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Abstract. We present a new derivation of efficient algorithms for a class
of optimization problems called maximum marking problems. We extend
the class of weight functions used in the specification to allow for weight
functions with accumulation, which is particularly useful when the weight
of each element depends on adjacent elements. This extension of weight
functions enables us to treat more interesting optimization problems such
as a variant of the maximum segment sum problem and the fair bonus
distribution problem. The complexity of the derived algorithm is linear
with respect to the size of the input data.

Keywords: Program derivation, Maximum marking problem, Accumu-
lative weight function, Optimization problem.

1 Introduction

One way to guarantee the correctness of programs is to derive programs from
specification [PP96, BdM96]. For this approach to be practical, we need high-
level theorems that provide solutions for a wide class of problems. Such theorems
should also guide the programmer in casting the specification in a form that
fulfills the prerequisite conditions of the theorems.

The optimization theorem presented by Sasano et al. [SHTO00, SHT01] is
such a theorem, designed for solving the maximum marking problem [Bir01] (also
called the maximum weightsum problem). The core of the theorem is generic
dynamic programming; it clarifies a class of problems that can be solved by
dynamic programming.

The maximum marking problem, MMP for short, is the problem of mark-
ing the entries of some given data structure D to maximize a given weight
function w under a given constraint p. This covers a wide variety of problems
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[BLW87, BPT92] (by instantiating D, p and w), including the well-known maxi-
mum segment sum problem [Bir89, Gri90], the maximum independent set prob-
lem [SHTO00], some knapsack problems [SHTO01], some optimized range prob-
lems in data mining [SHTO02], and the register allocation problem [OHS03].

MMP was first considered in a work on graph algorithms [BLW87], which
showed that MMP can be solved in linear time for a certain class of graphs.
Borie et al. [BPT92] presented a way to derive a linear time algorithm for MMP
from properties described by logical formulae. Their work is elegant in theory;
but prohibitive in practice due to the huge constant factor. Our work [SHTO00]
facilitated a flexible description of the constraint p by recursive functions and
reduced the constant factor drastically. Our subsequent work [SHT01] extended
the way the constraint p is described with accumulation. Bird showed a relational
derivation for MMP [Bir01], and we demonstrated how to apply the optimization
theorem to program analysis [OHS03].

Existing theorems, in a functional [SHTO00], logical [BPT92], or relational
[Bir01] setting, can deal with a general data structure D and a powerful con-
straint p. However, they require the weight function w to be in homomorphic
form, and hence do not allow for some simple modifications of the weight func-
tions. For instance, consider a variant of the maximum segment sum problem,
where the sum is computed by alternately changing the sign. Even this simple
example cannot be dealt with by the existing theorems, because the distribu-
tivity condition with respect to maximum does not hold, but is required by the
theorems.

In this paper, we present two new optimization theorems (calculational rules)
for deriving efficient algorithms for a wider class of MMP, by allowing weight
functions to be accumulative both in a top-down and bottom-up way. These
weight functions are useful when the weight of each element depends on adja-
cent elements. This extension enables us to treat more interesting optimization
problems such as a variant of the maximum segment sum problem (which re-
quires a top-down accumulative weight function) and the fair bonus distribution
problem (which requires a bottom-up accumulative weight function). The de-
rived algorithm is linear in the size of the data.

Throughout the paper we will use the notation of Haskell [PJH99], a func-
tional language, to describe our derivation as well as derived programs.

2 Preliminaries

In this section we define maximum marking problems on polynomial data types.
We describe polynomial data types in the following form:

D α = A1 (α, D1, . . . , Dn1) | A2 (α, D1, . . . , Dn2) | · · · | Ak (α, D1, . . . , Dnk
)

where every Di is just D α, and Ai’s are called data constructors, applied to
an element of type α and bounded number of recursive components. Though
they seem restrictive, these polynomial data types are powerful enough to cover
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commonly used data types such as lists, binary trees, and rooted trees [BLW87].
Moreover, other data types like rose trees, a regular data type defined by

RTree α = Node α [RTree α],

can be encoded by a polynomial data type (see Section 4.3). The fold operation
foldD on D α is defined as follows:

foldD ϕ1 . . . ϕk = f
where f (Ai (x, t1, . . . , tni)) = ϕi (x, f t1, . . . , f tni) (i = 1, . . . , k).

Maximum marking problems are specified on polynomial data types in the
following form:

max w ◦ filter p ◦ genD M.

The function genD generates all possible markings by using a finite list of marks
M :: [Mark ]:

genD :: [Mark ] → D α → [D (α,Mark )].

Mark is the type of marks. We treat data types that have a single type parameter
α, and the elements of type α in the input data are the marking targets. We
implement marking as a pair of an element and a mark, so the type of marked
elements is (α,Mark) and the type of marked data is D (α,Mark).

