clone instance has a construct multiset
that consists of n code constructs, for any pair of {c;, cj> 1<
i,7 < m) in a construct multiset (¢, ca, - - ,cy), our extended
CCSync attaches a set of actions in Table II to define the
strategy when a change occurs in one of the clone instances.

V. EVALUATION

We have implemented CCSync, and conducted an evaluation
to answer the following three research questions:
« RQIl: How many opportunities are there to synchronize
code clones?
« RQ2: How effectively does CCSync synchronize clone
pairs with regard to real-world changes?
« RQ3: How effectively does CCSync synchronize clone
groups, with our extension?
In Section V-A, our results show that in real code, there is
a strong need for synchronizing clones. In Section V-B, our



TABLE III
CHARACTERISTICS OF SUBJECT PROJECTS

[ Projects [[ #Revision [ #File [ #LoC [ #Pairs | #LoCC | #Co-change |
jEdit 2,501 - 3,000 366 76,993 341 16,251 377
JFreeChart 1-500 947 128,118 819 39,923 312
JHotDraw 1-500 1,545 126,767 595 9,556 1,128
Columba 1-464 2,253 147,254 641 23,981 349
OSWorkflow 101 - 600 288 24,140 163 8,532 197

[ Toml || 2064 | 5399 | 503272 | 2,550 | 98243 | 2363 |

results show that CCSync achieves both high precisions and
recalls when utilizing the rules to synchronize clones in real
code In Section V-C, our results show that CCSync is able
to conditionally support the synchronization of clone groups,
especially when manually tailoring the generated rules.

A. RQI: The Need for Synchronizing Clones

1) Clone Detection Tool and Subjects: In this study, we
utilized ConQAT [14] to detect clones. In particular, we set
the gapped ratio of ConQAT as 0.5, the minlength of clones
as 10, and the max of errors as 5. The arguments indicates
that if the detected clone pair has twenty statements, at least
its five statements in a clone instance are different from those
in the other clone instance. With the arguments, most detected
clone pairs are Type III clones. Wang et al. [34] proposed an
approach to searching the configuration space of clone detec-
tion tools appropriately, however, we consider the the extensive
approach is not necessary in our experiment. We chose five
large open source projects, i.e., jEdit, JFreeChart, JHotDraw,
Columba and OSWorkflow, as our subjects. From the project
repository of each project, we selected 500 revisions. Table III
shows the projects, and it lists the range of analyzed revisions,
the number of files, the lines of code (LoC), the number of
detected clone pairs, and the LoC of detected clones, column
by column. For JEdit, we could not access its revisions before
2500, so we collected its revisions since 2500. For Columba,
we collected all its revisions, and it had only 464 revisions
when we conducted the evaluation.

2) Detecting Co-change Clone Pairs: For each detected
clone pair in a commit (ci1,ciz) and in the next commit
(ci,ciy), we considered it as a co-change clone pair, if
ci1 and cig were both changed. We counted the number of
times that co-changes occurred along the projects revision
history. We considered these co-changes as cases where clone
synchronization is needed as synchronizing them can reduce
manual edits needed for the clones.

3) Result: Figure 5 shows the results of detected clone
pairs. Its horizontal axis denotes revisions, and its vertical axis
denotes detected clone pairs. The results show that with the
evolution of the five projects, more clone pairs are detected.
Figure 6 shows the results of the accumulated number of times
that co-changes occur. Its horizontal axis denotes revisions,
and its vertical axis denotes the accumulated number of times
that co-changes occur for all detected clone pairs, which reflect
how often co-changes occur in the detected clone pairs.

To measure how often synchronization opportunities occur
for a clone pair on average along software evolution, we divide
the accumulated number of times that co-changes occur by the
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Fig. 5. Number of detected clone pairs
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Fig. 6. Accumulated number of times that co-changes occur

number of the detected clone pairs and build Figure 7. The
results indicates the usefulness of CCSync with the evolution
process. For example, the last point of the jHotDraw curve
shows that on average, each clone pair in jHotDraw has 1.8
times of co-change. The last column of Table III lists total
number of co-change times, which reflects the opportunities
of an approach like CCSync.

We randomly sampled 100 co-changes. We found that more
than half of such co-changes occur in the clone pairs whose
ASTs are different, and cannot be effectively handled by
recording and applying such changes in ASTs.

