
International Journal of Parallel Programming, Vol. 32, No. 1, February 2004 (c
�

2004)

A New Parallel Skeleton for General
Accumulative Computations

Hideya Iwasaki1 and Zhenjiang Hu2

1 Department of Computer Science, The University of Electro-Communications, 1–5–1
Chofugaoka, Chofu-shi, Tokyo 182-8585 Japan. Email: iwasaki@cs.uec.ac.jp
2 Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1
Hongo, Bunkyo-ku, Tokyo 113-8656 Japan. Email: hu@mist.i.u-tokyo.ac.jp

Skeletal parallel programming enables programmers to build a parallel program
from ready-made components (parallel primitives) for which efficient implemen-
tations are known to exist, making both the parallel program development and
the parallelization process easier. Constructing efficient parallel programs is often
difficult, however, due to difficulties in selecting a proper combination of paral-
lel primitives and in implementing this combination without having unnecessary
creations and exchanges of data among parallel primitives and processors. To over-
come these difficulties, we propose a powerful and general parallel skeleton, ac-
cumulate, which can be used to naturally code efficient solutions to problems as
well as be efficiently implemented in parallel using MPI (Message Passing Inter-
face).

KEY WORDS: Skeletal parallel programming; Bird–Meertens formalism; data
parallel skeleton; program transformation; MPI.

1. INTRODUCTION

Parallel programming has proved to be difficult, requiring expert knowl-
edge of both parallel algorithms and hardware architectures to achieve
good results. The use of parallel skeletons can help to structure this process
and make both programming and parallelization easier.(1–3) Programming
using parallel skeletons is called skeletal parallel programming, or sim-
ply skeletal programming. Its approach is to abstract generic and recurring
patterns within parallel programs as skeletons and then provide the skele-
tons as a library of “building blocks” whose parallel implementations are
transparent to the programmer.

1

2 Iwasaki and Hu

Skeletal parallel programming was firstproposed by Cole,(1) and much
research(4–14) has been devoted to it. Skeletons can be classifiedinto two
groups: task parallel skeletons and data parallel skeletons. Task parallel
skeletons capture the parallelism through the execution of several differ-
ent tasks. For example, Pipeline1for1 in eSkel(13) is used for pipelining
computation, and farm in P3L(5, 6) is a skeleton for farming computation
that uses several workers. Data parallel skeletons capture the simultane-
ous computations on the data partitioned among processors. Examples of
this kind of skeleton are forall in High Performance Fortran,(15) apply-to-
call in NESL,(7, 8) and a fixedset of higher order functions such as map,
reduce, scan, and zip in the Bird–Meertens Formalism(16, 17) (BMF for
short).

Skeletal programming is not restricted to a specificapplication area;(14)

it provides general patterns of parallel programming to help programmers
write higher-level and structured parallel programs. Skeletal programming
is attractive for the three reasons. First, it simplifies parallel program-
ming because programmers are able to build parallel programs from ready-
made components (skeletons) with known efficientimplementations, with-
out being concerned with the lower level details of their implementations.
Second, programs using skeletons are portable, because skeletons are ab-
stracted toolkits whose specificationsare independent of parallel environ-
ments. Third, communication problems like deadlocks and starvation are
avoided, and a cost model enables us to predict the performance of a pro-
gram.

Despite these advantages of skeletal programming, developing efficient
programs, especially ones based on the use of data parallel skeletons, still
remains a big challenge for two reasons. First, it is hard to choose ap-
propriate parallel skeletons and to integrate them well so as to develop
efficientparallel programs, especially when the given problem is compli-
cated. This is due to the gap between the simplicity of parallel skeletons
and the complexity of the algorithms for the problem. Second, although
a single skeleton can be efficientlyimplemented, a combination of skele-
tons cannot be easily executed efficiently. This is because skeletal parallel
programs are apt to introduce many intermediate data structures for com-
munication among skeletons. To achieve good results, we have to eliminate
unnecessary creations and traversals of such data structures and unneces-
sary inter-process communications (exchanges of data).

In this paper, we propose a powerful and general parallel skeleton
called accumulate and describe its efficientimplementation in C++ with
MPI (Message Passing Interface)(18) as a solution to the above problems.
Unlike the approaches that apply such optimizations as loop restructuring

A New Parallel Skeleton for General Accumulative Computations 3

to the target program, our approach provides a general recursive computa-
tion with accumulation as a library function (skeleton) with an optimized
implementation. We are based on the data parallel programming model of
BMF, which provides us with a concise way to describe and manipulate
parallel programs. The main advantages of accumulate can be summa-
rized as follows.

– The accumulate skeleton abstracts a typical pattern of recursive func-
tions using an accumulative parameter. It provides a more natural way
of describing algorithms with complicated dependencies than existing
skeletons, like scan.(7) In fact, since accumulate is derived from the
diffusion theorem,(19) most useful recursive algorithms can be captured
using this skeleton.

– The accumulate skeleton has an architecture-independent and effi-
cient parallel implementation. It effectively eliminates both multiple
traversals of the same data structure and unnecessary creation of inter-
mediate data structures with the help of the fusion transformation.(20–22)

In addition, it completely eliminates unnecessary data exchanges be-
tween processors.

– The accumulate skeleton is efficiently implemented in C++ using
MPI. MPI was selected as the base of our parallel implementation be-
cause it offers standardized parallel constructs and makes the imple-
mentation of accumulate more portable and practical. The accumu-
late skeleton is a polymorphic function that can accept various data
types without any special syntax. This is in sharp contrast to Skil,(9, 10)

in which enhanced syntax for describing polymorphism and functional
features is introduced into a C-based language.

The organization of this paper is as follows. We review existing paral-
lel skeletons and the diffusion theorem in Section 2. In Section 3, we define
our parallel skeleton, accumulate, by abstracting parallel programs deriv-
able from the diffusion theorem. In Section 4, we describe an algorithm
for implementing the proposed skeleton in parallel and describe the library
we developed in C++ using MPI. We present some experimental results in
Section 5 and conclude with a brief summary in Section 6.

When we discuss implementations and time complexities of skeletons,
we assume that N represents the number of elements in the input list and
P represents the number of processors. Each processor is assigned an inte-
ger, called the “processor identifier(PID)”, between 0 and P � 1. We also
assume that elements of the input list are divided into P sublists, each of
which has been already distributed to the corresponding processor. Thus,
each processor has a list of length N

�
P.

4 Iwasaki and Hu

2. PRELIMINARIES

In this section, we briefly review our notational conventions and some basic
concepts of BMF.(16, 17) We also review the diffusion theorem, from which
accumulate is derived.

2.1. Notations

We use the functional notation to describe the definitionsof skeletons and
programs because of its conciseness and clarity. Those who are familiar
with the functional language Haskell(20) should have no problem under-
standing our notation.