The functions max and genD are defined as follows:

max w [ ] = error ”No solution.”
max w [x] = x
max w (x : xs) = bmax w x (max w xs)
bmax f a b = if f a > f b then a else b
genD M = foldD ξ1 . . . ξk

ξi (x, ts1, . . . , tsni) = [ Ai (x∗, t1, . . . , tni) | x∗ ← [ (x, m) | m ← M ],
t1 ← ts1, . . . , tni ← tsni ]

(i = 1, . . . , k)

Here we define mutumorphisms on the data type D α.

Definition 1 (Mutumorphisms). Functions f1, f2, . . . , fn are mutumor-
phisms on a recursive data type D α if each function fi is defined mutually
by

fi (Aj (x, t1, . . . , tnj )) = ϕij (x, h t1, . . . , h tnj )
where h = (f1 � f2 � . . . � fn) (j = 1, . . . , k).

Note that f1 � f2 � . . . � fn represents a function defined as follows:

(f1 � f2 � . . . � fn) x = (f1 x, f2 x, . . . , fn x).

We say that a function f is finite mutumorphic [SHTO00] if the function f is
defined as mutumorphisms along with other functions, each of which has finite
range. A finite mutumorphic function f can be represented as a composition of
a projection function π whose domain is finite and a folding function:

f = π ◦ foldD ϕ1 ϕ2 . . . ϕk.
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In the following sections, we use the following fusion theorem:

Theorem 1 (Fusion). If the following equation holds for i = 1 . . . k,

f (φi (x, t1, . . . , tni)) = ψi (x, f t1, . . . , f tni)

then the following equation holds:

f ◦ foldD φ1 . . . φk = foldD ψ1 . . . ψk.

3 Top-Down Accumulative Weight Functions

In this section we define top-down accumulative weight functions on polynomial
data types and present a new optimization theorem.

3.1 The Top-Down Optimization Theorem

Definition 2 (Top-Down Accumulative Weight Function). A function w
is top-down accumulative if it is defined as follows:

w :: D (α,Mark) → Weight
w x = w′ x e0
w′ :: D (α,Mark) → Acc → Weight
w′ (Ai (x, t1, . . . , tni)) e = φi (x, w′ t1 (δi1 x e), . . . , w′ tni (δini x e)) e

where the range of δij is finite and φi (i = 1, . . . , k) satisfies the following dis-
tributivity condition wrt maximum:

maximum {φi (x, w1, . . . , wni) e | w1 ∈ S1, . . . , wni ∈ Sni} =
φi (x, maximum S1, . . . ,maximum Sni) e

Theorem 2 (Top-Down Optimization Theorem). If property p is finite
mutumorphic:

p = π ◦ foldD ρ1 . . . ρk

and weight function w is top-down accumulative, MMP specified by

max w ◦ filter p ◦ genD M

has an O(|Acc|d · |C|d · |M | · n) algorithm described by

opttd φ1 . . . φk δ11 . . . δknk
(λ(c, e). (π c) ∧ (e = e0)) ρ1 . . . ρk M Acc

where C is the domain of π, M is the list of marks, d = maximum {ni | 1 ≤
i ≤ k}, and n is the size of the input data. The definition of the function opttd
is given in Fig. 1.

3.2 Proof of the Top Down Optimization Theorem

Here we prove Theorem 2 by showing the correctness and complexity of the
function opttd.
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opttd φ1 . . . φk δ11 . . . δknk
accept ρ1 . . . ρk M Acc =

third ◦ max second ◦ filter (accept ◦ first) ◦ foldD ζ1 . . . ζk

where ζi (x, t1, . . . , tni) =
eachmax [ ((ρi (x∗, c1, . . . , cni), e),

φi (x∗, w1, . . . , wni) e,
Ai (x∗, r1, . . . , rni)) |

x∗ ← [ (x,m) | m ← M ],
((c1, e1), w1, r1) ← t1, · · · , ((cni , eni), wni , rni) ← tni ,
e ← Acc, δi1 x∗ e=e1, . . . , δini x∗ e=eni ] (i=1, . . . , k)

eachmax xs = foldl f [ ] xs
where f [ ] (c, w, cand) = [(c, w, cand)]

f ((c, w, cand) : opts) (c′, w′, cand′) =
if c == c′ then if w > w′ then (c, w, cand) : opts

else opts + +[(c′, w′, cand′)]
else (c, w, cand) : f opts (c′, w′, cand′)

first (x, , ) = x, second ( , x, ) = x, third ( , , x) = x

Fig. 1. Optimization function opttd

Correctness. We show the correctness by transforming the specification into
opttd as in Fig. 2. In the transformation we use the auxiliary functions ζ

′

i (i =
1, . . . , k) and an underline notation for simple representation:

