
1

A Loop Optimization Technique Based on Quasi-
Invariance

Litong Song1, Yoshihiko Futamura1, Robert Glück1, Zhenjiang Hu2

1 Dept. of Information and Computer Science, Graduate School of Science and Engineering, Waseda
University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-0072, Japan,

E-mail: {slt, futamura}@futamura.info.waseda.ac.jp, glueck@acm.org
2 Dept. of Information Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan,

E-mail: hu@ipl.t.u-tokyo.ac.jp

Abstract
Loop optimization plays an important role in
compiler optimization and program transformation.
Many sophisticated techniques such as loop-
invariance code motion, loop restructuring and loop
fusion have been developed. This paper introduces a
novel technique called loop quasi-invariance code
motion. It is a generalization of standard loop-
invariance code motion, but based on loop quasi-
invariance analysis. Loop quasi-invariance is similar
to standard loop-invariance but allows for a finite
number of iterations before computations in a loop
become invariant. In this paper we define the notion
of loop quasi-invariance, present an algorithm for
statically computing the optimal unfolding length in
While-programs and give a transformation method.
Our method can increase the accuracy of program
analyses and improve the efficiency of programs by
making loops smaller and faster. Our technique is
well-suited as supporting transformation in compilers,
partial evaluators, and other program transformers.

1. Introduction
Loop-invariance code motion is a well-known loop
transformation technique that plays an important role
in compiler optimization. When a computation in a
loop does not change during the dynamic execution
of the loop, we can hoist this computation out of the
loop to improve execution time of the loop. For
example, the evaluation of expression I×10 is loop-
invariant in the following loop: while i<I×10 do
s:=s+i; i:=i+1; endwhile. A more efficient program
is: t:=I×10; while i<t do s:=s+i; i:=i+1; endwhile.
 Traditional transformations move out of loops the
following: (i) computations that are invariant during
all loop iterations (loop invariant code motion [1]),
(ii) computations that are invariant after the first
iteration, (loop peeling, e.g., [23]), (iii) computations
that are conditionally invariant (e.g., speculation
motion [11]).

 Techniques for code motion are basically limited
to loop-invariant computations, this can be a problem
in automatically produced programs. Consider the
digital circuit in Fig. 1, which is simulated by the
program in Fig. 2, where the simulation is carried out
for T steps. We use f, g and gi to denote functions
simulating blocks.
 y

 x1 x2 x3

 g1 g2 g3

 c1 c2 c3

 Fig. 1. A sequential digital circuit.

while t<T do
 x3:=g3(x2,c3);
 x2:=g2(x1,c2);
 x1:=g1(c1);
 y:=f(g(x1,x2,x3),y);
 t:=t+1;
 endwhile.
 Fig. 2 A simulation program for Fig. 1.

 With traditional code motion technique, we can
only hoist g1(c1) out of the loop, and save it using a
fresh variable. In fact, we can obtain a more efficient
code (Fig. 3) by unfolding the original loop three
times:

 if t<T then /* loop 1 */
 x3:=g3(x2,c3);
 x2:=g2(x1,c2);
 x1:=g1(c1);
 y:=f(g(x1,x2,x3),y);
 t:=t+1;

 g

 f

2

 if t<T then /* loop 2 */
 x3:=g3(x2,c3);
 x2:=g2(x1,c2);
 y:=f(g(x1,x2,x3),y);
 t:=t+1;
 if t<T then /* loop 3 */
 x3:=g3(x2,c3);
 y:=f(g(x1,x2,x3),y);
 t:=t+1;
 _g:= g(x1,x2,x3);
 while t<T do /* residual loop */
 y:=f(_g,y);
 t:=t+1;
 endwhile;
 endif endif endif

Fig. 3 The program after loop quasi-invariance code
motion of Fig. 2.

 In loop 1, the invariance of g1(c1) results in the
invariance of x1, and the same assignment to x1 in the
following iterations can be removed safely. In loop 2,
the invariance of g2(x1,c2) results in the invariance of
x2, and the assignments to x2 afterwards can be safely
removed too. For the same reason, the assignment to
x3 in loop 3 can be removed.

For the residual loop, after x1, x2 and x3 have turned
into loop-invariant variables, g(x1,x2,x3) becomes a
loop-invariant computation. Applying traditional code
motion technique to the remaining loop will yield the
residual loop above (Fig. 2).

Table 1 shows the speedup where functions g1, g2,
g3, g, f, t and T are defined in Appendix 1.

Table 1. The comparison of the runtime of the loop in
Fig. 2 and the program in Fig. 3.

System

Gateway E5250
Pentium II xeon×2
Speed: 450MHZ
Memory: 1GB,
Visual C++ 6.0

Sun ULTRA 5
SunOS 5.6
Speed: 270MHZ
Memory:192MB
Gcc 2.7

Runtime Speed up Runtime Speed up
Source 22sec 1 25sec 1

Result 5sec 4.4 5sec 5

 To conclude, we have seen that a full optimization
of the program in Fig. 2 is not possible by traditional
code motion, because some of the computations in the
loop are stabilize only after a finite number of
iterations. It is clear that a hand-optimization of
program may be error-prone and tedious, and the initial
specification of the circuit may change. This is why we
are looking for an algorithmic solution.
 The main contributions of this paper are:

• a formalization of loop quasi-invariance and optimal
unfolding length for a loop,
• a static quasi-invariance analysis for computing the
optimal unfolding length for any given loop in a
program which allows to remove all quasi-invariant
variables from a loop while avoiding over-unfolding,
• a loop transformation technique using the results of
the analysis,
• an illustration of the effect of loop quasi-invariance
code motion on program transformation, in particular
partial evaluation.