Function application is denoted by a space and the argument is writ-
ten without brackets. Thus, f a means f � a � . Functions are curried, and
applications associate to the left. Thus, f a b means � f a � b. A function ap-
plication binds stronger than any other operator, so f a � b means � f a ��� b,
but not f � a � b � . Infixbinary operators will often be denoted by � , � , etc.
and can be sectioned; an infixbinary operator like � is turned into a unary
or binary function by

a � b ��� a ��� b ����� b � a ���	�
� a b �
Lists are finite sequences of values of the same type. A list is either

empty, a singleton, or the concatenation of two lists. We write ��
 for the
empty list, � a
 for the singleton list with element a, and xs ++ ys for the
concatenation of lists xs and ys. Concatenation is associative, and ��
 is its
unit. For example, the term � 1
 ++ � 2
 ++ � 3
 denotes a list with three ele-
ments, often abbreviated to � 1 � 2 � 3
 . We also write x : xs for � x
 ++ xs.

2.2. Primitive Skeletons in BMF

The most important skeletons in BMF are map, reduce, scan, and zip.
The map skeleton is the operator that applies a function to every ele-

ment in a list. Informally, we have

map f � x1 � x2 ��������� xN
���� f x1 � f x2 ��������� f xN
��
The cost of this skeleton is O � N �

P � , provided that f is a constant-time
function.

The reduce skeleton is the operator that collapses a list into a single
value by repeated application of an associative binary operator. Informally,
for associative binary operator � with unit ι � , we have

reduce �	������
�� ι �
reduce �	����� x1 � x2 ��������� xN
�� x1 � x2 ��������� xN �

A New Parallel Skeleton for General Accumulative Computations 5

If � is a constant time operator, the cost of reduce is O � N �
P � logP �

based on the divide-and-conquer style calculation.
The scanskeleton is the operator that accumulates all intermediate re-

sults of the reduce computation. Informally, for associative binary opera-
tor � with unit ι � , we have

scan �	�
� � x1 � x2 ��������� xN
 � � ι � � x1 � x1 � x2 ������� � x1 � x2 � ����� � xN
��
The scanskeleton has a time complexity of O � N �

P � logP � using the Blel-
loch’s algorithm,(7) provided that � is a constant time operator.

Finally, the zip skeleton is the operator that merges two lists into a
single list pairing the corresponding elements:

zip � x1 � x2 ��������� xN
 � y1 � y2 ��������� yN
 � � � x1 � y1 � � � x2 � y2 � � ����� � � xN � yN �
��
Obviously, the cost of zip is O � N �

P � .

2.3. The Diffusion Theorem

The recursive function in which we are interested is definedon lists in the
following form.

h ��
 c � g c
h � x : xs � c � p � x � c ��� h xs � c � q x � �

The second argument of h is an accumulative one used to pass infor-
mation to the next recursive call of h. While this definitionappears com-
plicated, it can be easily understood as follows.

– If the input list is empty, the result is computed by applying some func-
tion g to accumulative parameter c.

– If the input list is not empty and its head (car) and tail (cdr) parts are
x and xs respectively, then the result is generated by combining the
following two values using some binary operator � :

� the result of applying p to x (head value) and c (the accumulative
parameter), and

� the recursive call of h to xs (the rest part of the input list), with
c � q x as its accumulative parameter.

Since function h of the above form represents the most natural recur-
sive definitionon lists with a single accumulative parameter, it is general
enough to capture many algorithms.(23) As a matter of fact, when the accu-
mulative parameter is unnecessary, h is the so-called catamorphism(24, 22)

6 Iwasaki and Hu

or foldr, one of the standard functions provided in most functional lan-
guage systems. Many useful functions can be expressed in the form of a
catamorphism.(21)

As an example, consider the elimination of all smaller elements from
a list. An element is said to be smaller if it is less than a previous element
in the list. For example, for the list � 1 � 4 � 2 � 3 � 5 � 7
 , 2 and 3 are smaller
elements, and thus the result is � 1 � 4 � 5 � 7
 . It is easy to solve this problem
by scanning the list from left to right and eliminating every element that
is less than the maximum of the already scanned elements. This maximum
value can be held by an accumulative parameter whose initial value is � ∞,
i.e., smaller � 1 � 4 � 2 � 3 � 5 � 7
 � � ∞ � ��� 1 � 4 � 5 � 7
 . Thus, the function smaller is
definedby the following recursive form with an accumulative parameter.

smaller ��
 c � ��

smaller � x : xs � c � if x � c then smaller xs c else � x

++ smaller xs x �
The second definitionclause has two occurrences of a recursive call to

smaller. A simple transformation of merging these two occurrences into a
single one immediately gives the following definition:

smaller ��
 c � ��

smaller � x : xs � c ��� if x � c then ��
 else � x
��

++ smaller xs � if x � c then c else x � �
Thus, smaller can be described in the recursive form in which we are

interested.
While it looks easy to write the solutions of problems in the recursive

form of h, it is not obvious how to re-code them in terms of skeletons. The
diffusion theorem(19) is a transformation rule for turning the above form
of the recursive definition, which has an accumulative parameter, into a
composition of BMF skeletons.

Theorem (Diffusion). Given is a function h definedin the following
recursive form:

h ��
 c � g c
h � x : xs � c � p � x � c ��� h xs � c � q x � �

if � and � are associative and have units, then h can be transformed into
the following compositional form:

h xs c � reduce �	�
� � map p as ��� g b
where bs ++ � b
 � map � c � � � scan �	�
� � map q xs ���

A New Parallel Skeleton for General Accumulative Computations 7

as � zip xs bs �
Note that the list concatenation operator “++” is used as a pattern on the
left side of the equation in the above where clause.

Proof. We can prove this theorem by induction on the firstparameter
of h, as shown by the following calculation.

Base case. xs � ��

h ��
 c
� reduce �	�
� � map p as ��� g b

where bs ++ � b
 � map � c � � � scan �	�
� � map q ��
����
as � zip ��
 bs

� �
Definitionof map �

reduce �	�
� � map p as ��� g b
where bs ++ � b
 � map � c � � � scan �	�
� ��
��

as � zip ��
 bs
� �

Definitionof scan �
reduce �	�
� � map p as ��� g b
where bs ++ � b
 � map � c � ��� ι �

as � zip ��
 bs
� �

Definitionof map; c � ι � � c �
reduce �	�
� � map p as ��� g b
where bs ++ � b
 � � c

as � zip ��
 bs
� �

Pattern matching: bs � ��
�� b � c; Definitionof zip �
reduce �	�
� � map p ��
���� g c