ζ
′

i (x, t1, . . . , tni) =
[ ((ρi (x∗, c1, . . . , cni), e), φi (x∗, w1, . . . , wni) e, Ai (x∗, r1, . . . , rni))
| x∗ ← [ (x, m) | m ← M ],
((c1, e1), w1, r1) ← t1, . . . , ((cni , eni), wni , rni) ← tni ,
e ← Acc, δi1 x∗ e = e1, . . . , δini x∗ e = eni ]

x = λ(( , y), , ). x == y

The first step is simply unfoldings of p and genD.
The second step is

∀ε. foldD ξ1 . . . ξk = map third ◦ filter ε ◦ foldD ζ
′

1 . . . ζ
′

k,

which is proved by induction on the structure of input data. In the case of
Ai (x, t1, . . . , tni),

RHS
= { unfolding of foldD }

map third (filter ε
[ ((ρi (x∗, c1, . . . , cni), e), φi (x∗, w1, . . . , wni) e, Ai (x∗, r1, . . . , rni))
| x∗ ← [ (x, m) | m ← M ], ((c1, e1), w1, r1) ← foldD ζ

′

1 . . . ζ
′

k t1, . . . ,

((cni , eni), wni , rni) ← foldD ζ
′

1 . . . ζ
′

k tni ,
e ← Acc, δi1 x∗ e = e1, . . . , δini x∗ e = eni ])
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max w ◦ filter p ◦ genD M
= { unfold p and genD }

max w ◦ filter (π ◦ foldD ρ1 . . . ρk) ◦ foldD ξ1 . . . ξk

= { ∀ε. foldD ξ1 . . . ξk = map third ◦ filter ε ◦ foldD ζ
′
1 . . . ζ

′
k }

max w ◦ filter (π ◦ foldD ρ1 . . . ρk) ◦ map third ◦ filter e0 ◦ foldD ζ
′
1 . . . ζ

′
k

= { filter p ◦ map f = map f ◦ filter (p ◦ f) }
max w ◦ map third ◦ filter (π ◦ foldD ρ1 . . . ρk ◦ third) ◦ filter e0 ◦ foldD ζ

′
1 . . . ζ

′
k

= { max w ◦ map third ◦ foldD ζ
′
1 . . . ζ

′
k = third ◦ max second ◦ foldD ζ

′
1 . . . ζ

′
k }

third ◦ max second ◦ filter (π ◦ foldD ρ1 . . . ρk ◦ third) ◦ filter e0 ◦ foldD ζ
′
1 . . . ζ

′
k

= { filter p ◦ filter q = filter q ◦ filter p }
third ◦ max second ◦ filter e0 ◦ filter (π ◦ foldD ρ1 . . . ρk ◦ third) ◦ foldD ζ

′
1 . . . ζ

′
k

= {map (foldD ρ1 . . . ρk ◦ third) ◦ foldD ζ
′
1 . . . ζ

′
k =

map (fst ◦ first) ◦ foldD ζ
′
1 . . . ζ

′
k}

third ◦ max second ◦ filter e0 ◦ filter (π ◦ fst ◦ first) ◦ foldD ζ
′
1 . . . ζ

′
k

= { max second = max second ◦ eachmax }
third ◦ max second ◦ eachmax ◦ filter e0 ◦ filter (π ◦ fst ◦ first) ◦ foldD ζ

′
1 . . . ζ

′
k

= { filter p ◦ filter q = filter (p ∧ q) }
third ◦ max second ◦ eachmax ◦ filter ((π ◦ fst ◦ first) ∧ e0) ◦ foldD ζ

′
1 . . . ζ

′
k

= { eachmax ◦ filter ((π ◦ fst ◦ first) ∧ e0)=filter ((π ◦ fst ◦ first) ∧ e0) ◦ eachmax }
third ◦ max second ◦ filter (π ◦ fst ◦ first ∧ e0) ◦ eachmax ◦ foldD ζ

′
1 . . . ζ

′
k

= { eachmax ◦ foldD ζ
′
1 . . . ζ

′
k = foldD ζ1 . . . ζk }

third ◦ max second ◦ filter ((π ◦ fst ◦ first) ∧ e0) ◦ foldD ζ1 . . . ζk

= { fold opttd }
opttd φ1 . . . φk δ11 . . . δknk

(λ(c, e). (π c) ∧ (e == e0)) ρ1 . . . ρk M Acc

Fig. 2. A proof of the top-down optimization theorem

= { distributing filter }
map third
[ ((ρi (x∗, c1, . . . , cni), ε), φi (x∗, w1, . . . , wni) ε, Ai (x∗, r1, . . . , rni))
| x∗ ← [ (x, m) | m ← M ],

((c1, e1), w1, r1) ← filter δi1 x∗ ε (foldD ζ
′

1 . . . ζ
′

k t1), . . . ,
((cni , eni), wni , rni) ← filter δini x∗ ε (foldD ζ

′

1 . . . ζ
′

k tni)]
= { distributing map }

[ Ai (x∗, r1, . . . , rni)
| x∗ ← [ (x, m) | m ← M ],

((c1, e1), w1, r1) ← map third (filter δi1 x∗ ε (foldD ζ
′

1 . . . ζ
′

k t1)), . . . ,
((cni , eni), wni , rni) ← map third (filter δini x∗ ε (foldD ζ

′

1 . . . ζ
′

k tni))]
= { induction hypothesis }

[ Ai (x∗, r1, . . . , rni)
| x∗ ← [ (x, m) | m ← M ], ((c1, e1), w1, r1) ← foldD ξ1 . . . ξk t1, . . . ,

((cni , eni), wni , rni) ← foldD ξ1 . . . ξk tni ]
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= { folding of foldD }
LHS.