2. Preliminaries
We define a source language and summarize the
single static assignment form.

2.1 While-language
We introduce an imperative While-language. The
syntax is given in Fig. 4, the semantics is as in Pascal.
A While-program is a sequence of statements. Each
statement is either an assignment, a conditional, a
while loop, a function call, or a skip statement. For
simplicity of the technical presentation, we assume a
call-by-value semantics for functions, and we treat all
functions as primitive operations and assume they are
free of side effects.

 SS ::= S | S; SS
 S ::= Ass | Cond | Loop | Call | skip
 Ass ::= V:=E
 Cond ::= if E then SS else SS endif
 | if E then SS endif
 Loop ::= while E do SS endwhile
 Call ::= F(E*)
 E ::= Variable | Constant | Op(E*) | Call
 Op ::= + | – |× | /
 Fig. 4 The syntax of the While-language.

2.2 Single Static Assignment
This section summarizes the single static assignment
form (SSA) [17]; readers familiar with SSA form
may only want to look at the format of a while loop
(Fig. 8). SSA form is a program representation in
which there is only one assignment to each variable
in the program and every use of a variable is defined
by such an assignment. SSA form is important for
program optimization.
 Consider the following example:
 while i<100 do
 x:=1; …x…;
 x:=i+2; …x…;
 i:=i+1;
 endwhile

3

 There are two assignments to variable x inside the
loop. After one iteration variable x in assignment
“x:=1” becomes invariant, but we can not move the
assignment out of the loop because the value of x in
the first use after the assignment would become equal
to the value of x defined in assignment “x:=i+2”
which is not correct.
 The purpose of the SSA form is to represent data
flow properties of a program in a normalized form.
Many compilers use SSA or intermediate
representation where a program is transformed into
SSA form, optimized, and then transformed back to
the original syntax. We follow the same approach.
 Let us summarize the SSA form. First, the variable
on the left-hand side of each assignment is given a
unique name, and all of its uses are renamed
correspondingly (Fig.5). Second, if the use of a
variable x can be reached by two or more definitions,
which maybe the case after a conditional, a special
form of assignment called a φ-function, is added at
the join point. The operands of the φ-function
indicate which assignments to x reach the join point.
Subsequent uses of x become uses of φ-function
value. We call the values assigned by φ-function as
virtual variables. This is illustrated in Fig. 6.

 x:= 1; … := x+2; x1:= 1; … := x1+2;
 x:= 3; … := x+4; x2:= 3; … := x2+4;
 Fig.5. Straight-line code and its SSA form.

 if e then x:= 1; if e then x1:= 1;
 else x:= 2; endif else x2:=2; endif;
 x3:=φ(x1, x2);
 Fig. 6 An if-statement and its SSA form.

 An efficient algorithm that converts a program into
SSA form and works essential linear in the size of the
original program has been proposed in [6]. The
following example (Fig. 7) briefly explains the
transformation. We are not interested in what the
program does, only in illustrating the SSA form.

 while i≤0 do
 w:=w+103×x3+102×x2+10×x+1;
 x:=u+1;
 if even(i) then y:=z+1; else y:=v; endif;
 y:=x;
 if z>0 then y:=1; if z>v then y:=z+1; endif
 endif;
 if z>1000 then y:=y+1; else y:=i; endif
 u:=z–1;
 z:=v+1;
 i:=i+1;

 endwhile.
 Fig. 7 An original loop.

 Using SSA technique, the loop is transformed into
SSA form (Fig. 8). Note that we assume any loop in
SSA form is in the form of while [ss1] e do ss2

endwhile, where ss1 is a series of inserted
assignments which should be executed before testing
the entry condition and ss2 is the body of the loop
after SSA transformation.

 while [i1:=φ(i0,i2);
 x1:=φ(x0,x2);
 y1:=φ(y0,y12);
 u1:=φ(u0,u2);
 z1:=φ(z0,z2);
 w1:=φ(w0,w2);
] i1≤0 do
 w2:=w1+103×x1

3+102×x1
2+10×x1+1;

 x2:=u1+1;
 if even(i1) then y2:=z1+1; else y3:=v; endif;
 y4:=φ(y2,y3);
 y5:=x2;
 if z1>0 then y6:=1;
 if z1>v then y7:=z1+1; endif;
 y8:=φ(y6,y7);
 endif;
 y9:=φ(y5,y8);
 if z1>1000 then y10:=y9+1; else y11:=i1; endif;
 y12:=φ(y10,y11);
 u2:=z1–1;
 z2:=v+1;
 i2:=i1+1;
 endwhile.
 Fig. 8 The SSA form of the loop in Fig. 7.

3. Variable Dependency Graph
The loop transformation we want to perform depends
on the loop quasi-invariant variables and the unfolding
length of loops. Before we define these notions, we
introduce two variable dependency relations and
variable dependency graph to perform our quasi-
invariance analysis. First, we assume a loop contains
only assignment, then we extend our discussion to
conditionals and nested loops. Here and in the
remainder of this paper, we assume that all source
programs are represented in SSA form.