� �
Definitionof map �

reduce �	�
����
 � g c
� �

Definitionof reduce �
ι � � g c

� g c

Inductive case. xs � x : xs �
h � x : xs � � c
� reduce �	�
� � map p as ��� g b

where bs ++ � b
 � map � c � � � scan �	�
� � map q � x : xs � �����

8 Iwasaki and Hu

as � zip � x : xs � � bs
� �

Definitionof map �
reduce �	�
� � map p as ��� g b
where bs ++ � b
 � map � c � � � scan �	�
� � q x : map q xs � ���

as � zip � x : xs � � bs
� �

Definitionof scan; ��
scan �	�
� � y : ys � � ι � : map � y � � � scan �	�
� ys � �

reduce �	�
� � map p as ��� g b
where bs ++ � b

� map � c � � � ι � : map � q x � � � scan �	��� � map q xs � ���
as � zip � x : xs � � bs

� �
Definitionof map; c � ι � � c �

reduce �	�
� � map p as ��� g b
where bs ++ � b

� c : map � c ��� � map � q x � � � scan �	��� � map q xs � �����
as � zip � x : xs � � bs

� �
map f � map g � � map � f � g � ; Associativity of � �

reduce �	�
� � map p as ��� g b
where bs ++ � b
 � c : map ��� c � q x ��� � � scan �	�
� � map q xs � ���

as � zip � x : xs � � bs
� �

Pattern matching: bs � c : bs � �
reduce �	�
� � map p as ��� g b
where bs � ++ � b
 � map ��� c � q x ��� � � scan �	�
� � map q xs � ���

as � zip � x : xs � � � c : bs � �
� �

Definitionof zip; as � a : as � �
reduce �	�
� � map p � a : as � ����� g b
where bs � ++ � b
 � map ��� c � q x ��� � � scan �	�
� � map q xs � ���

a : as ����� x � c � : zip xs � bs �
� �

Definitionof map; a � � x � c � �
reduce �	�
� � p � x � c � : map p as � ��� g b
where bs � ++ � b
 � map ��� c � q x ��� � � scan �	�
� � map q xs � ���

as � � zip xs � bs �
� �

Definitionof reduce �
p � x � c ��� � reduce �	�
� � map p as � ��� g b �
where bs � ++ � b
 � map ��� c � q x ��� � � scan �	�
� � map q xs � ���

as � � zip xs � bs �
� �

Induction hypothesis �

A New Parallel Skeleton for General Accumulative Computations 9

p � x � c ��� h xs � � c � q x �

It is worth noting that the transformed program in the BMF skeletons
is efficient,in the sense that if the original (recursive) program uses O � N �
sequential time, then the diffused one takes O � N �

P � logP � parallel time.
Section 4 describes a detailed algorithm for computing the transformed
parallel program in O � N �

P � logP � time.
To see how the diffusion theorem works, recall the example of elimi-

nating smaller elements in a list, in which smaller has the following defi-
nition:

smaller ��
 c � ��

smaller � x : xs � c ��� if x � c then ��
 else � x
��

++ smaller xs � if x � c then c else x � �
Matching the above recursive definitionwith that in the diffusion the-

orem yields

smaller xs c � reduce � ++ � � map p as � ++ g b
where bs ++ � b
�� map � c � � � scan �	�
� � map q xs ���

as � zip xs bs
c � x � if x � c then c else x
p � x � c � � if x � c then ��
 else � x

g c � ��

q x � x �

Consequently, we have obtained an O � N �
P � logP � parallel algorithm.

3. THE accumulate PARALLEL SKELETON

As described above, the diffusion theorem is applicable to a wide class of
recursive functions on lists, abstracting a good combination of primitive
parallel skeletons map, reduce, scan, and zip in BMF. Our new parallel
skeleton, accumulate, is definedbased on the theorem.

Definition. Let g, p, and q be functions, and let � and � be associative
operations with units. The accumulate skeleton is definedby

accumulate ��
 c � g c
accumulate � x : xs � c � p � x � c ��� accumulate xs � c � q x � �

Since accumulate is uniquely determined by g, p, q, � , and � , we can
parameterize them and use the special notation � � g � � p � �
� � � q �	�
��

 for ac-
cumulate.

10 Iwasaki and Hu

The accumulate skeleton was previously called diff,(25) but it has been
renamed so as to reflect its characteristic feature of describing data depen-
dencies.

It is a direct consequence of the diffusion theorem that accumulate
can be rewritten as

� � g � � p � ��� � � q �	����

 xs c � reduce �	�
� � map p as ��� g b
where bs ++ � b
�� map � c � � � scan �	�
� � map q xs ���

as � zip xs bs �
The accumulate skeleton is a data parallel skeleton that acts on partitioned
data and abstracts good combinations of primitive skeletons such as map,
reduce, scan, and zip. To use accumulate, programmers need not know
in detail how these primitive skeletons are combined. Thus, accumulate
is quite adequate for a general skeleton in parallel programming that solves
the problems pointed out in the Introduction.

Returning to the example of smaller in the previous section, we are
able to code it directly in terms of accumulate as follows:

smaller xs c � � � g ��� p � ++ � � � q �	� ��

 xs c
where c � a � if a � c then c else a

p � x � c � � if x � c then ��
 else � x

g c � ��

q x � x �

As seen here, to write a parallel program in terms of accumulate, pro-
grammers need only findsuitable parameters given in � � g � � p � �
� � � q �	�
��

notation. In many cases, it is easy to findg and p because they are func-
tions applied to each element of an input list in the recursive definitionof
interest. The only possible difficultyis to findsuitable associative opera-
tors � and � together with q. The context preservation transformation(26)

may provide a systematic way to deal with this difficulty, but a detailed
discussion on this point is beyond the scope of this paper.

To see how powerful and practical the new skeleton is for describing
parallel algorithms, consider another problem of checking whether tags are
well matched or not in a document written in XML (eXtensible Markup
Language). Although this problem is of practical interest, designing an ef-
ficientO � logN � program, where N denotes the number of separated words
in the document, using parallel skeletons is not easy.

We can start with a naive sequential program to solve this problem us-
ing a stack. When an open tag is encountered, it is placed on the stack. For
a close tag, first it is compared with the open tag at the stack top, and if
they correspond, the open tag is removed from the stack. This straightfor-

A New Parallel Skeleton for General Accumulative Computations 11

ward algorithm is recursively definedwith an accumulative parameter that
represents the stack in the following way:

tagmatch ��
 cs � isEmpty cs
tagmatch � x : xs � cs

� if isOpen x then tagmatch xs � push x cs �
else if isClose x then notEmpty cs

�
match x � top cs �

�
tagmatch xs � pop xs �

else tagmatch xs cs �
Here, for simplicity, an XML document fileis represented as a list of

separated tags and words. Since the detailed process for findingboth suit-
able associative operators and an adequate representation of a stack can be
found in elsewhere,(19) we omit its description here. Applying the diffu-
sion theorem gives the following efficientparallel program of tagmatch in
terms of accumulate:

tagmatch xs cs � � � isEmpty � � p � � � � � q � ����

 xs cs
where

p � x � cs �
� if isOpen x then True

else if isClose x then notEmpty cs
�

match x � top cs �
else True

q x � if isOpen x then ��� x
�� 1 � 0 �
else if isClose x then ����
�� 0 � 1 �
else ����
�� 0 � 0 �

� s1 � n1 � m1 � � � s2 � n2 � m2 �� if n1
�

m2 then � s2 � n2 � m1 � m2 � n1 �
else � s2 ++ drop m2 s1 � n1 � n2 � m2 � m1 � �

Function drop m2 s1 drops the first m2 elements from list s1. In the
above definition, a stack is represented as a tuple: its first element is a
list of unclosed tags, the second is the length of the firstelement, and the
third is the number of pop occurrences. The initial value of accumulative
parameter cs of tagmatch is the empty stack ����
�� 0 � 0 � .