The third step is the commutativity of map and filter [Bir87].
The fourth step is

max w ◦ map third ◦ foldD ζ
′

1 . . . ζ
′

k = third ◦ max second ◦ foldD ζ
′

1 . . . ζ
′

k.

This means that the second element is the weight of the third element, which is
proved by induction on the structure of the argument of type D α.

The fifth step is commutativity of filters.
The sixth step is

map (foldD ρ1 . . . ρk ◦ third) ◦ foldD ζ
′

1 . . . ζ
′

k = map (fst ◦first) ◦ foldD ζ
′

1 . . . ζ
′

k.

This equation means the first part of the first element is equal to the value of
foldD ρ1 . . . ρk applied to the third element, which is proved by induction on
the structure of the argument of type D α.

The seventh step is

max second = max second ◦ eachmax.

This holds because max second returns the rightmost optimal solution, and
eachmax returns a list which consists of the rightmost optimal solution for each
value of the first element, preserving the order.

The eighth step is an equation concerning filter, which can be proved by
induction on the structure of the argument list.

The ninth step is

eachmax ◦ filter ((π ◦ fst ◦ first) ∧ e0) = filter ((π ◦ fst ◦ first) ∧ e0) ◦ eachmax

which means the commutativity between the functions filter and eachmax. This
equation holds because the predicate ((π ◦ fst◦first)∧ e0) is concerned only with
the first elements, and the functions filter and eachmax preserve the order.

The tenth step is

eachmax ◦ foldD ζ
′

1 . . . ζ
′

k = foldD ζ1 . . . ζk

which follows from the fusion theorem (Theorem 1). The prerequisite condition
for applying the fusion theorem is that the equations below hold for i = 1, . . . , k:

eachmax (ζ
′

i (x, t1, . . . , tni)) = ζi (x, eachmax t1, . . . , eachmax tni).

Since eachmax and ζ
′

i preserve the order, the following equations hold for i =
1, . . . , k:

ζi (x, t1, . . . , tni) = ζi (x, eachmax t1, . . . , eachmax tni).



582 I. Sasano, M. Ogawa, and Z. Hu

msas = third . foldr1 (bmax second) . filter (accept . first) . h
accept ((c1,c2,c3),e) = c1 && e == True
h [] = [((rho1,e), phi1 e, [])| e <- [True,False]]
h (x:xs) = eachmax [((rho2 y c, e), phi2 y w e, y:r)

| y <- [(x,True),(x,False)],
((c,e’),w,r) <- h xs,
e <- [True,False], delta y e == e’]

phi1 e = 0
phi2 y w e = if kind y then (if e then weight y else - weight y) + w

else w
delta y e = if kind y then not e else e
rho1 = (True, True, True)
rho2 y (c1,c2,c3) = if kind y then (c2,c2,False) else (c1,c3,c3)

Fig. 3. A linear-time Haskell program for the MSAS problem

Since ζi = eachmax ◦ ζ
′

i , the prerequisite condition holds.
The eleventh step is simply the folding of opttd.

Complexity. The complexity of the function opttd:

opttd φ1 . . . φk δ11 . . . δknk
(λ(c, e). (π c) ∧ (e = e0)) ρ1 . . . ρk M Acc

is O(|Acc|d+1 · |C|d+1 · |M | · n) where C is the domain of π, M is the list of
marks, d = maximum {ni | 1 ≤ i ≤ k}, and n is the size of the input data. The
complexity follows from that the complexity of the function

ζi (x, t1, . . . , tni)

is O(|Acc|d · |C|d · |M | · n) and it is computed n times. The function ζi firstly
generates a list that contains at most |Acc| · |C| · |M | elements. Next, the function
eachmax reduces it to a list that has at most |Acc| · |C| elements. With a list
implementation (as in Fig. 1), this reduction takes O(|Acc|d+1 · |C|d+1 · |M |)
time; however, with an array implementation (as in [SHT01]), it is reduced to
O(|Acc|d · |C|d · |M |) time. For readability, throughout the paper, we describe
algorithms by list implementations.