3.1 Variable Dependency Graph
For any assignment v:=e, we assume that the value
of v directly depends on all variables used in e. We
can define a variable dependency relation as follows.
Definition 1 (∠ relation). Let o be a loop, x, y be two

4

variables assigned to inside o. If the value of x
depends on that of y, then the dependency relation
between x and y, is denoted by x∠ y (called ∠
relation).
 Within relation ∠ , we can distinguish another
variable dependency relation.
Definition 2 (! relation). Let o be a loop, x, y be two
variables defined inside o, and x∠ y. If y is assigned
to inside o after being used by x inside o, then the
dependency relation between x and y, is denoted by
x!y (called ! relation).
 To formalize loop quasi-invariance, we introduce a
directed graph called variable dependency graph.
Definition 3 (Variable dependency graph). Let o be a
loop. The variable dependency graph (VDG) of o is
a directed graph where Node(o)={x | variable x is
defined in o} and Edge(o)={x→y | (y∠ x)∧¬ (y!x)}∪
{x➙ y | y!x}.
 For example, for the loop in Fig. 2, we have the ∠
relations: {x2∠ x1, x3∠ x2, y∠ x1, y∠ x2, y∠ x3, y∠ y, t∠ t},
the ! relations: {x2!x1, x3!x2, y!y, t!t}, and the VDG
in Fig. 9, where relations ∠ and ! are indicated by thin
and thick edges, respectively. Note that there is only one
assignment to one variable in Fig. 2, for concision we
ignore the SSA form of Fig. 2 but only use the original
form of Fig. 2.

 x1

 x2 x3

 t y

 Fig. 9 The variable dependency graph of Fig. 2.

3.2 Loop Quasi-Invariant Variable
Based on VDG, we now give a formal definition of
loop quasi-invariant (LQIV) variable.
Definition 4 (LQIV). Let o be a loop. For any node x
on the VDG of o, variable x is loop quasi-invariant
(LQIV) variable of loop o, if among all the paths
ending in x, there is no path which contains a node
that is a node on a circular path.
 Furthermore, we can give a formal definition of
invariant length of LQIV variable.
Definition 5 (Invariant length). Let o be a loop. For
any LQIV node x (x is a LQIV variable of o) on the
VDG of o, the invariant length of x IL(x,o)=def

1+max{n | n=the number of ➙ edges on a path ending
in node x}.
 For any LQIV variable x of a loop o, IL(x,o) means

that x will be turned into loop-invariant variable after
IL(x,o) iterations of o.
Proposition 1. Let o be a loop and x be LQIV of o. If
x(n) is used to represent the value of x after n
iterations of o, then ∀ n≥IL(x,o).(x(n+1)=x(n)).
 The proposition is proven by induction over n; proof
omitted. Based on the invariant lengths of the LQIV
variables inside a loop, we can directly infer how many
times the loop should be unfolded.
Definition 6 (Unfolding length). Let o be a loop. If
there exists LQIV variable inside o, then the
unfolding length of o UL(o)=def max{IL(x,o) | x is
LQIV and not a virtual variable of o}.
 For Example, in the program of Fig. 2, we have
LQIV variables x1, x2, x3 and IL(x1,o)=1, IL(x2,o)=2,
IL(x3,o)=3, UL(o)=3.
 Virtual variables are newly inserted variables and
they will be removed at unfolding time. Therefore,
the invariant lengths of virtual variables are ignored
in the definition of the unfolding length.
 According to Definition 4, there exists no circular
path ending in a LQIV node x. Therefore, the number
of edges in all paths ending in x is finite, and the
invariant length of x is finite. This ensures the
termination of the analysis and loop unfolding. After
a loop o is unfolded UL(o) times, all LQIV variables
in the residual loop of o become invariant and can be
removed from the residual loop.

4. Conditionals in Loops
The variable dependency relation defined above is
induced by assignment statements. As in other static
analysis techniques, conditionals induce new variable
dependencies. New dependencies are induced
between the variables used in the test of a conditional
and the variables defined in the branches of the
conditional. We distinguish two cases:
CASE 1: if op(y1,…,yn) then … xi:=…; …
 else … xj:=…; … endif;
 xk:=φ(xi, xj);
 Whether the assignment to xi and xj can be
removed from the conditional depends on the
variables used in expression op(y1,…,yn). If one of the
variables y1,…,yn is not LQIV, which means that the
value of op(y1,…,yn) may change at run time, none of
the assignments to xi and xj can be removed even if
they would otherwise be LQIV variables. This kind
of dependency relation between xi, xj and y1,…,yn can
be expressed by adding dependency relations
between xi, xj and y1,…,yn: xj∠ y1,…,xj∠ yn;
xi∠ y1,…,xi∠ yn. We say, these relations are induced
by the conditional.
CASE 2: xj:=…;

5

 if op(y1,…,yn) then … xi:=…; …
 else … endif;
 xk:=φ(xi, xj);
 This is similar to CASE 1, except that the assignment
to xj is laid out of the conditional but not in one branch.
For the same reason as in CASE 1, we need to establish
the dependency relations between xi, xj and y1,…,yn:
xi∠ y1, …, xi∠ yn; xj∠ y1, …, xj∠ yn;
 Before xj becomes loop-invariant, assignment
xi:=… can not be removed. (otherwise xk will always
be equal to xj, which is not correct.) Therefore we add
dependency relation xi∠ xj. (we also say, this relation
is induced by the conditional.)
 After we get the variable dependency relations
induced by the conditionals in a loop, we must transfer
the same relations from virtual variables to their
operands via the corresponding φ-function. This is
necessary because virtual variables will be removed
afterwards, (as discussed in Section 6.) and the
dependency relations (from virtual variables to other
variables) induced by conditionals are actually the ones
between their operands and other variables. Moreover,
if the operands of virtual variables are also virtual
variables, the dependency relations have to be
transferred further. We now define how the dependency
relations induced by conditionals in a loop o are
transferred via virtual variables. For any a dependency
relation x∠ y directly induced by the conditionals like
CASE 1 and CASE 2, we use a function called CS to
evaluate the above-mentioned transitive closure of
relation x∠ y.