4. IMPLEMENTATION

Although not all combinations of primitive skeletons can guarantee the
existence of efficient parallel implementation, the accumulate skeleton,
a specific combination of primitive skeletons, can be efficiently imple-
mented. We implemented accumulate using MPI, a standard parallel li-
brary widely used for parallel programming from massively parallel com-
puters to PC clusters. We describe our architecture-independent algorithm

12 Iwasaki and Hu

for the implementation of accumulate before giving our C++ library using
MPI.

4.1. The Algorithm

To implement accumulate efficiently, we fuse (or merge) as many func-
tional compositions as possible without sacrificinginherent parallelism by
using optimization techniques of fusion transformation.(20, 22) Fusion trans-
formation enables us to eliminate unnecessary intermediate data structures
and thus avoid unnecessary traversals of data.

We start our description of accumulate in terms of the BMF primitive
skeletons in Section 3:

� � g � � p � ��� � � q �	����

 xs c � reduce �	�
� � map p as ��� g b
where bs ++ � b
�� map � c � � � scan �	�
� � map q xs ���

as � zip xs bs �
A naive implementation of accumulate is to use the existing skeletons

based on the above equation, but it is too inefficientbecause it generates
many unnecessary intermediate data structures. For example, a list whose
length is equal to that of xs is produced by map q xs, but immediately
consumed by scan �	�
� in the where clause. This list is an intermediate
and transitory object that is not a part of the final answer. Similarly, as
is transitory and consumed by map p. The fusion transformation helps to
eliminate these intermediate data structures and yields the following form
of accumulate:

� � g � � p � ��� � � q �	����

 xs c � reducel2 ���
� ι � xs bs � g b
where bs ++ � b
�� scanl ���
� c xs

u � � v� w � � u � p � v� w �
s � t � s � q t �

in which the following functions are introduced.

– The function reducel2 collapses two lists simultaneously from left to
right into a single value using an initial value e and some binary oper-
ator � .

reducel2 �	��� e � x1 � x2 ��������� xN
 � y1 � y2 ��������� yN

� � ��������� e � � x1 � y1 ��� � � x2 � y2 ����������� � � � xN � yN �

Using this function, we can avoid using zip and fuse reduce �	�
� � map
p as � in the naive implementation of accumulate into reducel2 ���
� ι �
xs bs, where � is definedas u ��� v� w � � u � p � v� w � .

A New Parallel Skeleton for General Accumulative Computations 13

– The function scanl scans a list from left to right with initial value e
and some binary operator � .

scanl �	�
� e � x1 � x2 ��������� xN

��� e � e � x1 � � e � x1 � � x2 � ������� � ����� ��� e � x1 ��� x2 ��������� � � xN

Using this function, we can fuse map � c � � � scan �	�
� � map q xs ��� in
the naive implementation into scanl ���
� c xs, where � is defined as
u � v � u � q v.

The binary operators given as the firstargument to reducel2 and scanl
are not necessarily associative. Therefore, these functions have inherent
sequentiality that makes them investigate input lists from left to right. For-
tunately, � and � , which are arguments of reducel2 and scanl respec-
tively in accumulate after the fusion transformation, are definedin terms
of associative operators � and � . This associativity enables reducel2 and
scanl to be calculated in parallel without sacrificing the parallelism in
accumulate. The key idea is that computation on each processor is per-
formed using a non-associative operator (� or �), while results from all
processors are combined using an associative operator (� or �) based on
the binary tree structure of processors.

Our parallel implementation is based on the rewritten definitionof ac-
cumulate in terms of reducel2 and scanl.

The efficientparallel implementation of reducel2 ���
� ι � xs bs is based
on the property

reducel2 ����� ι � � xs0 ++ xs1 ++ ����� ++ xsP � 1 �
� bs0 ++ bs1 ++ ����� ++ bsP � 1 �

� reducel2 ���
� ι � xs0 bs0 � reducel2 ���
� ι � xs1 bs1������� � reducel2 ���
� ι � xsP � 1 bsP � 1 �
where xsi and bsi (1

�
i � P) are not empty and have the same length. The

implementation is summarized as follows.

Step 1 Each processor firstreduces its local list, xsi, from left to right by
using � and gets its local value.

Step 2 Based on the binary tree structure of the processors given by the
distribution of the input list, an upward sweep of the values of local
reductions is performed by inter-processor communication using asso-
ciative operator � .

After the upward sweep, processor 0 has the resultant value of the
sweep, and this is the finalanswer of the computation of reducel2. The

14 Iwasaki and Hu

cost of local reduction is O � N �
P � , and that of the upward sweep is O � logP � .

The total cost is thus O � N �
P � logP � time, provided that both p and � (and

consequently �) are constant time operations.
Our parallel implementation of scanl is more complicated than that

of reducel2 because it needs both upward and downward sweeps. More
specifically, to implement scanl ���
� c xs, we used an extended version
of Blelloch’s algorithm.(7) First, similar to the case of reducel2, non-
associative operator � is used in the local scan on each processor, while
associative operator � is used in a combination of the half-finishedresults
in the upward and downward sweeps. Second, our algorithm allows scanl
to accept an initial value c other than only the unit of binary operator � .
This enhances the descriptive power of scanl without adding overhead.

The detailed step in our algorithm for calculating scanl ���
� c xs is as
follows. Figure 1 shows a specificexample of calculating scanl ���
� 100 � 1 �
������� 8
 using four processors, where � is definedas s � t � s � 2 � t (q x
and � are definedas 2 � x and � , respectively). Based on the distribution
of the input list, all processors form a tree structure, and each internal node
of this tree is assigned to the same processor as that of its left child (Fig.
1(a)).

Step 1 Each processor locally applies scanl ����� ι � , i.e., it scans the dis-
tributed list from left to right using � to form a scanned list, without
preserving the firstvalue (ι �) of the list (Fig. 1(b)). This phase is exe-
cutable totally in parallel in O � N �

P � time.