3.3 The Maximum Segment Alternate Sum Problem

Consider the following list problem: find a consecutive sublist from the input
list such that the selected sublist has the maximum alternate sum, where the
alternate sum is computed by alternately changing the sign. For example, given
a list [−3, 5, 2, 7, 6], the sublist [5, 2, 7] gives the maximum alternate sum of
5 + (−2) + 7 = 10 among all the consecutive sublists (segments) in the in-
put list. We call this the maximum segment alternate sum problem (MSAS for
short).
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The property p and the weight function w are written as follows:

p = π0 ◦ foldr ρ (True,True,True)
where ρ x (r0, r1, r2) = if kind x then (r1, r1,False) else (r0, r2, r2)

π0 (r0, r1, r2) = r0
w xs = w′ xs True
w′ [ ] e = 0
w′ (x : xs) e = φcons x e (w′ xs (δ x e))
φcons x e r = if kind x then

(if e then weight x else − weight x) + r
else r

kind (x, m) = m
weight (x, m) = x

where φcons satisfies the following distributivity condition:

maximum {φcons x e w | w ∈ S} = φcons x e (maximum S).

The function foldr is a folding function on lists [Bir98]. Applying Theorem 2
immediately yields the linear algorithm in Fig. 3. Note that the weight function
written in the following homomorphic form

w [ ] = 0
w (x : xs) = if kind x then weight x − w xs else w xs

does not meet the prerequisite of the theorems in previous work of MMP.

4 Bottom-Up Accumulative Weight Functions

In some cases as shown in Section 4.3, we need weight functions that accumulate
in bottom-up way.

4.1 The Bottom-Up Optimization Theorem

Definition 3 (Bottom-up Accumulative Weight Function). A weight
function w on D is bottom-up accumulative if w is defined as follows:

w :: D (α,Mark) → Weight
w (Ai (x, t1, . . . , tni)) = ηi x (w t1) . . . (w tni) (q t1) . . . (q tni)

(i = 1, . . . , k)
q :: D (α,Mark) → Acc
q = foldD σ1 . . . σk

where Acc is a finite set and ηi (i = 1, . . . , k) satisfies the following distributivity
condition:

maximum {ηi x w1 . . . wni e1 . . . eni | w1 ∈ S1, . . . , wni ∈ Sni} =
ηi x (maximum S1) . . . (maximum Sni) e1 . . . eni (j = 1, . . . , ni)

Theorem 3 (Bottom-up Optimization Theorem). If property p is finite
mutumorphic:
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optbu η1 . . . ηk σ1 . . . σk accept ρ1 . . . ρk M =
third ◦ max second ◦ filter (accept ◦ first) ◦ foldD ψ1 . . . ψk

where ψi (x, t1, . . . , tni) =
eachmax [ ((ρi (x∗, c1, . . . , cni), σi (x∗, q1, . . . , qni)),

ηi (x∗, (w1, q1), . . . , (wni , qni)),
Ai (x∗, r1, . . . , rni)) |

x∗ ← [ (x, m) | m ← M ],
((c1, q1), w1, r1) ← t1, · · · , ((cni , qni), wni , rni) ← tni ]

(i = 1, . . . , k)

Fig. 4. Optimization function optbu

p = π ◦ foldD ρ1 . . . ρk

and weight function w is bottom-up accumulative, MMP specified by

max w ◦ filter p ◦ genD M

has an O(|Acc|d · |C|d · |M | · n) algorithm described by

optbu η1 . . . ηk σ1 . . . σk (λ(c, q). π c) ρ1 . . . ρk M

where Acc is the range of q, C is the domain of π, M is the list of marks,
d = maximum {ni | 1 ≤ i ≤ k}, and n is the size of the input data. The
definition of the optimization function optbu is given in Fig. 4.

4.2 Proof of the Bottom-Up Optimization Theorem

Here we prove Theorem 3 by showing the correctness and complexity of the
function optbu.

Correctness. We show the correctness by transforming the specification into
optbu as in Fig. 5. In the transformation we use the auxiliary functions ψ

′

i (i =
1, . . . , k) defined by

ψ
′

i (x, t1, . . . , tni) = [ ((ρi (x∗, c1, . . . , cni), σi (x∗, q1, . . . , qni)),
ηi (x∗, (w1, q1), . . . , (wni , qni)),
Ai (x∗, r1, . . . , rni))

| x∗ ← [ (x, m) | m ∈ M ],
((c1, q1), w1, r1) ← t1, · · · , ((cni , qni), wni , rni) ← tni ].

The transformation is simpler than that in the proof of Theorem 2, so we omit
the detail.