 { } if x and y are identical
 CSo(x1, y)∪ CSo(x2, y)
 CSo(x, y)=def if x is a virtual variable of o

 defined by x:=φ(x1,x2)
 {x∠ y } otherwise

 Let Cond_Rel(o) be the set of variable dependencies
directly induced by the conditionals in loop o, (as
defined in CASE 1 and CASE 2.) and Vars(o) be the set
of all variables defined in o. Then we define VS(o) (the
set of all the relations derived from Cond_Rel(o),
including Cond_Rel(o)) as follow:

VS(o)=def " "
Vars(o)x l(o)ReCond_yxVars(o)y

o y),(xCS
∈ ∈∠∧∈














For example, let a loop contain the conditional:
 x1:=1;
 if i>j then if k>5 then x2:=2; else x3:=3; endif;
 x4:=φ(x2,x3); endif;
 x5:=φ(x1,x4);
 We can derive all the dependency relations induced
by the conditional as follows:

 x1∠ i, x1∠ j;
 x2∠ i, x2∠ j, x2∠ k, x2∠ x1

 x3∠ i, x3∠ j, x3∠ k, x3∠ x1;
 x4∠ i, x4∠ j, x4∠ x1

 We now present the VDG (Fig. 10) of the program
in Fig. 8, where white nodes indicate variant
variables, grey nodes indicate LQIV variables, and
names of virtual variables are written italic. Relations
∠ and ! are shown as thin and thick edges,
respectively. According to Fig. 10, LQIV variables
and their invariant lengths can be easily derived.
LQIV variables: {z1, z2, x1, x2, y5, y6, y7, y8, y9, y10, u1,
u2}; IL(z1)=2, IL(z2)=1, IL(x1)=4, IL(x2)=3, IL(y5)=3,
IL(y6)=3, IL(y7)=3, IL(y8)=3, IL(y9)=3, IL(y10)=3,
IL(u1)=3, IL(u2)=2. Because x1 is a virtual variable,
unfolding length UL(o)=3.
 For any loop in the form of while [ss1] e do ss2

endwhile, only the variables defined in ss1 depend on
the variables that will be statically assigned
afterwards. For example, in Fig. 8, y1 depends on y0

and y12, where y12 will be assigned afterwards.

 y10 y12 y1

 y9 y8 y11

 y5 y7

 y6

 w2 x2 z1 z2 y4 y3

 w1 x1 u1 u2 y2 i1 i2

Fig. 10 The variable dependency graph of Fig. 8.

5. An Algorithm for LQIV Analysis
LQIV analysis consists of two phases. The first
phase detects the dependency relations between the
variables defined in a loop, the second phase finds
all LQIV variables, computes their invariant lengths
and the loop’s unfolding length.
 The second phase is the heart of the analysis. The
algorithm for the second phase is given below. It is
based on the classical algorithms by Warshall [22]
and Floyd [8]. The time complexities of Warshall
algorithm and Floyd algorithm are O(n3) in the worst
case where n is the number of variables in the given
loop. The first phase is not shown here; it can be
done while parsing a program.

6

 We assume that there are n variables (denoted
with v1,…,vn) in a loop o, the relations ∠ and !
between v1,…,vn have been stored in a Boolean n×n
matrix R∠ and an integer n×n matrix R!, respectively,
where for any two variables vi and vj, if vi∠ vj then
R∠ [i,j]=1 else R∠ [i,j]=0 and if vi!vj then R![i,j]=1
else R![i,j]=0.
Algorithm (for LQIV analysis to singular loop):
Input: R∠ , R!.
Output: the set (Lqivs) of all the LQIV variables, the

invariant lengths of these LQIV variables, and
the unfolding length (UL) of o.

Begin
 { Based on Warshall algorithm, computing all the
 LQIV variables assigned to inside loop o. }
 R1∠ :=R∠ ;
 for i=1 to n do
 for j=1 to n do
 if R1∠ [j,i]=1
 then for k=1 to n do
 R1∠ [j,k]:=R1∠ [j,k]∨ R1∠ [i,k];
 endfor
 endif
 endfor endfor
 Lqivs:={ i | ∀ i(1≤i≤n)∀ j(1≤j≤n).(R1∠ [i,j]=1→R1∠ [j,j]≠1)};
 { Based on Floyd algorithm, computing the invariant
lengths of all LQIV variables and the unfolding length of
o. Remark: all the variables in Lqivs and all dependency
relations among these variables can be viewed as a
directed graph, where any node represents a LQIV
variable and any edge between two nodes represents ∠
or ! relation between the two variables. Therefore, the
invariant length of any LQIV variable is actually
equivalent to the longest path ending in the variable, if
the length of any ∠ edge is defined as 0 and that of any
! edge is defined as 1. }
 R1!:=R!;
 for any i∈ Lqivs do
 for any j∈ Lqivs do
 for any k∈ Lqivs do
 if R1∠ [j,i]=1∧ R1∠ [i,k]=1∧ R1∠ [j,k]=1
 then if R1![j,i]+R1![i,k]>R1![j,k]
 then R1![j,k]:=R1![j,i]+R1![i,k]; endif;
 endif;
 endfor endfor endfor
 for any i∈ Lqivs do IL[i]:=0; endfor;
 for any i∈ Lqivs do
 IL[i]:=1+max{ R1![j,i] | j∈ Lqivs };
 endfor;
 UL:= max{ IL[i]] | i∈ Lqivs∧ i∉ virtual variables };
End.