Step 2 Similar to the process of reducel2, upward sweep of the finalval-
ues of the scanned lists is performed using the associative operator � .
This step needs O � logP � time. After this step, processor 0 has the value
of the reduction (72 in this example) of the entire input list (Fig. 1(c)).

Step 3 From the root of the tree structure, downward sweep by � to the
leaves is performed. Initially, the seed value c (100 in this example) is
put on the root (Fig. 1(d)). At each sweep step, every node applies �
to its own value and its left child’s value and then passes the result to
its right child (Figs. 1(e)–(f)).

Step 4 Finally, each processor maps the resultant value obtained in the
previous step to the locally scanned list using the operator � (Fig.
1(g)). Obviously, this step needs O � N �

P � time.

The total cost of scanl ���
� c xs is also O � N �
P � logP � time, provided

that q and � (and thus �) can be carried out in constant time.
To sum up, our implementation of accumulate uses O � N �

P � logP �
parallel time.

A New Parallel Skeleton for General Accumulative Computations 15

PID 0 PID 1 PID 2 PID 3

[1, 2] [3, 4] [5, 6] [7, 8]

PID 0 PID 1 PID 2 PID 3

[1, 2] [3, 4] [5, 6] [7, 8]
[2, 6] [6, 14] [10, 22] [14, 30]

(a) (b)

PID 0 PID 1 PID 2 PID 3

[1, 2] [3, 4] [5, 6] [7, 8]
[2, 6] [6, 14] [10, 22] [14, 30]

20

72

52

6 14 22 30

100

PID 0 PID 1 PID 2 PID 3

[1, 2] [3, 4] [5, 6] [7, 8]
[2, 6] [6, 14] [10, 22] [14, 30]

20

72

52

6 14 22 30

100

(c) (d)

PID 0 PID 1 PID 2 PID 3

[1, 2] [3, 4] [5, 6] [7, 8]
[2, 6] [6, 14] [10, 22] [14, 30]

72

6 14 22 30

100

100 120

100+20

PID 0 PID 1 PID 2 PID 3

[1, 2] [3, 4] [5, 6] [7, 8]
[2, 6] [6, 14] [10, 22] [14, 30]

72 100

100 120

100+6 120+22

100 106 120 142

PID 0 PID 1 PID 2 PID 3

[1, 2] [3, 4] [5, 6] [7, 8]

72

100 106 120 142
[102,106] [112,120] [130,142] [156,172]

(e) (f) (g)

Fig. 1. Implementation of scanl.

There are two points to be noted for this efficient implementation of
accumulate.

– Since the result of scanl (i.e., bs) is immediately used in reducel2,
Step 4 in scanl and Step 1 in reducel2 can be fully overlapped. This
avoids duplicate traversals of bs.

– As a side effect of the scanl execution process, processor 0 is able to
obtain the last value of the resultant list of scanl simply by applying
� to the initial value (seed) of the scan and the result of the upward
sweep. For example, as illustrated in Fig. 1(f), processor 0 can easily
get the value 172 (the last value of the resultant list that resides on
PID 3) by computing 100 � 72, where 100 is the seed of scanl and

16 Iwasaki and Hu

72 is the result of the upward sweep. This avoids extra inter-processor
communication and leads to an efficientimplementation.

4.2. The Library in C++

So far the efficient implementation of the new skeleton accumulate has
been algorithmically addressed in the “functional” style. From the practi-
cal point of view, it is important to give a “procedural” implementation of
the skeleton. We have thus implemented accumulate and other simpler
skeletons as a library in C++ using MPI. We selected MPI because it is a
standardized and portable library used on a wide variety of parallel com-
puters. In fact, it is MPI that enables our implementation of accumulate
to be easily ported only with re-compilation onto an IEEE 1394-based PC
cluster and an Ethernet-connected PC cluster.

We aim to provide flexible skeletons that are capable of accepting vari-
ous types of user-definedfunctions. For example, consider map; it has the
type � a � b ��� � a
�� � b
 , i.e., the firstargument is a function from type a
to type b, the second argument is a list whose elements are of type a, and
the result is a list whose elements are of type b, where a and b are type
variables. Type variables are instantiated to concrete types such as Int or
Char depending on the problem. Rather than preparing many instances of
library functions for map, e.g., a map function for a � Int and b � Int and
another map function for a � Int and b � Char, we provide a polymorphic
function that generates various instances of map based on the given types.

Even though we fixa and b, say a � Int and b � Char, the C++ func-
tion used in map may have the type � �����
	���
�	�������
 , � �����
	���
�	���������
 ,��� ���
	���
�	�������� � ��������
 , or ��� ���
	���
�	���������� � ��������
 . The library function
for map must accept these various types.

Since this kind of programming in C is not easy, we decided to use the
template and overloading mechanisms in C++. Template enables parame-
terization of types in function definitions,while overloading enables type-
directed selection of suitable C++ functions. Using these mechanisms, we
can make the functions compatible with any combination of data types.
The C++ function �"! ,3 which implements the map skeleton is definedas
shown in Fig. 2, for example. In this definition of ��! , input and output
lists are supposed to be represented by arrays, and the size (length) of the
lists is passed to ��! via its argument.

We implemented the accumulate skeleton in the same way. Fragment
of the C++ code of the

� ����#$ �#&% �"��' function that implements � � g � � p � �
� � � q �	�
��

is given in Fig. 3. The arguments (,

!
, � ! %)#&* , + , and � ��� ' * correspond

3 We use the typewriter face to denote the C++ functions we implemented.

A New Parallel Skeleton for General Accumulative Computations 17

���������
	�����
����
	��
���������
	��������
������� � 	���!"�#!%$�&(')!*� ')�+�,$�&�- � �.�+�/$�� � � ��0 �/� ��1 ��'2
& � -3! ��0 � �547698��
:� ��1 � 8;��<�< '=� �?>@��AB4 &C!D&�- � � >@��A ' 8E

���������
	�����
����
	��
���������
	��������
������� � 	���!"�#!%$�&(')!*��$�'F�+�:$�&�- � �G�+�/$�� � � ��0 �,� ��1 ��'2
& � -3! ��0 � �547698��
:� ��1 � 8;��<�< '=� �?>@��AB4 &C!*H�&
- � � >@�IA ' 8E

���������
	�����
����
	��
���������
	��������
������� � 	���! ������� !%$�&�')!*���J��$�'F�K�:$�&�- � �.�+�,$�� � � ��0 �,� �I1 ��'2
& � -3! ��0 � �547698��
:� ��1 � 8;��<�< '5&9!D&�- � � >@��A �LH�� �?>@�IA ' 8E

���������
	�����
����
	��
���������
	��������
������� � 	���! ������� !%$�&�')!*��$9�M��$�'F�N�,$�&�- � �.�O�,$�� � � ��0 �/� ��1 ��'2
& � -3! ��0 � �547698��
:� ��1 � 8;��<�< '5&9!*H�&�- � � >@��A �LH�� �?>D��A ' 8E

Fig. 2. Definitionof �(�� .

to g, p, � , q, and � , respectively. In this implementation, input list xs is
represented as array P�* whose length is * ��Q�' . During the calculation of� ��� #� �#�% � ��' , working area is needed for list bs. To avoid dynamic mem-
ory allocation of working area, programmers have to explicitly give the
pointer to this work area as the eighth argument, R�* , with length * ��Q�'�SCT .
The initial value of accumulative parameter c is passed to

� �$� #$ �#&% � ��' in
R&*.U@V�W .