Complexity. Similarly to opttd, the complexity is O(|Acc|d+1 · |C|d+1 · |M | ·n),
but O(|Acc|d · |C|d · |M | · n) is achieved if we use array implementation.
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max w ◦ filter p ◦ genD M
= { unfold p and genD }

max w ◦ filter (π ◦ foldD ρ1 . . . ρk) ◦ foldD ξ1 . . . ξk

= { foldD ξ1 . . . ξk = map third ◦ foldD ψ
′
1 . . . ψ

′
k }

max w ◦ filter (π ◦ foldD ρ1 . . . ρk) ◦ map third ◦ foldD ψ
′
1 . . . ψ

′
k

= { filter p ◦ map f = map f ◦ filter (p ◦ f) }
max w ◦ map third ◦ filter (π ◦ foldD ρ1 . . . ρk ◦ third) ◦ foldD ψ

′
1 . . . ψ

′
k

= { max w ◦ map third ◦ foldD ψ
′
1 . . . ψ

′
k = third ◦ max second ◦ foldD ψ

′
1 . . . ψ

′
k }

third ◦ max second ◦ filter (π ◦ foldD ρ1 . . . ρk ◦ third) ◦ foldD ψ
′
1 . . . ψ

′
k

= {map (foldD ρ1 . . . ρk ◦ third) ◦ foldD ψ
′
1 . . . ψ

′
k =

map (fst ◦ first) ◦ foldD ψ
′
1 . . . ψ

′
k}

third ◦ max second ◦ filter (π ◦ fst ◦ first) ◦ foldD ψ
′
1 . . . ψ

′
k

= { max second = max second ◦ eachmax }
third ◦ max second ◦ eachmax ◦ filter (π ◦ fst ◦ first) ◦ foldD ψ

′
1 . . . ψ

′
k

= { eachmax ◦ filter (π ◦ fst ◦ first ) = filter (π ◦ fst ◦ first ) ◦ eachmax }
third ◦ max second ◦ filter (π ◦ fst ◦ first) ◦ eachmax ◦ foldD ψ

′
1 . . . ψ

′
k

= { eachmax ◦ foldD ψ
′
1 . . . ψ

′
k = foldD ψ1 . . . ψk }

third ◦ max second ◦ filter (π ◦ fst ◦ first) ◦ foldD ψ1 . . . ψk

= { fold optbu }
optbu η1 . . . ηk σ1 . . . σk (π ◦ fst) ρ1 . . . ρk M

Fig. 5. A proof of the bottom-up optimization theorem

4.3 The Fair Bonus Distribution Problem

As an example for the bottom-up accumulative optimization theorem, we con-
sider the fair bonus distribution problem. There is some profit T to distribute to
people in a company. The company has a hierarchical structure; that is, supervi-
sor relationships form a tree rooted at the president. As a natural requirement,
the bonus of a supervisor should be more than that of a subordinate. In order
to reduce employee complaints, the sum of the difference in bonus between an
employee and his/her immediate supervisor should be minimized.

Fig. 6 shows an optimal distribution for T = 6. It is not easy to give an
optimal distribution, as there are many possibilities. A naive solution is to gen-
erate all the distributions, filter out the invalid distributions, and then select
the optimal one. Though this naive solution is exponential, we can reduce it to
O(T 4n) by specifying it as MMP and applying our new theorem.

Specification. Before we give the specification, we define the trees as follows:

RTree α = Node α [RTree α].

This data type is called a rose tree and is used to represent a general tree, each
node of which can have arbitrarily many children.
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Fig. 6. Fair bonus distribution (total = 6)

To specify the problem as MMP we need to define a finite list of marks M ,
property p, and weight function w.

We use marks to represent the amount of bonus given to each person, so

M = [0, 1, . . . , T ].

Property p checks whether the sum of the distributed bonuses is T and
whether the bonus of each person is more than those of his/her subordinates.
Checking the sum can be written as follows:

csum t = (bonusSum t = T )
bonusSum (Node x [ ]) = bonus x
bonusSum (Node x (t : ts)) = bonusSum t + bonusSum (Node x ts)

Checking to determine whether the bonus of a supervisor is more than those of
his/her subordinates can be written as follows:

more (Node x [ ]) = True
more (Node x (t : ts)) = bonus x > bonus (root t) ∧ more t

∧ more (Node x ts)
root (Node x ts) = x

Using these functions, property p can be defined as follows:

p t = csum t ∧ more t.

Weight function w sums up the difference of amount of bonus between an
employee and his or her immediate supervisor. In order to minimize the sum of
the difference, w returns a negative value.

w (Node x [ ]) = 0
w (Node x (t : ts)) = bonus (root t) − bonus x + w t + w (Node x ts)

Therefore, we can specify the problem as follows:

fbd = max w ◦ filter p ◦ genRTree M.