6. Loop Transformation
The purpose of loop transformation is to remove all
LQIV variables from a given loop. The unfolding
length computed by the algorithm in the previous
section tells us how many iterations are needed
before all LQIV variables become invariant. The
loop transformation is based on decomposing the
loop into two loops where the first loop iterates
UL(o) times to compute the values of the LQIV
variables and the second loop is the remained loop
after code motion. In the process of code motion,
variable renaming is necessary.

6.1 A Note on Variable Renaming
When generating code for a loop represented in SSA
form, we have to remove all assignments to virtual
variables and to rename their uses correspondingly.
Below we define how to rename variables.
 For any virtual variable x, (assume it is defined as
x:=φ(y,z).) all the uses of x are actually the uses of y
or z. If x:=φ(y,z) is removed then all the uses of x will
become undefined. Therefore, we must use same
name for x, y and z so that all uses of x will naturally
become the uses of y and z. We are going to discuss
the problem in the following 2 cases.
CASE 1: y or z is also virtual variable.
 When y or z is a virtual variable, we have the same
situation as with x and its operands should also be
renamed using the same name. The process continues
recursively until no new virtual variables are met.
CASE 2: x is an operand of another virtual variable.
 When x is an operand of another virtual variable
(e.g., w:=φ(v,x)), by the same reason, w, v and x
should also be renamed using the same name. The
process continues recursively until no new virtual
variables are met.
 We now define which variables should be renamed
using the same name in a loop o. For this purpose, we
define function RE which determines the set of
variables that should be renamed using the same name.
 {x} if x is not a virtual variable
REo(x)=def {x}∪ REo(x1)∪ REo(x2)∪ RE’o(x)
 if x is a virtual variable defined
 by x:=φ(x1,x2)

 { } if x is not an operand of another
 virtual variable
RE’o(x)=def {y}∪ REo(z)∪ RE’o(y)

 if x is an operand of another
 virtual variable y defined by
 y:=φ(x,z) or y:=φ(z,x)

For example, in Fig. 8 there are five φ-function
assignments to y: y1:=φ(y0, y12), y4:=φ(y2, y3), y8:=φ(y6,

7

y7), y9:=φ(y5, y8), y12:=φ(y10, y11). The variables in set
REo(y1)=REo(y12)={y1, y0, y12, y10, y11}, REo(y4)= {y4, y2,
y3}, REo(y8)=REo(y9)={y8, y6, y7, y9, y5} should be
renamed using the same name respectively (e.g., y, Y2,
Y3). Similarly, the variables in each of the sets {x1, x0,
x2}, {i1, i0, i2}, {u1, u0, u2}, {z1, z0, z2}, and {w1, w0,
w2} should be renamed using the same names (e.g., x,
i, u, z, w).

6.2 Loop Transformation
In transforming a loop, there are two methods. On the
one hand, we can unfold a loop by adding unfolding
length copies (strictly, not full copies) of the loop to
residual loop. On the other hand, these copies can
also be organized into a loop, and thus the residual
code never contains more than two loops. We discuss
here only loop decomposition in the following.

Code Motion by Loop Decomposition
Concretely, if there is a loop o in Fig. 11(a), then it
can be transformed into two loops in Fig. 11(b).
Remark: as a special case, if UL(o)=1 then a
conditional can be used instead of the first loop.

while e do ss; endwhile;
 (a). An original loop.

counter=0;
while e∧ (counter<UL(o)) do
 ss1;
 counter:=counter+1;
endwhile;

 while e do ss2; endwhile;
 (b). The transformed residual code.

Fig. 11 The transformation based on LQIV code motion.
Note that ss1 indicates the full copy (except variable
renaming) of ss, and ss2 indicates the ss after LQIV

code motion.

 Obviously, the space taken up by the residual code
will be less than twice the space taken up by the
original loop, and thus has a modest impact on the
overall code size. This is useful when the optimal
unfolding length is large.
 For example, we can transform the loop in Fig. 8 into
the residual code in Fig. 12 where expression
103×x3+102×x2+10×x+1 can be moved outside the
residual loop. A formalization for transformation is
given in Appendix 2.

 counter:=0;
 while i≤0∧ counter<3 do

 w:=w+103×x3+102×x2+10×x+1;
 x:=u+1;
 if even(i) then Y2:=z+1; else Y2:=v; endif;
 Y3:=x;
 if z>0 then Y3:=1;
 if z>v then Y3:=z+1; endif;
 endif;
 if z>1000 then y:=Y3+1; else y:=i; endif;
 u:=z–1;
 z:=v+1;
 i:=i+1;
 counter:=counter+1;
 endwhile
 while i≤0 do
 w:=w+103×x3+102×x2+10×x+1;
 if even(i) then Y2:=z+1; else Y2:=v; endif;
 if z>1000 then skip; else y:=i; endif;
 i:=i+1;
 endwhile
 Fig. 12 The residual code of the loop in Fig. 8.