There are two points that should be noted.

– The
� ����#$ �#�% �"��' function in our library does not distribute the pro-

cessing data (given as sixth argument P&*) among processors; it assumes
that each processor already has the assigned data in its local memory.
This reduces duplicated inter-processor communication.

– In the current version of our library, programmers need to give correct
data types of X Y[ZG\�*] � ���"�(^�!�' for use in interprocess communication;� R and

� � correspond to classes _ and ` , respectively. Although the
types might be derivable from other parameters, the programmer must
give the corresponding data types.

18 Iwasaki and Hu

���������
	�����
����
	��
���������
	������?�;���
	��������
�7	������������
	���� !�� !@$�� ')!"� 'F���#!@$ � ')!*� �J� 'F�	�#!%$ � ���
� ��')!�� ����'F�

� !@$
�(')!*�('F�+� !@$ � � � �(����')!"���J� 'F�
�,$
�(�[� ��0 �/� ��1 �9�+�/$
�(�[�
����������� 	���	����
��� � �?� ����������� 	���	����
��� � ��'2�������� E

���������
	�����
����
	��
���������
	������?�;���
	��������
�7	������������
	���� !�� !@$�� ')!"��$�'F��� !%$ � ' !*���J��$�'F��� !%$ � ���
� ��')!�� ���('F�

������� !%$��(')!*���M��$�'F� ������� !%$ � � � � ����')!"��$9�M��$9�M��$�')�
�,$
�(�[� ��0 �/� ��1 �9�+�/$
�(�[�
����������� 	���	����
��� � �?� ����������� 	���	����
��� � ��'2�������� E

Fig. 3. Fragment of the definitionof 	������������
	���� .

To use
� �$� #� �#&% � ��' , programmers need only definesuitable parame-

ters — five functions, pointers to processing data and working area, and
data types. A program for the tag matching problem is given in Fig. 4. It
is a direct translation of tagmatch in terms of accumulate given in Sec-
tion 3. The functions

� * '"! �(^ ,
!

,
�"�����"���

, + , and � ��� ' * correspond to
the functions and operators in the definitionof tagmatch. In this example,
the call to

� �$� #$ �#&% � ��' in the ��� � function matches the second template
function of

� ��� #� �#�% � ��' in Fig. 3.
For simplicity, we assume that an XML document is represented as an

array of # � * � (��'�� � ����� , each of which is a “code number” of a tag or a
“word number” in the document. Before calling

� �$� #$ �#&% � ��' , the ��� �
function divides this array into equally-sized fragments and distributes
them to the corresponding processors. The macro

� * � !�'���	 �
 returns a
boolean value (represented in � ��� �) indicating whether � is an open tag or
not. Similarly, the macro

� *���% � * ' 	 �
 returns whether � is a close tag or
not. In addition, the macro � � � ��! 	 � � �
 determines whether an open tag� and a close tag � match or not. The type � ��� �� is a structure that imple-
ments the tuple representation of the stack. For simplicity, we assume that
the maximum depth of the nesting open tags is within 10.

5. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the accumulate skeleton, we tested it on
two problems:

– the tag matching problem whose parallel program in terms of accu-
mulate is shown in Fig. 4, and

A New Parallel Skeleton for General Accumulative Computations 19

������������	�
���
���������������
�
���������� �"!��$#&%('*)����+��,-%

������
�.�
��/#������102)����+��,43+
�5
�6
�������
�!70/
�8�9�!�:�:���5;%('

������
*�<0=��!�
�.�>�!����?������
@�1�()����+��,�3+
�5
�
.�	A0/.�
�B�����!<0/��5�56
�������
�!C�;%
��D+
��E.�	A0/.�
���D�B+
��;0/��5�5*
�������
�!F0�0/
�8�9�!�9*��5HG�GI#J���K�����<0/
�8�9+
����L��� �I��5�5;%
��D+
��6
�������
�!A�;%

'

������
@��!�����!��10/������
@M �N������
E��5
�6
�������
�!@MEG�G*� %('

O B+.��QPR0=��!�
�.�>�!����?������
@�1�()����+��,�3+
�5
�
.�	A0/.�
�B�����!<0/��5�5��E
�8�9�!@:��;%S
�8�9/#�:��<%N
�8�9+
����L���@:Q�1%('
��D+
����E
�8�9�!�:��<%N
�8�9/#�:C0�0/.�
���D�B+
��;0/��5�5�T4�RU"��5;%N'

'

O B+.��@B��K.2#J�+
J02)����+��,43+
��;�()����+��,�3+
�VW�()����+��,�3�
�5
�
.�!��6!;�I:@
���8�9�!��X#1�Y:Q
���8�9/#&�"!�V*:E
�V�8�9�!��X#JV*:@
�V�8�9/#&%
.�	A0=!�V�9��6G�G�
[ZL:E
�VK5
	�B�
A0/.�!���.6:*�<%N.*\Y!�VW%N.�]�]�5^
�8�9+
����=.��Q:Q
�V�8�9+
����=.�� %

.�	A0"!;�^\�:I#JV@5^�

�8�9�!@:6!�VW%"
�8�9/#�:Y#1�I]H#JVE8I!;�;%

'���D+
����
	�B�
A0/.�!���.6:*�<%N.*\Y!;�^8Y#JVW%N.�]�]�5

�8�9+
����_!�VQ]E.��E:Q
���8�9+
����`#JVQ]E.�� %"
�8�9�!�:I!;�^]^!�V�8a#JVW%"
�8�9/#4:H#1�;%

'
'

.�!��^#J�+.�!<0/.�!�����
�>K�1�S������
Q3���
�> O �b��5
�
��!�
�.�>�!����?������
Q3��W%
)����+��,�3+
1%
.�!��6!��������W�(
 %
c�d�e U�UbfK��������������
����+��,+�������W%

g 3���D�D�B+�������+
���hKB���
�
����K
��*��!���
1�i��!���.�!�.��K.���D+.�j��+
Q����!��@
����+��,+�������@3 g
g 36�K.�
���
K.�k������+
Q���+���@	�
���>�#J��!���B�	Q�6��B6�����E��B�
�
��+
���B�!��K.�!�>Q��
�B+���+
�
�B�
�3 g

l�l�l

<�L��� l !�:@
<�L��� l #?:*�<% g 3�.�!�.��K.���D O ��D�����B�	Q�+������#���D����K. O ������
��/#J������
�3 g

E:��+������#���D������;0/.�
��/#������ �S���N��!�����!�� �(P<�(B��K.2#J�+
1�S�W�m!��������W�S
1�

����+��,+�������W� c�d�e U�Uon�p�q�r�5;%
l�l�l

'

Fig. 4. Using 	�������� ���
	���� for tag matching problem.