When total T is not enough, there may be no solution. In such a case the
result is ”No solution.” by the definition of max w.
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x

t1 t2 tn...
r2b

r2b t1

r2b t2

r2b tn x
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Fig. 7. Isomorphism between rose trees and leaf-labeled binary trees

Derivation. We have specified the bonus problem as an MMP. Rose tree is
not a polynomial data type, so we encode it by leaf-labeled binary tree as in
[SHTO00]:

BTree α = Tip α
| Bin (BTree α) (BTree α)

Rose trees and leaf-labeled binary trees are isomorphic and we exploit the iso-
morphism between them, as illustrated in Fig. 7, for converting functions on
rose trees into functions on leaf-labeled binary trees. Transformations between
the two structures can be implemented in linear time as follows:

r2b (Node x [ ]) = Tip x
r2b (Node x (t : ts)) = Bin (r2b t) (r2b (Node x ts))
b2r (Tip x) = Node x [ ]
b2r (Bin t1 t2) = let Node x ts = b2r t2 in Node x ((b2r t1) : ts)

Meanwhile, we would like to convert p :: RTree (α, M) → Bool into p′ ::
BTree (α, M) → Bool, which satisfies the following equation:

p′ t = p (b2r t)

By fusion, we get the following:

p′ t = csum′ t ∧ more′ t
csum′ t = bonusSum′ t == T
bonusSum′ (Tip x) = bonus x
bonusSum′ (Bin t1 t2) = bonusSum′ t1 + bonusSum′ t2
more′ (Tip x) = True
more′ (Bin t1 t2) = bonus (root′ t2) > bonus (root′ t1) ∧

more′ t1 ∧ more′ t2
root′ (Tip x) = x
root′ (Bin t1 t2) = root′ t2

Similarly, we convert w into w′, which satisfies w′ t = w (b2r t). By fusion,
we get the following:

w′ (Tip x) = 0
w′ (Bin t1 t2) = bonus (root′ t1) − bonus (root′ t2) + w′ t1 + w′ t2
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Using these functions we get the following form:

fbd = b2r ◦ max w′ ◦ filter p′ ◦ genBTree M ◦ r2b.

Property p′ is defined as mutumorphisms with csum′, bonusSum′,more′, root′,
but bonusSum′ and root′ do not have finite range. As for bonusSum′, we use the
cutting method [SHTO01] by introducing the function cut.

csum′ t = cut (bonusSum′ t) == T
cut s = if s ≤ T then s else T + 1

Let cbs = cut ◦ bonusSum′, and we get

csum′ t = cbs t == T
cbs (Tip x) = cut (bonus x)
cbs (Bin t1 t2) = cut (cbs t1 + cbs t2).

As for root′, we let br = bonus ◦ root′. By fusion we get

br (Tip x) = bonus x
br (Bin t1 t2) = br t2.

Using these functions the property p′ is described as finite mutumorphisms.
The weight function w′ is described using the above function br as follows:

w′ (Tip x) = ηtip x
w′ (Bin t1 t2) = ηbin (w′ t1) (w′ t2) (br t1) (br t2)
ηtip x = 0
ηbin w1 w2 e1 e2 = e1 − e2 + w1 + w2

This is bottom-up accumulative, because ηbin satisfies the monotonicity:

w11 ≤ w12 ∧ w21 ≤ w22 ⇒ ηbin w11 w21 e1 e2 ≤ ηbin w12 w22 e1 e2

and hence satisfies the distributivity condition. By applying Theorem 3, we get
an O(T 6n) algorithm (by an array implementation, it is reduced to O(T 4n)) in
Fig. 8, where n is the size of the input tree. When total = 6, the expression

fbd (Node ’a’ [Node ’b’ [Node ’c’ [], Node ’d’ []],
Node ’e’ [], Node ’f’ []])

computes the following result:

Node (’a’,3) [Node (’b’,1) [Node (’c’,0) [],Node (’d’,0) []],
Node (’e’,2) [],Node (’f’,0) []].
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fbd = b2r . third . foldr1 (bmax second) .
filter (accept . first) . h . r2b

h (Tip x) = [(((m,True),m),0,Tip (x,m)) | m <- [0..total]]
h (Bin t1 t2) = eachmax [(((cut (c1+c2),q2 > q1 && m1 && m2),q2),

q1-q2+w1+w2,Bin r1 r2)
| (((c1,m1),q1),w1,r1) <- h t1,
(((c2,m2),q2),w2,r2) <- h t2]

accept ((a,b),c) = a == total && b

Fig. 8. An O(T 6n) Haskell program for the bonus problem

5 Comparison with the Relational Approach

One of the studies that is closely related to our work is derivation by relational
calculus [BdM96]. This work showed many optimization problems can be dealt
with in a uniform way by relational calculus. Bird showed that MMP can be dealt
with by relational calculus [Bir01]. Bird and de Moor gave theorems for deriving
efficient greedy, dynamic programming, and thinning algorithms, which cover
our optimization theorems. Though they are general, they are not good guides
for programmers to write specifications that meet their prerequisite condition.
For example, see the thinning theorem [BdM96]:

Theorem 4. [BdM96] If Q ⊆ R and S is monotonic on Q◦, then

min R ◦ foldF(thin Q ◦ Λ(S ◦ F ∈)) ⊆ min R ◦ Λ(foldF S).

