
A Compositional Approach to Bidirectional Model Transformation

Soichiro Hidaka Zhenjiang Hu Hiroyuki Kato
GRACE Center, National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku
Tokyo 101-8430, Japan

{hidaka,hu,kato}@nii.ac.jp

Keisuke Nakano
The University of Electro-Communications

1-5-1 Chofugaoka, Chofu-shi
Tokyo 182-8585, Japan

ksk@cs.uec.ac.jp

Abstract

Bidirectional model transformation plays an impor-
tant role in maintaining consistency between two models,
and has many potential applications in software devel-
opment, including model synchronization, round-trip en-
gineering, software evolution, multiple-view software de-
velopment, and reverse engineering. However, unclear
bidirectional semantics, domain-specific bidirectionaliza-
tion method, and lack of systematic development frame-
work are known problems that prevent it from being practi-
cally used. In this paper, we propose a novel compositional
framework for bidirectional model transformation based on
an existing graph querying language UnQL, so that one can
develop various useful bidirectional model transformation
by combination of a fixed number of primitive bidirectional
model transformations. We have implemented a prototype
system, and the experimental results show promise of the
new approach.

1 Introduction

Bidirectional model transformation [14, 2], being
an enhancement of model transformation with bidirec-
tional capability, is an important requirement on OMG’s
Queries/Views/Transformations (QVT) standard [13] rec-
ommended for defining model transformation languages. It
describes not only a forward transformation from a source
model to a target model, but also a backward transformation
that reflects the changes on the target model to the source
model so that consistency between two models is main-
tained. Bidirectional model transformation has many poten-
tial applications in software development, including model
synchronization [2, 15, 7], round-trip engineering [1], soft-
ware evolution by keeping different models coherent to each
other [4], multiple-view software development [8, 6].

Despite these promising uses of bidirectional model
transformation in software development, there are few se-

rious practical applications in which bidirectional model
transformation is used. One major problem, as strongly ar-
gued in [14], is that there lacks a clear definition of what
bidirectional model transformation means. In general, a
model transformation is not bijective, so a backward model
transformation is much more involved than an inverse of
forward model transformation. So in practice, without clear
semantics of bidirectional transformation that ensures that
backward transformation works correctly, no one would se-
riously use bidirectional transformation in such systems.

In this paper, we propose a novelcompositionalframe-
work for bidirectional model transformation to solve this
semantics problem, by integrating two state-of-the-art tech-
niques:functionallanguages for bidirectional tree transfor-
mations [5, 12, 11] in the programming language commu-
nity, and thecompositionalgraph querying language UnQL
[3] intensively studied in the database community. Our
main result is thatbidirectional model (graph) transforma-
tions can be constructed by either a direct use of a primitive
bidirectional model transformation, or a combination of
smaller bidirectional model transformations to form a big-
ger one. Both the number of primitive bidirectional model
transformations and the number of ways for combination
are fixed. This kind of compositionally is in sharp contrast
to the existing approaches to (bidirectional) model transfor-
mation [2, 15, 7, 13] in that arbitrary number of intermediate
models can be used in a model transformation.

2 Proposed Approach and Results

Figure 1 depicts an architecture (the basic idea) of our
compositional framework. A model transformation is de-
scribed in UnQL+, an extension of an existing graph query-
ing language UnQL [3], which isfunctional (rather than
rule-based) andcompositional. It is then desugared (trans-
lated) into a coregraph algebrawhich consists of a set
of simple graph constructors for building graphs and three
combinators (sequential composition, condition, and struc-
tural recursion) for manipulating graphs. This graph alge-

Figure 1. A Compositional Framework for
Bidirectional Model Transformation Frame-
work

bra can have clear bidirectional semantics and thus can be
evaluated in a bidirectional manner.

Our main technical contributions can be summarized as
follows.

• We made the first attempt of adapting an existing graph
querying language for bidirectional model transforma-
tion, whose importance has not been recognized so far.
We show that UnQL, a powerful graph querying lan-
guage being suitable for systematic development of ef-
ficient graph queries, can be extended for systematic
development of various bidirectional model transfor-
mations.

• We give a concise bidirectional semantics for the core
algebra of UnQL+. In particular, we show that struc-
tural recursion can be computed in abulkway which is
suitable for both forward and backward computation.

• We have implemented a prototype system in a func-
tional language Objective Caml, and tested it with
some non-trivial examples. The results are quite en-
couraging. We recommend the readers to take a look
at the following website:

http://www.biglab.org/

to see more examples, play with the system, and find a
technical report [9], a full version of this paper.