20 Iwasaki and Hu

– the line-of-sight problem.(7)

In the line-of-sight problem, given are a terrain map in the form of a
grid of altitudes and an observation point, and the objective is to findwhich
points are visible along a ray originating at the observation point. The ter-
rain map is given as a list of points, each element of which is a pair � d � a � ,
where a is the altitude of the point and d is its distance from the observation
point. For instance, if the list is � � 1 � 1 � ��� 2 � 5 � ��� 3 � 2 � ��� 4 � 7 � ��� 5 � 19 � ��� 6 � 2 �
 ,
the answer is � True � True � False � False � True � False
 , where True indicates
that the corresponding point is visible. We simplifiedthe problem to be to
findthe number of visible points.

The function lineofsight (27) to solve this simplifiedline-of-sight prob-
lem can be described in terms of accumulate:

lineofsight xs c � � � g � � p � �
� � � q ��� ��

 xs c
where g c � 0

p � x � c � � if c
�

angle x then 1 else 0
q x � angle x �

where angle � d � a � returns a
�
d and x � y returns the bigger of x and y. The

accumulative parameter of lineofsight holds the maximum value of angle
for the points investigated. The C++ program we used was based on the
above form of lineofsight.

The parallel environment was a PC cluster system called FireClus-
ter(28) with eight processors connected by an IEEE 1394 serial bus. The
IEEE 1394 is becoming a standard for connecting PCs because it provides
high-speed (400 Mbps) and low-latency (7.5 µs) communications. It is
thus well suited for programs that need frequent communications using a
limited amount of data, like

� ����#$ �#�% �"��' . The PCs had an 800 MHz Intel
Celeron processor and 256 MB SDR-SDRAM. The operating system was
Linux kernel 2.4.7., and the MPI implementation was MPICH 1.2.2. Our
implementation of

� ����#$ �#&% �"��' is not specific for the IEEE 1394 archi-
tecture; it uses general-purpose MPI functions (e.g., X Y[Z�� � '"���) provided
by the FireCluster system. Since this PC cluster is a distributed memory
system, the entire input has to be divided and distributed to each processor
before parallel computation.

We executed tagmatch and lineofsight with a data size (input list length)
of 500,000.

Figures 5 and 6 show the execution times of the two programs. The
vertical axis represents the execution time ratio (speedup) in percent com-
pared to the time for a single processor, and the horizontal axis is the num-
ber of processors. The solid line shows the speedup when the time needed

A New Parallel Skeleton for General Accumulative Computations 21

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

S
pe

ed
up

 (
%

)

Number of Processors

include data distribution
exclude data distribution

Fig. 5. Execution time of tagmatch on a PC cluster.

for distributing data (using inter-processor communications) to each pro-
cessor is included, while the dotted line shows the speedup when the time
for data distribution is excluded.

With both programs, there was linear speedup when the time for data
distribution was excluded, as expected. With tagmatch, even when data dis-
tribution was included, there was almost linear speedup as the number of
processors was increased. With lineofsight, the parallelization effect satu-
rated. This saturation was due to the cost for data distribution of lineofsight,
which is rather high because of the size of each element (a pair of two short
integers) in its input list. This data distribution problem, however, does not
detract from the effectiveness of

� ����#$ �#�% �"��' :

– In practical applications,
� ����#$ �#&% �"��' is likely to be used as a compo-

nent of bigger programs. This means the input to
� ����#$ �#&% �"��' will be

the resulting list (array) of the previous computation, and its elements
will have already been produced in the local memory of each proces-
sor. There will thus be no need to distribute data among processors
before calling

� �$� #$ �#&% � ��' .

– If the input data to
� �$� #$ �#&% � ��' is provided by a filesystem like NFS,

which is shared by all processors, each processor can read its assigned
data into local memory by a fileaccess without data distribution.

22 Iwasaki and Hu

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

S
pe

ed
up

 (
%

)

Number of Processors

include data distribution
exclude data distribution

Fig. 6. Execution time of lineofsight on a PC cluster.

– While we used a distributed memory system in our experiments, which
made data distribution unavoidable, we can expect a significantspeedup
from using

� ����#$ �#&% �"��' in a shared memory environment, as shown
by the results of the dotted line in Fig. 6,

This data distribution problem is true for all the skeletal programming
systems proposed so far. In fact, many systems have ways to describe data
distribution. For example, P3L(5, 6) provides collective operations such as
scatter for data parallel computations; Skil(9, 10) and the skeleton library
by Kuchen(11) have distributed data structures. While we directly use MPI
primitives such as X Y[Z�� � '"��� for data distribution, it would be better to
provide abstracted libraries (or skeletons), which is left for future work.

To evaluate the efficiencyof programs using
� �$� #$ �#&% � ��' compared

to that of programs not using
� �$� #� �#&% � ��' , we executed three programs

for the same problem:

– the best sequential program as a baseline,

– the best parallel program without using skeletons, and

– a parallel program using
� ��� #� �#�% � ��' .

We used the line-of-sight problem (with data size 500,000) because the
algorithm in these three programs is the same, enabling us to identify the

A New Parallel Skeleton for General Accumulative Computations 23

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

R
el

at
iv

e
sp

ee
d

Number of Processors

best parallel program
parallel program using accumulate

best sequential program

Fig. 7. Execution times of three programs for line-of-sight problem on a PC clus-
ter.

differences based on the coding style of these programs. The best parallel
program uses MPI primitives for inter-processor communication. The pro-
gram using

� ��� #� �#�% � ��' was compiled with inlining of the function calls
of (,

!
, � ! %)#&* , + , and � ��� ' * within

� �$� #� �#&% � ��' .
The execution times (data distribution excluded) are shown in Fig. 7,

with that of the best sequential program normalized to 100.
With more than three processors, the parallel program using

� ��� #� �#�% � ��'
was faster than the best sequential one. Compared to the best parallel pro-
gram, the parallel program using

� ����#$ �#&% �"��' was fast enough — the ex-
ecution time was less than 1.8 times as long as that of the best parallel
program. Using the

� ��� #� �#�% � ��' function shortens the time for develop-
ing parallel programs, and the developed programs can be executed in a
parallel environment in which speedup can be expected as the number of
processors is increased.