B. RQ2: Synchronizing Real Changes

For this research question, we evaluated the effectiveness of
our approach with real changes of detected clone pairs.

1) Setup: In a repository, if programmers modified a clone
pair (ciq;,cie;) in Revision ¢ to a clone pair (ciqj,cig;) in
Revision j (i < j), we extracted the changes from cio; to
ciz;, and called them as Manual Changes (MC). We fed the
changes from ciy; to ciy; to CCSync. It automatically modified
Cig;s tO cigjs, and we called the changes as Sync Changes
(SC). For each modified clone pair, we calculated precisions
and recalls as follows:

#(MCNSCO) #(MCNSO)
#SC #MC

We used precisions, recalls, and their distribution to measure

the effectiveness of CCSync. We counted MCs and SCs for all

the clone instances for each project, and then counted clone

instances whose precisions and recalls fell into specific ranges

to calculate their distribution.

In this evaluation, we employ ChangeDistiller [10] to com-
pare original revisions with modified revisions for MCs and
SCs. If compared revisions contain syntax errors, ChangeDis-
tiller often throws exceptions and produces no changes. As a

precision = recall =



TABLE IV
RESULTS OF SYNCHRONIZING REAL CHANGES

[ Project || #CI | #MC | #C | #1 || P | [ T [ Pl | P2 | P3 || Rl | RZ | R3 |
JEdit 598 | 3.876 | 3.283 | 2094 || 920% | 772% | 71.1% || 214% | 6% | 72.6% || 17.9% | 2.8% | 19.3%
JFreeChart || 340 | 2,080 | 1,852 | 1,165 || 953% | 849% | 753% || 135% | 7.1% | 194% || 12.9% | 4.7% | 82.4%
THotDraw || 1,830 | 13,257 | 12,331 | 11,418 || 926% | 86.1% | 76.6% || 156% | 5.8% | 78.6% || 10.8% | 44% | 84.8%
Columba 450 | 1,854 | 1819 | 1,682 || 925% | 90.7% | 81.6% || 10.7% | 5.6% | 83.1% || 81% | 3.8% | 87.5%
OSWorkflow || 266 | 1,526 | 1,513 | 1,277 || 844% | 83.6% | 744% || 13.5% | 94% | 77.1% || 102% | 53% | 84.5%

[ Total || 3484 | 22,593 | 20,798 | 19,136 || 92.0% | 84.7% | 76.0% || 156% | 62% | 782% || 119% | 4.1% | 84.0% |

#CIL: #clone instances; #N: #(MC N SC); P: Precision; R: Recall; I: Identical; P1: [0,0.5); P2: [0.5,1); P3: 1; R1: [0,0.5); R2: [0.5,1); R3: 1.
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result, if we identify a MC and a SC are identical, the two
changes are identical, and do not introduce compilation errors.

2) Result: Table IV shows the results.

Column “#CI” lists the number of clone instances in all
revisions for each project. Due to the change of file name,
class name, or method name, some clone pairs cannot be
matched in the next revision and the MC cannot be extracted,
so we exclude these clone instances in each revision. That’s
why the number of clone instances here is not coincident with
the number of co-change clone pairs in Table IIIl. Column
“#MC” lists the number of extracted Manual Changes of all
revisions. Column “#SC” lists the number of Sync Changes
of all revisions. Column “#N” lists the number of identical
changes between MCs and SCs of all revisions.

Columns “P” and “R” show precisions and recalls, respec-
tively. In total, the precision and the recall are 92% and 84.7%,
respectively. That is to say, most SCs are quite similar with
MCs. However, a clone instance can have multiple changes
to be synchronized, and it is essential to understand how
many synchronized clone instances are identical with manually
changed code. Column “I” shows ratios of clone pairs whose
SCs are identical to MCs. In total, the results show that in
76% of the clone pairs, SCs are identical with MCs.

Columns “P1”, “P2” and “P3” show the distribution for
precisions. In particular, Column “P1” lists the ratios of the
clone instances whose precisions are below 50%. Column
“P2” lists the ratios of the clone instances whose precisions
are between 50% and 99%. Column “P3” lists the ratios of
the clone instances whose precisions are 100%. We find that
CCSync achieved high precisions (100%) on 78.2% of clone
pairs; middle precisions (50% to 99%) on 6.2% of clone pairs;
and low precisions (below 50%) on 15.6% of clone pairs.