 Compared with the original loop, in the residual
code, some new variables are introduced and thus the
other parts of the program containing the original
loop must be modified for consistence. For any
variable (e.g., x) defined in an original loop, there
must be an assignment like x1:=φ(x0,xn) in the
corresponding SSA form and only x1 is visible to the
outside of the loop, where, x0 refers to the x defined
out of the loop and xn refers to the x defined finally in
the loop. According to variable renaming, x1, x0, xn

will be renamed with same name. If we use x for the
name, then the variable consistence problem above
can be easily solved. However, the other new
variables (e.g., Y2 and Y3) have to be declared.

To give an indication of the speedup, Table 2 shows
the runtime of the original loop and the residual code,
where i=–108 and x=y=z=u=v=w=103.

Table 2. The comparison of the runtime of the original
loop in Fig. 8 and the residual code in Fig. 12.

System

Gateway E5250
Pentium II xeon×2
Speed: 450MHZ
Memory: 1GB
Visual C++ 6.0

Sun ULTRA 5
SunOS 5.6
Speed: 270MHZ
Memory: 192MB
Gcc 2.7

Runtime Speed up runtime speed up

Source 9sec 1 52sec 1

Result 3sec 3 30sec 1.73

7. About Nested Loops
In the previous section we considered the treatment

8

of conditionals inside loops. Nested loops can be
handled in a similar fashion. Here we give just a
short description because the methods introduced so
far can also handle the analysis of nested loops.
 From the viewpoint of an outer loop o, only linear
dependencies between the variables of an inner loop
q are interesting. A variable which is variant in q
may well be quasi-invariant in o (e.g., an inductive
variable of q is variant in q, but can be quasi-
invariant with respect to o). This means we are not
interested in cyclic dependencies local to inner loops
when analysing o. Conceptually, this can be done by
building a separate VDG for each loop o from a
program where all inner loops of o are viewed as
conditionals with empty else-branch (CASE 2 in
Section 4.), thereby avoiding the representation of
cycles local to the inner loops. In practice, more
efficient construction methods may exist.

8. Discussion of Applications
A program analysis has to compute a safe
approximation of information about the dynamic
behavior of a program. To compute such
information an analysis must consider all possible
computation paths and determine a safe
approximation of the collected information at each
point where control flow meets (usually done by a
least upper bound/greatest lower bound operation).
This situation is illustrated in Fig. 13(a) for the
program in Fig. 2 where information A and B is
merged to form a safe approximation C at the join
point. As long as information is propagated along
code sequences without join points, no such
approximation occurs.

 A

 B

 C=A∪ B
 (a). Program in Fig. 2. (b). Program in Fig. 3

Fig. 13 The control flow before and after LQIV code
motion.

 In comparison, the control flow of program Fig. 3 is
shown in Fig. 13(b). It should be clear that a program
analysis of the loop Fig. 3 will produce results that are
at least as good as those produced for the loop in Fig.
2, but potentially better. All loop quasi-invariant
computations have been moved outside the residual
loop; they are now invariant inside the loop. This

means any static analysis can in principle benefit from
the loop optimization.
 To illustrate the effect on a concrete program
analysis, consider offline partial evaluation, a well-
known program transformation method based on
constant propagation which is controlled by a
separate binding-time analysis (BTA). (We assume
the reader is familiar with the principles of partial
evaluation; for more details see the book [13].)

Let us consider a pointwise BTA where the
information computed by the analysis (“static”,
“dynamic”) is merged at each program point. In
addition, let the BTA dynamize static values under
dynamic control as done in the TEMPO specializer
for C [12]. In fact, the same technique is used when
inserting explicators in online partial evaluation (cf,
[15]).
 To compare the effect of loop quasi-invariant
code motion on the analysis, we specialize the
programs in Fig. 2 and Fig. 3. For simplicity we
shall treat functions f, g, g1, g2, g3 as primitive
operators at specialization time.
 Consider specializing the programs with respect
to the static values c1=c2=c3=true. The residual
programs are shown in Fig. 14(a) and (b)
respectively. The difference should be obvious. In
particular, observe that static value of g=true is
inlined in the residual loop Fig. 14(b) (possibly
triggering further static computations in a loop).
This is possible because all computations of LQIV
variables have been moved out of the loop. Since all
LQIV variables are invariant in the loop, their static
values be treated as constants inside the loop even
though the BTA strategy dynamizes static values
under dynamic control.

 while t<TMAX do
 x3:=g3(x2,true);
 x2:=g2(x1,true);
 x1:=true;
 y:=f(g(x1,x2,x3),y);
 t:=t+1;
 endwhile
(a). The result specializing the source program in Fig. 2.
 if t<TMAX

then x3:=g3(x2,true);
 x2:=g2(x1,true);

 y:=f(g(true,x2,x3),y);
 t:=t+1;
 if t<TMAX
 then x3:=g3(x2,true);
 y:=f(g(true,true,x3),y);
 t:=t+1;
 if t<TMAX

9

 then y:=f(true,y);
 t:=t+1;
 while t<TMAX do
 y:=f(true,y);
 t:=t+1;
 endwhile
 endif endif endif
(b). The result specializing the source program in Fig.3
 Fig. 14 as described in this section.
 To conclude, our technique may not result in
dramatic speedups, but has the potential to increase
the accuracy of program analyses and to trigger
stronger program optimizations which is of central
importance in almost any kind of program
transformation.