This roughly means that the right side, min R ◦ Λ(foldF S), is the specification,
where S is a generating function and min R selects the optimal results, and
the left side is the derived algorithm. In the example of MMP, filter p ◦ gen
corresponds to Λ(foldF S) and max w corresponds to min R. In order to apply
this theorem, we have to find Q to satisfy the required conditions with respect
to S and R; this may be a little burdensome for programmers using the theorem.

Our target is less general, but still includes a useful class of problems called
MMP; we provide theorems to automatically derive efficient algorithms with a
more friendly interface that guides programmers in writing specifications.

6 Conclusions and Future Work

We have presented a new method for deriving efficient algorithms for a class of
optimization problems called maximum marking problems. The main contribu-
tion of this work is two new powerful optimization theorems, which allow weight
functions to be accumulative both in a top-down and bottom-up way. The ex-
amples, which cannot be handled by existing approaches, are variants of the
maximum segment sum problem and the fair bonus distribution problem. For
simplicity, we focused on weight functions and used only finite mutumorphisms
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as property descriptions; however, the extension for the property description
with accumulators (as in [SHT01]) is straightforward.

Our problem remained, as demonstrated in the fair bonus distribution prob-
lem, is that the derived algorithm may have a relatively large constant factor.
We expect reduction of the constant factor by using automata compression to
eliminate unnecessary states; our current method may produce redundant states
due to simple tupling of the property description functions.

Another plan is to apply our new method to more practical real-world prob-
lems such as program analysis. Our work [OHS03] solved register allocation
without rescheduling as a maximum marking problem. When taking into ac-
count the rescheduling of instructions, we will need accumulative information
and we expect that the new theorem would play a key role in deriving efficient
algorithms for solving these problems.

References

[BdM96] Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall,
1996.

[Bir87] Richard Bird. An introduction to the theory of lists. In Manfred Broy,
editor, Logic of Programming and Calculi of Discrete Design, volume F36
of NATO ASI Series, pages 5–42. Springer-Verlag, 1987.

[Bir89] Richard Bird. Algebraic identities for program calculation. The Computer
Journal, 32(2):122–126, 1989.

[Bir98] Richard Bird. Introduction to Functional Programming using Haskell (sec-
ond edition). Prentice Hall, 1998.

[Bir01] Richard Bird. Maximum marking problems. Journal of Functional Pro-
gramming, 11(4):411–424, 2001.

[BLW87] Marshall W. Bern, Eugene L. Lawler, and A. L. Wong. Linear-time com-
putation of optimal subgraphs of decomposable graphs. Journal of Algo-
rithms, 8:216–235, 1987.

[BPT92] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic gen-
eration of linear-time algorithms from predicate calculus descriptions of
problems on recursively constructed graph families. Algorithmica, 7:555–
581, 1992.

[Gri90] D. Gries. The maximum-segment-sum problem. In E. W. Dijkstra, edi-
tor, Formal Development of Programs and Proofs, pages 33–36. Addison-
Wesley, 1990.

[OHS03] Mizuhito Ogawa, Zhenjiang Hu, and Isao Sasano. Iterative-free program
analysis. In Proceedings of the 8th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP’03), pages 111–123, Uppsala,
Sweden, August 2003. ACM Press.

[PJH99] Simon Peyton Jones and John Hughes, editors. The Haskell 98 Report.
February 1999. Available from http://www.haskell.org/definition/.

[PP96] Albert Pettrossi and Maurizio Proietti. Rules and strategies for transform-
ing functional and logic programs. ACM Computing Surveys, 28(2):360–
414, June 1996.



Maximum Marking Problems with Accumulative Weight Functions 591

[SHT01] Isao Sasano, Zhenjiang Hu, and Masato Takeichi. Generation of efficient
programs for solving maximum multi-marking problems. In Walid Taha,
editor, Semantics, Applications, and Implementation of Program Genera-
tion (SAIG’01), volume 2196 of Lecture Notes in Computer Science, pages
72–91, Firenze, Italy, September 2001. Springer-Verlag.

[SHTO00] Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito Ogawa. Make it
practical: A generic linear-time algorithm for solving maximum-weightsum
problems. In Proceedings of the 5th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP’00), pages 137–149, Montreal,
Canada, September 2000. ACM Press.

[SHTO01] Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito Ogawa. Solving
a class of knapsack problems on recursive data structures (in Japanese).
Computer Software, 18(2):59–63, 2001.

[SHTO02] Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito Ogawa. Deriva-
tion of linear algorithm for mining optimized gain association rules. Com-
puter Software, 19(4):39–44, 2002.


	Introduction
	Preliminaries
	Top-Down Accumulative Weight Functions
	The Top-Down Optimization Theorem
	Proof of the Top Down Optimization Theorem
	The Maximum Segment Alternate Sum Problem

	Bottom-Up Accumulative Weight Functions
	The Bottom-Up Optimization Theorem
	Proof of the Bottom-Up Optimization Theorem
	The Fair Bonus Distribution Problem

	Comparison with the Relational Approach
	Conclusions and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