Columns “R1”, “R2” and “R3” show the distribution for
recalls. Column “R1” lists the ratios of the clone instances
whose recalls are below 50%. Column “R2” lists the ratios of

the clone instances whose recalls are between 50% and 99%.
Column “R3” lists the ratios of the clone instances whose
recalls are 100%. We find that CCSync achieved high recalls
(100%) on 84.0% of clone pairs; middle recalls (50% to 99%)
on 4.1% of clone pairs; and low recalls (below 50%) on 11.9%
of clone instances.

In summary, our results show in total, 76% of synchronized
clone instances whose SCs are identical with MCs. In partic-
ular, CCSync achieved 100% precisions or recalls on many
clones instances, i.e., 72.8% or 84% respectively. The results
highlight the effectiveness of CCSync on synchronizing real-
world clone pairs.

3) Discussion: Still, our tool achieves low precisions and
recalls (<50%) on a small portion of clone pairs (about 10%).
After manual inspection, we identify the following issues:

1. Their synchronization rules conflict with programmers’
intention. For example, when programmers insert a statement
to a clone instance, they may not insert the same statement to
the other clone instances.

2. The clone instances of a clone pair are not co-changed at the
same revision but are co-changes in the latter revisions. For
example, a clone instance was changed in Revision 10, but
its clone instance was changed in the same way in Revision
11. Barbour et al. [2] call this type of changes as the late
propagation in clones and point out that in many cases, the
late propagation indicates bugs. These cases highlight the im-
portance of our approach, since our synchronized code avoids
the late propagation. However, they reduce both precisions and
recalls since we consider that manual changes happened in the
same revision as the golden standard in our evaluation.

3. CCSync inherits the limitations of the matching algorithm
(i.e, LCS) in MCIDiff, and the limitation can lead to changes
in wrong places. For example, if a left-side clone instance
has a construct (e.g., a parenthesis “}”) and the right-side
clone instance has two consecutive identical constructs (e.g.,
“1}”), CCSync can mismatch them and cause the wrong
synchronization eventually.

C. RQ3: Synchronizing Clone Groups

1) Setup: We collected clone groups that were detected by
ConQAT with the same parameters in Section V-A. From the
detected clone groups, we excluded the ones which are not
modified and the ones whose code fragments are not similar at
all. According to the number of clone instances, we classified
them into 3 categories: |CG|= 3, |CG|= 4 and |CG|> 5,
where |CG] is the size of a clone group. As shown in Table V,



TABLE V
RESULTS OF SYNCHRONIZING CLONE GROUP
[I[CGI[#CG [ #MC | #sC | #1 | P | R | 1 |
3 74 | 1,053 | 902 | 614 | 68.1% | 58.3% | 40.5%

3 38 | 798 | 710 | 354 | 499% | 444% | 263%

>5 | 20 | 578 | 492 | 158 | 32.1% | 273% | 15.0%
[Total | 132 [ 2,429 | 2104 | 1,126 | 53.5% | 464% | 32.6% |

|CG]: size of clone group; #CG: #clone groups; #N: #MC N SC); P:
Precision; R: Recall; I: Identical;

Column “#CG” lists the number of clone groups. We repeated
the evaluation in Section V-B on the clone groups.

2) Result: Table V shows the results. The last row of
Columns P and R shows that in total, the precision and the
recall for synchronizing clone groups are 53.5% and 46.4%,
respectively. In total, Column I shows that in 32.6% of clone
groups MCs and SCs are identical. Compared with Table IV,
the precisions and recalls are relatively lower. In particularly,
with more clone instances in a clone group, the precisions and
recalls become lower.

3) Discussion: We analyzed clone groups whose precisions

or recalls are below 50%, and we found the following issues:
1. Synchronization rules can conflict with programmers’ in-
tention. This problem affects synchronizing clone pairs, and
becomes even more serious with the increasing of clone
instances in a clone group. In particular, even when two clone
instances of a clone group need to be synchronized, the other
clone instances may not. This limitation leads to the low
precisions in Table V.
2. Two clone instances of a clone group have some common
code constructs, but other clone instances of the clone group
do not have such common code constructs. As CCSync does
not detect such common code constructs, some changes are
neglected, which leads to the low recalls in Table V.