2.1 Models as Edge-labelled Graphs

Graphs in our framework follows those of UnQL, which
are rooted and directed cyclic graphs with no order on out-
going edges. They are edge-labelled in the sense that all

Figure 2. A Simple Graph

Figure 3. A Class Diagram

information is stored as labels on edges (the labels on nodes
have no particular meaning). Figure 2 gives a small example
of a directed cyclic graph with six nodes and seven edges.
In text, it is represented by

g = {a : {a : g1}, b : {a : g1}, c : g2}
g1 = {d : {}}
g2 = {c : g2}

where the set{l1 : e1, . . . , ln : en} denotes a graph which
containsn edges with labelsl1, . . . , ln, each of which points
to a graph again, and the empty set{} denotes a graph with
a single node. Two graphs can be merged using set union
operation such asg ∪ g′. As another example, the class
model in Figure 3 consists of three classes and two directed
associations, where each class has a primary attribute. This
class model can be represented by the graph in Figure 4,
where information is moved to edges.

2.2 Model Transformation in UnQL+

UnQL [3] is a graph querying language based on struc-
tural recursion, and can be expressed using FO(TC) (first or-
der with transitive closure), with time complexity of PTIME
for graph querying. It, like other query languages, has a
convenient and powerfulselect-wherestructure for extract-
ing information from a graph. For instance, the following
query extracts all persistent classes from the class model in

2

Figure 4. A Class Model Represented by an
Edge-Labelled Graph

Figure 4, which is assumed to be bound by $classDB .

select $class where

{Association .(src|dest).Class : $class} in $classDB ,

{is presistent : {Boolean : true}} in$class

The symbols prefixed with $ denote variables. This query
returns all bindings of variable $class satisfying the two
conditions in the where clause. The first condition is to
find bindings of $class by matching theregular path pat-
ternAssociation .(src|dest).Class with the graph bound by
$classDB , while the second condition is to ensure that the
class is persistent.

In model transformation, we often want to replace a sub-
graph satisfying certain condition by another graph. It is
onerous to describe these kinds of graph transformations
in UnQL because some context structure is required to be
copied and propagated. UnQL+ is an extension of UnQL
with a new replace-whereconstruct suitable for specify-
ing model transformation [10]. We have already shown in
[10] a typical but nontrivial model transformation, Class2-
RDBMS, using UnQL+. Here, we just touch UnQL+ by
using a simplified example. Consider, for example, that we
want to add a prefix ofclass to each class name in the class
model. We may write it with the replace-where structure by

replace {$name : {}} by {(”class ”ˆ $name) : {}}where

{ ∗ .Class .name.String : {$name : {}}} in$classDB

whereˆ denotes string concatenation, and∗ denotes arbi-
trary sequence of labels (in the path).

E ::= {}
| {L : E}
| E ∪ E

| &x := E

| &y

| ()
| E ⊕ E

| E @E

| cycle(E)
| Var

| if B then E else E

| rec(λ(LabelVar ,Var).E)(Var)
| let Var = E in E

Figure 5. UnCAL: A Graph Algebra

2.3 Desugaring UnQL+ to Graph Algebra

To perform bidirectional computation of model transfor-
mations in UnQL+, we transform UnQL+ queries to ex-
pressions of UnCAL, a simple graph algebra, and then show
how this algebra can be evaluated in a bidirectional way.

UnCAL [3], as defined in Figure 5, has a set of
graph constructors and operators, by which arbitrary graphs
can be represented and arbitrary graph transformation in
UnQL+ can be described [10]. The first nine expression
structures are used to describe very primitive transforma-
tions for graph construction, while the last three are combi-
nators, namely condition, structural recursion and sequen-
tial composition, for composing smaller transformations to
form a bigger one. We omit the detailed discussion of Un-
CAL which can be found in [3].

2.4 Bidirectional Evaluator

UnCAL can be bidirectionalized in the sense that a for-
mal and sound bidirectional semantics can be given to Un-
CAL, such that the forward computation performs the same
as the usual UnCAL evaluator does, and the backward com-
putation is guaranteed to satisfy the bidirectional properties
[5] with respect to the forward computation.

More specifically, given an expressione and an environ-
mentρ denoting a mapping from variables to values (a la-
bel or a graph), we define two computations: aforward
computationρ

e
⇀ g is to evaluate the expressione to a

graphg under the environmentρ, while a backward com-
putationρ′

e
↽ρ g′ is to compute a new environmentρ′

from the oldρ and a revised graphg′ overg obtained from
forward computation. The forward and backward compu-
tations with respect to an expressione should satisfy the
following two properties [5]: (1) TheGetPutProperty: no
change on the graph should give no change on the environ-
ment, i.e.,ρ

e
⇀ g implies ρ

e
↽ρ g; (2) The PutGet

3

Property: the backward computation computes a new envi-
ronmentρ′ from g′ in such a way that applying the forward
computation underρ′ again should give the same graphg′,
i.e.,ρ′

e
↽ρ g′ impliesρ′

e
⇀ g′.