9. Related Work
Code motion is a well-known technique in compiler
optimization [1]. Code motion and loop-invariance
have many uses in the optimization of source
programs written in high-level languages as well as
target programs written in assembly language. (e.g.,
code generated for indexing multi-dimensional
arrays.) A comprehensive survey of different loop
transformations and other data-flow based compiler
optimizations can be found in [3]. However, none of
them considers the combination of code motion,
unfolding and loop quasi-invariance.
 A recently developed transformation is partial
redundancy elimination (PRE) which is a global
optimization technique generalizing the removal of
common subexpressions and loop-invariant
computations. Originally, implementation of PRE
failed to completely remove the redundancies. The
recently developed PRE algorithms based on control
flow restructuring [4, 11, 19, 20] can achieve a
complete PRE and are capable of eliminating loop-
quasi invariant code. However, these techniques are
usually exponential in the worst case and the
resulting code duplication may cause code size
explosion.
 Many optimization techniques can be formalized
conveniently using single static assignments,
including the elimination of partial redundancies
[17], constant propagation [14, 21], and code motion
[7]. We followed the same approach to express our
loop optimization technique.
 The notion of quasi-invariance grew out of work
on automatic program transformation, in particular
partial evaluation where the optimization of loops is
of central importance (e.g., [2, 10, 12, 15]). Our
technique statically determines a finite fixed point of
computations induced by assignments, loops and

conditionals and computes the optimal unfolding
length (e.g., to make maximal use of known
information while ensuring termination as shown in
Section 8). LQIV code motion may support other
static termination analyses, e.g., techniques for
detecting static bounded variation [10], and other
generalization techniques.

10. Conclusion and Future Work
In this paper we introduced LQIV code motion,
which is based on a static analysis for loop quasi-
invariance. The notion of loop quasi-invariance is
similar to the traditional notion of loop-invariance
but allows for a finite number of iterations before
computations in a loop become invariant.
 Our analysis determines the optimal unfolding
length needed to remove all quasi-invariant
computations from a loop while avoiding over-
unfolding. The residual loop becomes smaller and
faster. Our technique is well-suited as supporting
transformation in compilers, partial evaluators, and
other program transformers. It may not result in
dramatic speedups in large practical applications,
but has the potential to increase the accuracy of
program analyses and to trigger stronger program
optimizations which is of central importance in
almost any kind of program transformation. The
algorithms presented in this paper use the
infrastructure already present in many compilers,
such as control flow graphs and single static
assignments. Thus they do not require fundamental
changes to existing systems. To the best of our
knowledge more efficient quasi-invariant code
motion has not been considered earlier for program
optimization.
 It was shown [14] that standard constant folding
can provide useful speed up for large hand-written
programs, so loop quasi-invariance optimization
may also be beneficial for practical applications
written by hand. However, more should be known
about the effect of quasi-invariance code motion on
optimizing compilers. This and the application of
our technique to larger practical programs will be a
topic for future work.

Reference
 [1] Aho A. V., Sethi R., Ullman J. D., Compilers:

Principles, Techniques, and Tools. Addison-
Wesley, 1986.

 [2] Andersen L. O., Program analysis and
specialization for the C programming language.
Ph.D.Thesis, DIKU Report 94/19. Dept. of
Computer Science, University of Copenhagen,

10

1994.
[3] Bacon D. F., Graham S. L., Compiler

transformations for high-performance
computing, ACM Computing Surveys, Vol.26,
No.4, 345-420, December 1994.

[4] Bodik R., Gupta R., Soffa M. L., Complete
removal of redundant expressions, Proceeding
of the ACM Conference on Programming
Language Design and Implementation, 1-14,
ACM Press 1998.

 [5] Bulyonkov M. A., Kochetov D. V., Practical
aspects of specialization of Algol-like
programs, Danvy O., Glück R., Thiemann P.
(eds.), Partial Evaluation. Proceedings. LNCS,
Vol. 1110, 17-32, Springer-Verlag 1996.

 [6] Cytron R., Ferrante J., Efficiently computing
static single assignment form and the control
dependence graph, ACM TOPLAS, Vol. 13,
No. 4, 451-490, October, 1991.

 [7] Cytron R., Lowry A., Zadeck F. K., Code
motion of control structures in high-level
languages, Conference Record of the 13th ACM
Symposium on Principle of Programming
Languages, 70-85, ACM Press 1986.

 [8] Floyd R. W., Algorithm 97: shortest path,
Comm. ACM 5:6, 345, 1962.

 [9] Glenstrup A. J., Jones N. D., BTA algorithms to
ensure termination of off-line partial evaluation,
Bjørner D., Broy M., Pottosin I. V. (eds.),
Perspectives of System Informatics.
Proceedings. LNCS, Vol. 1181, 273-284,
Springer-Verlag 1996.