The results for synchronizing clone groups can be improved
with better rule inference techniques. In addition, as CCSync
allows customizing rules, it is feasible to improve the pre-
cisions and recalls with manual customization. In particular,
after disabling the actions of several inferred synchronization
rules, we improve the precisions to more than 70%.

D. Threats to Validity

The threat to construct validity includes the detected code
clones. As code clones are not explicit, we have to use the
tool, ConQAT, to detect code clones. Its detected code clones
may not represent real development. To reduce the threat,
we carefully tuned ConQAT, and the threat could be further
reduced by introducing experienced programmers to identify
code clones. The threat to external validity includes our
selected projects. Although we selected hundreds of revisions
for each project in our study, the revision ranges do not reflect
the whole picture of projects. In addition, the selected projects
might not represent all projects. The threat could be reduced
by introducing more projects in future work.

VI. DISCUSSION AND FUTURE WORK

Synchronizing quite different code clones. CCSync contains
two major components such as inferring rules and synchro-

nizing code clones with rules. When inferring rules, CCSync
compares ASTs for common code structures. Comparing with
the state-of-the-art approach [30], CCSync has the potential to
handle more different code clones, since its generated multisets
have both mapped constructs and unmapped constructs. Fur-
thermore, it is feasible to extend CCSync to infer rules for even
more different code clones. For example, in RQ1, we extract
co-changes from revisions, and these extracted co-changes are
useful to infer rules. With more advanced techniques to infer
rules, CCSync can synchronize more different code clones.

Comparing with the state-of-the-art tool. We did not com-
pare CCSync with the state-of-the-art tool [30], since it is
not publicly available. To present the benefits of CCSync, we
carefully select arguments for ConQAT so that the underlying
tool can detect Type III clones for synchronization, while the
state-of-the-art tool can synchronize Type I and Type II clones.

VII. RELATED WORK

Our approach is related to the following research fields:
Clone Management. Duala-Ekoko et al. [6], [7] introduce a
tool called CloneTracker that can provide the developers with
the assists to track evolutionary clone groups. It uses CRD,
a light-weight clone region descriptor to build the correspon-
dence between the clone groups in the consecutive versions.
Nguyen et al. [30] introduce a clone management tool called
JSync to detect the code clone and help developers to make
consistency changes when the create or modify cloned code.
Lin et al.[23] propose a clone-based and interactive approach
to assist the developers to edit and modify copy-paste code.
CCSync can synchronize code clones whose structures are
quite different, complementing the above approaches. Thus, it
further reduces the harmfulness of editing clone clones [35].
Code Translation. It has been a hot research topic to translate
code from one form to another. Zhong et al. [41] propose
an approach that supports translating between Java and C#,
and their empirical studies [40], [32] analyze various issues
in this research direction. Gokhale et al. [11] and Nguyen et
al. [29] improve their approach from different inputs and more
advanced techniques, respectively. Meng et al. [27] propose an
approach that translates code by examples. These approaches
translate code from only one direction. Our approach compli-
ments these approaches, since it is bidirectional and fits the
needs of clone synchronization. Zhang et al. [38] propose an
approach that updates similar code based on a predefined diff
file. Their approach can update clones with similar structures,
while our approach is able to synchronize code clones in quite
different structures.

Code Refactoring. Tsantalis ez. al [33] conduct an empirical
study on the refactorability of software clone, and summarize
how refactorability is affected by different clone properties.
Kim et al. [18] conduct a field study and analyze challenges
in refactoring. With the support of our approach, it is feasible
to implement a tool that allows programmers to update a
piece of refactored code, and to reflect its revisions to the
original code. In particular, our approach can be applied to
maintain the consistency between code fragment before and



after refactoring. When the programmers selectively undo
the refactoring [5], the synchronized code fragment before
refactoring can be provided.

VIII. CONCLUSION

In this paper, we present a rule-directed approach to syn-
chronizing code clones and implement a tool CCSync. CCSync
utilizes the generated rules to synchronize most of the clone
pairs effectively. Our evaluation has shown that CCSync can
play an important role in synchronizing clone pairs and it has
precision over 92% and recall over 84%. In particular, more
than 76% of our generated revisions are identical with manual
revisions. In addition, allowing to tailor the actions manually
helps to make a difference between the changes that need not
be propagated and the ones that need.
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