For bidirectionalization of UnCAL, since UnCAL is
compositional, consisting nine primitive transformations
and three combinators, it suffices to give forward and back-
ward computations for nine primitive transformations, and
show how to obtain forward and backward computation for
the three combinators from that of smaller transformations
used in them. This is exactly the approach successfully used
in bidirectional tree transformations [5, 12, 11]. As a simple
example, the following two rules showing how to deal with
forward and backward computation for graph unione1 ∪ e2

respectively.

ρ
e1

⇀ g1 ρ
e2

⇀ g2

ρ
e1∪e2

⇀ g1 ∪ g2

(FWD)

g′ ⇒ (g′

1, g
′

2) ρ1

e1

↽ρ g′

1 ρ2

e2

↽ρ g′

2

ρ1 ⊎ρ ρ2

e1∪e2

↽ ρ g′

(BWD)

The ruleFWD says that two graphsg1 andg2 are computed
from e1 ande2 under the environmentρ respectively, and
give a result as a union of the two graph. And the rule
BWD says that the possibly updated output graphg′ is de-
composed into two parts so that backward computations for
e1 ande2 can be successfully performed resulting in two
new environmentsρ1 andρ2, and the result environment is
a disjoint union of the two environments. We leave other
detailed discussion in [9], and concrete example in a demo
system available at http://www.biglab.org/.

3 Impact of Results and Future Work

As far as we are aware, we made the first attempt of
designing and implementing a functional language UnQL+

for bidirectional model transformations, which is different
from the existing rule-based (relational) approaches. We
demonstrate that functional approach is helpful to give bidi-
rectional semantics in a formal and concise way. This work
is our first step towardsbidirectional model programming,
a linguistic framework to support systematic development
of model transformations. We wish to look more into its re-
lation with the rule-based approaches, and see how to com-
bine them to form a more powerful framework for bidirec-
tional model transformation.

References

[1] M. Antkiewicz and K. Czarnecki. Framework-specific mod-
eling languages with round-trip engineering. InMoDELS
2006: Proceedings of the 9th nternational Conference on

Model Driven Engineering Languages and Systems, pages
692–706. Springer-Verlag, 2006.

[2] M. Antkiewicz and K. Czarnecki. Design space of heteroge-
neous synchronization. InGTTSE ’07: Proceedings of the
2nd Summer School on Generative and Transformational
Techniques in Software Engineering, 2007.

[3] P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query
language and algebra for semistructured data based on struc-
tural recursion. VLDB Journal: Very Large Data Bases,
9(1):76–110, 2000.

[4] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer.
Information preserving bidirectional model transformations.
In Fundamental Approaches to Software Engineering, pages
72–86. 2007.

[5] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bi-directional tree transforma-
tions: a linguistic approach to the view update problem. In
POPL ’05 : ACM SIGPLAN–SIGACT Symposium on Prin-
ciples of Programming Languages, pages 233–246, 2005.

[6] M. Garcia. Bidirectional synchronization of multiple views
of software models. InProceedings of DSML-2008, volume
324 ofCEUR-WS, pages 7–19, 2008.

[7] H. Giese and R. Wagner. Incremental model synchronization
with triple graph grammars. InMoDELS 2006: Proceedings
of the 9th nternational Conference on Model Driven Engi-
neering Languages and Systems, pages 543–557. Springer
Verlag, 2006.

[8] J. Grundy, J. Hosking, and W. B. Mugridge. Inconsistency
management for multiple-view software development envi-
ronments.IEEE Trans. Softw. Eng., 24(11):960–981, 1998.

[9] S. Hidaka, Z. Hu, H. Kato, and K. Nakano. An algebraic
approach to bidirectional model transformations. Technical
Report GRACE-TR08-02, GRACE Center, National Insti-
tute of Informatics, Sept. 2008.

[10] S. Hidaka, Z. Hu, H. Kato, and K. Nakano. Towards a com-
positional approach to model transformation for software
development. In24th Annual ACM Symposium on Applied
Computing (SAC 2009) (to appear), Mar. 2009.

[11] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor
for developing structured documents based on bidirectional
transformations.Higher-Order and Symbolic Computation,
21(1-2):89–118, 2008.

[12] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and
a. Masato Takeichi. Bidirectionalization transformation
based on automatic derivation of view complement func-
tions. In12th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2007), pages 47–58. ACM
Press, Oct. 2007.

[13] OMG. MOF QVT final adopted specification.http://
www.omg.org/docs/ptc/05-11-01.pdf , 2005.

[14] P. Stevens. Bidirectional model transformations in QVT: Se-
mantic issues and open questions. In G. Engels, B. Opdyke,
D. C. Schmidt, and F. Weil, editors,Proc. 10th MoDELS,
volume 4735 ofLecture Notes in Computer Science, pages
1–15. Springer, 2007.

[15] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei.
Towards automatic model synchronization from model
transformations. In22nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2007), pages
164–173. ACM Press, Nov. 2007.

4