The results of our experiments show the effectiveness of the accumu-
late skeleton in constructing efficientparallel programs.

6. CONCLUSION

We have described a new data parallel skeleton, accumulate, in parallel
programming. It is applicable to a wide range of recursive functions. It

24 Iwasaki and Hu

abstracts a good selection and combination of BMF skeletons, and pro-
grammers need not know the internal details of the skeleton.

We implemented accumulate using the MPI library. The implemen-
tation is based on the result of applying the fusion transformation to ac-
cumulate, which eliminates unnecessary intermediate data structures and
exploits an extended version of Blelloch’s algorithm. Since accumulate is
efficiently implemented, recursive functions in the accumulate skeleton
perform well in a parallel environment.

Although we limited our discussion to the list data type, the diffusion
theorem can be extended to trees(19) and other general recursive data types.
We can thus develop new parallel skeletons to match the data type of inter-
est. We plan to implement such skeletons in an efficientway to make them
more practical for parallel programming.

ACKNOWLEDGMENTS

We are grateful to Yasuichi Nakayama and Kazuki Hyoudou of the Uni-
versity of Electro-Communications for providing the computing facilities
and environment for the FireCluster.

REFERENCES

1. M. Cole, Algorithmic Skeletons: a Structured Approach to the Management of Parallel
Computation, Research Monographs in Parallel and Distributed Computing, Pitman (1989).

2. J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, Q. Wu, and R. L.
While, Parallel Programming using Skeleton Functions, Proc. of the Conference on Parallel
Architectures and Reduction Languages Europe (PARLE’93), Lecture Notes in Computer
Science, Vol. 694, pp. 146–160, Springer-Verlag (1993).

3. D. B. Skillicorn, Foundations of Parallel Programming, Cambridge Series in Parallel Com-
putation 6, Cambridge University Press (1994).

4. J. Darlington, Y. Guo, H. W. To, and J. Yang, Parallel Skeletons for Structured Composition,
Proc. 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’95), pp. 19–28 (1995).

5. B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi, P3L: A Structured
High Level Programming Language and its Structured Support, Concurrency: Practice and
Experience, 7(3):225–255 (1995).

6. M. Danelutto, F. Pasqualetti, and S. Pelagatti, Skeletons for Data Parallelism in P3L, Proc.
3rd International Euro-Par Conference (Euro-Par’97), Lecture Notes in Computer Science,
Vol. 1300, pp. 619–628, Springer-Verlag (1997).

7. G. E. Blelloch, Scans as Primitive Operations, IEEE Trans. on Computers, 38(11):1526–
1538 (1989).

8. G. E. Blelloch, NESL: a Nested Data-parallel Language, Technical Report CMU-CS-95-
170, Carnegie Mellon University (1995).

9. G. H. Botorog and H. Kuchen, Skil: An Imperative Language with Algorithmic Skele-
tons, Proc. 5th International Symposium on High Performance Distributed Computing
(HDPC’96), pp. 243–252 (1996).

A New Parallel Skeleton for General Accumulative Computations 25

10. G. H. Botorog and H. Kuchen, Efficient High-Level Parallel Programming, Theoretical
Computer Science, 196(1–2):71–107 (1998).

11. H. Kuchen, A Skeleton Library, Proc. 8th International Euro-Par Conference (Euro-
Par2002), Lecture Notes in Computer Science, Vol. 2400, pp. 620–629, Springer-Verlag
(2002).

12. H. Kuchen and M. Cole, The Integration of Task and Data Parallel Skeletons, Proc. 3rd
International Workshop on Constructive Methods for Parallel Programming (CMPP2002),
pp. 3–16 (2002).

13. eSkel Home Page, http://homepages.inf.ed.ac.uk/mic/eSkel/.
14. F. A. Rabhi and S. G. (Eds), Patterns and Skeletons for Parallel and Distributed Computing,

Springer-Verlag (2002).
15. High Performance Fortran Forum, High Performance Fortran Language Specification

(1993).
16. R. Bird, An Introduction to the Theory of Lists, Proc. NATO Advanced Study Institute on

Logic of Programming and Calculi of Discrete Design, pp. 5–42 (1987).
17. D. B. Skillicorn, The Bird-Meertens Formalism as a Parallel Model, NATO ARW “Soft-

ware for Parallel Computation” (1992).
18. Message Passing Interface Forum, http://www.mpi-forum.org/.
19. Z. Hu, M. Takeichi, and H. Iwasaki, Diffusion: Calculating Efficient Parallel Programs,

Proc. 1999 ACM SIGPLAN International Workshop on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM’99), BRICS Notes Series NS-99-1, pp. 85–94
(1999).

20. R. Bird, Introduction to Functional Programming using Haskell, Prentice-Hall, New York
(1998).

21. A. Gill, J. Launchbury, and S. P. Jones, A Short Cut to Deforestation, Proc. 1993 Conference
on Functional Programming Languages and Computer Architecture (FPCA’93), pp. 223–
232, ACM Press (1993).

22. Z. Hu, H. Iwasaki, and M. Takeichi, Deriving Structural Hylomorphisms from Recursive
Definitions, Proc. 1996 International Conference on Functional Programming (ICFP’96),
pp. 73–82, ACM Press (1996).

23. Z. Hu, H. Iwasaki, and M. Takeichi, An Accumulative Parallel Skeleton for All, Proc. 2002
European Symposium on Programming, Lecture Notes in Computer Science, Vol. 2305, pp.
83–97, Springer-Verlag (2002).

24. E. Meijer, M. Fokkinga, and R. Paterson, Functional Programming with Bananas, Lenses,
Envelopes and Barbed Wire, Proc. 1991 Conference on Functional Programming Lan-
guages and Computer Architecture (FPCA’91), Lecture Notes in Computer Science, Vol.
523, pp. 124–144, Springer-Verlag (1991).

25. S. Adachi, H. Iwasaki, and Z. Hu, Diff: A Powerful Parallel Skeleton, Proc. 2000 Inter-
national Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’2000), pp. 2175–2181, CSREA Press (2000).

26. W.-N. Chin, A. Takano, and Z. Hu, Parallelization via Context Preservation, Proc. 1998
IEEE Computer Society International Conference on Computer Languages (ICCL’98), pp.
153–162, IEEE Press (1998).

27. R. Shirasawa, Z. Hu, and H. Iwasaki, Diffusion after Fusion — Deriving Efficient Parallel
Algorithms —, Proc. 2001 International Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’2001), pp. 735–741, CSREA Press (2001).

28. K. Hyoudou, R. Ozaki, and Y. Nakayama, A PC Cluster System Employing the IEEE 1394,
Proc. 14th IASTED International Conference on Parallel and Distributed Computing and
Systems (PDCS’2002), pp. 489–494, ACTA Press (2002).