[10] Glenstrup A., Makholm H., Secher J. P., C-
Mix: specialization of C programs, Hatcliff J.,
Mogensen T., Thiemann P. (eds.), Partial
Evaluation: Practice and Theory, LNCS, Vol.
1706, 108-153, Springer-Verlag 1999.

[11] Gupta R., Berson D. A., Fang J. Z., Path profile
guided partial redundancy elimination using
speculaton, IEEE International Conference on
Computer Languages, 230-239, IEEE Society
Press 1998.

[12] Hornof L., Noyé J., Accurate binding-time
analysis for imperative languages: flow, context,
and return sensitivity, Symposium on Partial
Evaluation and Semantics-Based Program
Manipulation, 63-73, ACM Press 1997.

[13] Jones N. D., Gomard C. K., Sestoft P., Partial
Evaluation and Automatic Program Generation,
Prentice Hall, 1993.

[14] Metzger R., Stroud S., Interprocedural constant
propagation: an empirical study, ACM Letters
on Programming Languages and Systems, 2(1-

4): 213-232, 1993.
[15] Meyer U., Techniques for partial evaluation of

imperative language, Symposium on Partial
Evaluation and Semantics-Based Program
Manipulation, (Sigplan Notices, vol. 26, no.9,
September 1991), 94-105, ACM Press,1991.

[16] Nielson F., Nielson H. R., Hankin C.,
Principles of Program Analysis. Springer-
Verlag 1999.

[17] Rosen B. K., Wegman M. N., Zadeck F. K.,
Global value numbers and redundant
computations. Conference Record of the 15th

ACM Symposium on Principles of
Programming Languages, 12-27, ACM Press,
1988.

[18] Song L. T., Futamura Y., Quasi-invariant
variable and loop unfolding, The 15th National
Conference of Software Society of Japan, B6-2,
221-224, Sept. 1998.

[19] Steffen B., Property oriented expansion,
Symposium on Static Analysis, LNCS 1145, 22-
41, Springer-Verlag 1996.

[20] Steffen B., Knoop J., Rüthing O., The value flow
graph: a program representation for optimal
program transformations, Jones N. D. (ed.)
ESOP’90, LNCS 432, 389-405, Springer-Verlag
1990.

[21] Warshall S., A theorem on Boolean matrices,
Journal of the ACM, 9(1): 11-12, January 1962.

[22] Wegman M. N., Zadeck F. K., Constant propag-
ation with conditional branches, ACM TOPLAS,
Vol. 13, No. 2, 181-210, April, 1991.

[23] Zima H., Chapman B., Supercompiler for Parallel
and Vector Computers, Frontier, Series, ACM
Press, 1990.

Appendix 1 (The definitions of g1, g2, g3, g, f, t and T)
 g1(c1)=c1,
 g2(x1,c2)=(¬x1∧ c2)∨ (x1∧ c2),
 g3(x1,x2,c3)=(¬x1∧ x2∧ c3)∨ (x1∧¬ x2∧ c3)∨ (x1∧ x2∧ c3),
 g(x1,x2,x3)=(¬x1∨ x2∨ x3) ∧ (x1∨¬ x2∨ x3)∧ (x1∨ x2∨¬ x3),

f(x,y)=x∧ y,
t=1,
T=108.

Appendix 2 (The algorithm for transformation)
Let us assume: there is a loop of the form while [ss1]
e do ss2 endwhile, R indicates the store memorizing
the new names of the variables defined in the loop, L
indicates the set of all the LQIV variables, U
indicates the unfolding length of the loop. Then the
algorithm of loop transformation is given by the
rules as follow:

11

Loop:

　　

;endwhile'' ssdo e' while
endwhile

 ; 1counter'; count: ss
 doUL counter e'while

;0 counter:
 endwhile ssdo] e [sswhile: (U)|

''ss: ss(L,R)|
'ss:ss(R)|

e':e(R)|

2

2

21Loop

222SS

221SS

E

+=
<∧

=
⇒−

⇒−
⇒−

⇒−

 Statements:

　　
s';ss': s; ss(R)|

ss':ss(R)|
s':s(R)|

1SS

1SS

1S

⇒−
⇒−

⇒−

　
s';ss': s; ss(L,R)|

ss':ss(L,R)|
s':s(L,R)|

2SS

2SS

2S

⇒−
⇒−

⇒−

　　
skipφ(...): v:(R)| 1S ⇒=−

　　
e'R(v):e: v:(R)|

e':e(R)|

1S

E

=⇒=−
⇒−

　　
skipφ(...): v:(L,R)| 2S ⇒=−

skipe: v:(L,R)|

Lv

2S ⇒=−
∈

e' R(v):e: v:(L,R)|

e':eL (R)|v

2S

E

=⇒=−
⇒−∉

 Conditional:

endif' sselse' ssthen e' if
endif sselse ssthen e if: (R)|

'ss:ss(R)|
'ss:ss(R)|

e':e(R)|

21

211S

221SS

111SS

E

⇒−
⇒−
⇒−

⇒−

endif' sselse' ssthen e' if
endif sselse ssthen e if: (L,R)|

'ss:ss(L,R)|
'ss:ss(L,R)|

e':e(R)|

21

211S

222SS

111SS

E

⇒−
⇒−

⇒−
⇒−

 Expression:

ttanconsttan: cons(R)| E ⇒−

R(v): v(R) | E ⇒−

')',...,ep(e),...,e: p(e(R)|

'e:e(R)|

n1n1E

iiE

⇒−
⇒−

